首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synaptosomes were isolated from rat cerebral cortex and incubated with [U-14C]-, [1-14C]- or [6-14C]glucose. Glucose utilization and the metabolic partitioning of glucose carbon in products were determined by isotopic methods. From the data obtained a carbon balance was constructed, showing lactate to be the main product of glucose metabolism, followed by CO2, amino acids and pyruvate. Measuring the release of 14CO2 from glucose labelled in three different positions allowed the construction of a flow diagram of glucose carbon atoms in synaptosomes, which provides information about the contribution of the various pathways of glucose metabolism. Some 2% of glucose utilized was calculated to be degraded via the pentose phosphate pathway. Addition of chlorpromazine, imipramine or haloperidol at concentrations of 10(-5) M reduced glucose utilisation by 30% without changing the distribution pattern of radioactivity in the various products.  相似文献   

2.
Pentose cycle and reducing equivalents in rat mammary-gland slices   总被引:14,自引:13,他引:1       下载免费PDF全文
1. Slices of mammary gland of lactating rats were incubated with glucose labelled uniformly with (14)C and in positions 1, 2, 3 and 6, and with (3)H in all six positions. Glucose carbon atoms are incorporated into CO(2), fatty acids, lipid glycerol, the glucose and galactose moieties of lactose, lactate, soluble amino acids and proteins. C-3 of glucose appears in fatty acids. The incorporation of (3)H into fatty acids is greatest from [3-(3)H]glucose. (3)H from [5-(3)H]glucose appears, apart from in lactose, nearly all in water. 2. The specific radioactivity of the galactose moiety of lactose from [1-(14)C]- and [6-(14)C]-glucose was less, and that from [2-(14)C]- and [3-(14)C]-glucose more, than that of the glucose moiety. There was no randomization of carbon atoms in the glucose moiety, but it was extensive in galactose. 3. The pentose cycle was calculated from (14)C yields in CO(2) and fatty acids, and from the degradation of galactose from [2-(14)C]glucose. A method for the quantitative determination of the contribution of the pentose cycle, from incorporation into fatty acids from [3-(14)C]glucose, is derived. The rate of the reaction catalysed by hexose 6-phosphate isomerase was calculated from the randomization pattern in galactose. 4. Of the utilized glucose, 10-20% is converted into lactose, 20-30% is metabolized via the pentose cycle and the rest is metabolized via the Embden-Meyerhof pathway. About 10-15% of the triose phosphates and pyruvate is derived via the pentose cycle. 5. The pentose cycle is sufficient to provide 80-100% of the NADPH requirement for fatty acid synthesis. 6. The formation of reducing equivalents in the cytoplasm exceeds that required for reductive biosynthesis. About half of the cytoplasmic reducing equivalents are probably transferred into mitochondria. 7. In the Appendix a concise derivation of the randomization of C-1, C-2 and C-3 as a function of the pentose cycle is described.  相似文献   

3.
Our lab and most others have not been able to close a carbon balance for fermentation by the thermophilic, cellulolytic anaerobe, Clostridium thermocellum. We undertook a detailed accounting of product formation in C. thermocellum ATCC 27405. Elemental analysis revealed that for both cellulose (Avicel) and cellobiose, >92% of the substrate carbon utilized could be accounted for in the pellet, supernatant and off-gas when including sampling. However, 11.1% of the original substrate carbon was found in the liquid phase and not in the form of commonly-measured fermentation products - ethanol, acetate, lactate, and formate. Further detailed analysis revealed all the products to be <720 da and have not usually been associated with C. thermocellum fermentation, including malate, pyruvate, uracil, soluble glucans, and extracellular free amino acids. By accounting for these products, 92.9% and 93.2% of the final product carbon was identified during growth on cellobiose and Avicel, respectively.  相似文献   

4.
Dichloroacetate (an activator of pyruvate dehydrogenase) stimulates 14CO2 production from [U-14C]glucose, but not from [U-14C]glutamate, [U-14C]aspartate, [U-14C]- and [1-14C]-valine and [U-14C]- and [1-14C]-leucine. It is concluded (1) that pyruvate dehydrogenase is not rate-limiting in the oxidation to CO2 of amino acids that are metabolized to tricarboxylic acid-cycle intermediates, and (2) that carbohydrate (and not amino acids) is the main carbon precursor in alanine formation in muscle.  相似文献   

5.
A method is presented for the quantitative estimation of the individual amino acid radioactivity in biological samples. The material is deproteinized with cold acetone, and, after acetone evaporation, is passed through a column containing 1 g of Amberlite XAD-2, then eluted with 10% ethanol. The samples are derivatized with Sanger's reagent (alkaline 1-fluoro-2,4-dinitrobenzene) and passed again through the Amberlite XAD-2 column; the 10% ethanol eluate is now discarded and the DNP-amino acids eluted with acetone. Aliquots are used for TLC chromatography on Silicagel plates; the spots are identified, cut away and their radioactivity estimated. The actual recovery of radioactivity in the spots is about 86-92% of the initial radioactivity. No contamination with radioactive glucose, lactate, pyruvate or glycerol has been observed.  相似文献   

6.
The changes in both the levels of some free amino acids and their metabolism in the rat brain during the first 24 hr of postnatal life were studied. The content of glutamic acid decreased for the first 2 hr; it remained at the lowest level for the next 4 hr, when it began to increase. The content of alanine decreased for the first 6 hr and approached the adult level. Oxygen consumption, glucose oxidation, and pyruvate formation in the cerebral slices of the 24-hr-old rats were as much as 150% of that of the 19-day-old fetus. The distribution profile of radioactivity incorporated into the cerebral amino acids from the subarachnoid-injected [U14C]glucose was also changed. In the 2- and 6-hr-old rats, 50% of the total radio-activity recovered in the free amino acids was in alanine. Its rate decreased to 30% in the 24-hr-old and was 2% in the adult, while the radioactivity incorporated into glutamic acid increased. Alanine aminotransferase activity started to increase at birth and had the highest level at 24 hr after birth. It then decreased and finally reached the same level as shown at birth. However, aspartate aminotransferase increased during the first 6 hr after birth and did not change until the end of the first day of life.  相似文献   

7.
The synthesis of amino acids by Methanobacterium omelianskii   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Methanobacterium omelianskii was grown on (14)CO(2) and unlabelled ethanol, or on [1-(14)C]- or [2-(14)C]-ethanol and unlabelled carbon dioxide. The cell protein was hydrolysed and certain of the amino acids were isolated and degraded. 2. Carbon from both carbon dioxide and ethanol is used for biosynthesis of amino acids, and in most cases ethanol is incorporated as a C(2) unit. Ethanol carbon atoms and carbon dioxide carbon atoms apparently enter the same range of compounds. Ethanol and carbon dioxide are equally important as sources of cell carbon. 3. The origins of carbon atoms of aspartate, alanine, glycine, serine and threonine are consistent with the synthesis of these amino acids, by pathways known to exist in aerobic organisms, from pyruvate arising by a C(2)+C(1) condensation. The proportion of total radioactivity found in C-1 of lysine, proline, methionine and valine is consistent with synthesis of these amino acids by pathways similar to those found in Escherichia coli. Isoleucine is probably formed by carboxylation of a C(5) precursor formed entirely from ethanol. Glutamate is formed by an unknown pathway.  相似文献   

8.
The utilization of amino acids and other compounds as carbon and energy sources by Legionella pneumophila was examined. Based on the stimulation of oxygen consumption in washed-cell suspensions, glutamate, serine, threonine, and tyrosine were the only amino acids which were utilized as energy sources. Other stimulators of oxygen uptake were lactate, pyruvate, acetate, fumarate, and succinate. Citrate was a good stimulator only when the bacteria were grown in the presence of the substrate. Radiolabeling studies showed that [14C]glutamate was rapidly metabolized, with the label distributed evenly in all cell fractions. [14C]pyruvate and [14C]acetate were incorporated into the lipid-containing cell fraction, whereas glucose and glycerol were found in both the lipid- and polysaccharide-containing cell fractions. Radiorespirometry of differentially labeled [14C]glucose indicated that this compound was metabolized primarily by the pentose phosphate and Entner-Doudoroff pathways rather than by the glycolytic pathway.  相似文献   

9.
The treatment of rats for 4 h with 6-aminonicotinamide (60 mg kg-1) resulted in an 180-fold increase in the concentration of 6-phosphogluconate in their brains; glucose increased 2.6-fold and glucose 6-phosphate, 1.7-fold. Moreover, lactate decreased by 20%, glutamate by 8% and gamma-aminobutyrate by 12%, and aspartate increased by 10%. No significant changes were found in glutamine and citrate. In blood, 6-phosphogluconate increased 5-fold; glucose, 1.4-fold and glucose 6-phosphate, 1.8-fold. The metabolism of glucose in the rat brain, via both the Embden-Meyerhof pathway and the hexose monophosphate shunt, was investigated by injecting [U-14C]glucose or [2-14C]glucose, and that via the hexose monophosphate shunt alone by injecting [3,4-14C]glucose. The total radioactive yield of amino acids in the rat brain was 5.63 mumol at 20 min after injection of [U-14C]glucose, or 5.82 mumol after injection of [2-14C]glucose; by contrast, it was 0.62 mumol after injection of [3,4-14C]glucose. The treatment of rats with 6-aminonicotinamide showed significant decreases in these values, owing to decreases in the radioactive yields of glutamate, glutamine, aspartate, gamma-aminobutyrate, and alanine+glycine+serine. Glutamate isolated from the brain contained approximately 43% of its radioactivity in carbon 1 after injection of [3,4-14C]glucose, in contrast to 13% and 18% after injection of [U-14C]glucose and [2-14C]glucose, respectively, in both the control and treated rats. The calculations based on these findings showed that approximately 69% of the 14C-labelled glutamate was formed from [14C]acetyl coenzyme A (acetyl CoA) and the residual 31% by 14CO2 fixation of pyruvate after injection of [3,4-14C]glucose in both control and treated rats. The results gave direct evidence that glutamate and gamma-aminobutyrate in the brain were formed by metabolism of glucose via the hexose monophosphate shunt as well as via the Embden-Meyerhof pathway. From the radioactive yields of glutamate formed via [14C]acetyl CoA it was estimated that approximately 7.8% of the total glucose utilized was channelled via the hexose monophosphate shunt. Assuming that [14C]glutamate formed by carbon-dioxide fixation of pyruvate was also dependent on the metabolism of glucose through the hexose monophosphate shunt, the estimated value was approximately 9.5% of the total glucose converted into glutamate. The results of the present investigation, taken in conjunction with other findings, suggest that the utilization of glucose via the hexose monophosphate shunt is functionally important in the rat brain.  相似文献   

10.
1. Isolated perfused goat udders supplied with glucose, acetate and amino acids were infused for several hours with NaH14CO3. 2. Lactose, milk-fat fatty acids and glycerol had very little radioactivity. The specific radioactivity (counts./min./mg. of C) of milk citrate was 9–16% that of the carbon dioxide in the perfusion fluid and 19% that estimated for tissue carbon dioxide. The specific radioactivity of tissue citrate resembled that of milk citrate. 3. The radioactivity in citrate was predominantly in C-6, suggesting some carboxylation of α-oxoglutarate in addition to carboxylation of C3 compounds. 4. [1-14C]Glutamate was infused in a similar experiment, and milk citrate radioactivity was predominantly in C-1+C-5. 5. The results are discussed in relation to the contribution of glucose and acetate carbon to citrate. The implications of the carboxylation of α-oxoglutarate are considered.  相似文献   

11.
During growth of the methanogenic archaeon Methanococcus maripaludis on alanine as the sole nitrogen source under H(2)/CO(2), alanine was incorporated into amino acids derived from pyruvate including leucine, isoleucine, and valine. Thus, growth with alanine was an efficient means of labeling intracellular pools of pyruvate in this lithotroph. Cells were grown with 18% [U-(13)C]alanine, and the distribution of the isotope in the branched-chain amino acids was determined by (13)C-NMR. Carbons derived from pyruvate contained 14.5% (13)C, indicating that most of the cellular pyruvate was obtained from alanine. In contrast, carbons derived from acetyl-CoA contained only 3-5% (13)C, indicating that only small amounts of acetyl-CoA were formed from pyruvate. Thus, autotrophic acetyl-CoA biosynthesis continued even in the presence of an organic carbon source. Moreover, the labeling of acetyl-CoA was lower than would be predicted if pyruvate was a C-1 donor for acetyl-CoA biosynthesis. Carbon derived from the C-1 of acetyl-CoA contained less (13)C than carbon derived from the C-2 of acetyl-CoA, and this difference was attributed to the acetyl-CoA:CO(2) exchange activity of acetyl-CoA synthase. No enrichment was detected for the C-1 of valine, which was derived from the C-1 of pyruvate. This result was attributed to the pyruvate:CO(2) exchange activity of pyruvate oxidoreductase and may have important implications for isotope tracer studies utilizing pyruvate. Lastly, these results demonstrate that the breakdown of pyruvate by methanococci is very limited even under conditions where it is the sole nitrogen and major carbon source.  相似文献   

12.
Nuclear magnetic resonance spectroscopy was utilized to study the metabolism of [1-13C]glucose in mycelia of the ectomycorrhizal ascomycete Sphaerosporella brunnea. The main purpose was to assess the biochemical pathways for the assimilation of glucose and to identify the compounds accumulated during glucose assimilation. The majority of the 13C label was incorporated into mannitol, while glycogen, trehalose and free amino acids were labeled to a much lesser extent. The high enrichment of the C1/C6 position of mannitol indicated that the polyol was formed via a direct route from absorbed glucose. Randomization of the 13C label was observed to occur in glucose and trehalose leading to the accumulation of [1,6-13C]trehalose and [1,6-13C]glucose. This suggests that the majority of the glucose carbon used to form trehalose was cycled through the metabolically active mannitol pool. The proportion of label entering the free amino acids represented 38% of the soluble 13C after 6 hours of continuous glucose labeling. Therefore, amino acid biosynthesis is an important sink of assimilated carbon. Carbon-13 was incorporated into [3-13C]alanine and [2-13C]-, [3-13C]-, and [4-13C]glutamate and glutamine. From the analysis of the intramolecular 13C enrichment of these amino acids, it is concluded that [3-13C]pyruvate, arising from [1-13C]glucose catabolism, was used by alanine aminotransferase, pyruvate dehydrogenase, and pyruvate carboxylase (or phosphoenolpyruvate carboxykinase). Intramolecular 13C labeling patterns of glutamate and glutamine were similar and are consistent with the operation of the Krebs cycle. There is strong evidence for (a) randomization of the label on C2 and C3 positions of oxaloacetate via malate dehydrogenase and fumarase, and (b) the dual biosynthetic and respiratory role of the citrate synthase, aconitase, and isocitrate dehydrogenase reactions. The high flux of carbon through the carboxylation (presumably pyruvate carboxylase) step indicates that CO2 fixation is an important component of the carbon metabolism in S. brunnea, and it is likely that this anaplerotic role is particularly prevalent during NH4+ assimilation. The most relevant information resulting from this investigation is (a) the occurrence of the mannitol cycle, (b) a large part of the trehalose pool is synthesized after the cycling of glucose-carbon through the mannitol cycle, and (c) pyruvate (or phosphoenolpyruvate) carboxylation plays an important role in the primary metabolism of glucose-fed mycelia.  相似文献   

13.
A method for the determination of substrate flux through the pentose cycle was developed employing [1-14C]glucose in experiments with perfused rat livers. The method consists first of a kinetic analysis which differentiates between the production of 14CO2 from [1-14C]glucose via the pentose cycle and via the citrate cycle and, second of a calculation of the specific radioactivity of the hexose monophosphate pool from measured rates of glycolysis and the specific radioactivity of lactate released into the perfusate. The method was validated by experiments comparing the results of tracer infusions with [1-14C]glucose, [6-14C]glucose and [3-14C]pyruvate. In livers from fed rats perfused with 10 mM glucose, the rate of substrate flux through the pentose cycle was around 0.2 mumol X min-1 X g-1; it was about 20% of the substrate flux via glycolysis. The kinetic data were inconsistent with the existence of an L-type pentose cycle in liver.  相似文献   

14.
Subcutaneous fat cells were isolated from genetically obese rats and from rats with obesity produced by hypothalamic lesions. Insulin did not augment the oxidation of fatty acids or their synthesis from glucose-1-(14)C or glucose-1-(3)H by fat cells from either group. Radioactivity from pyruvate-3-(14)C was incorporated into fatty acids to the same degree by fat cells from these two groups. The presence of 5 mm glucose in the incubation medium containing fat cells and pyruvate-3-(14)C or aspartate-3-(14)C stimulated the synthesis of fatty acids to a greater extent in cells of genetically obese rats. Fasting, in contrast, reduced the incorporation of radioactivity from pyruvate and glucose into fatty acids by fat cells from the genetically obese animals. In all experiments the fat cells from genetically obese rats converted more radioactivity into glyceride-glycerol relative to CO(2) than did fat cells from hypothalamic obese rats. Parabiosis between one thin and one genetically obese litter mate was performed in three pairs of rats without influencing growth of either rat. Thus in the present studies fat cells from genetically obese rats showed two differences from normal fat cells: they channeled more radioactivity from pyruvate into fatty acids in the presence of glucose, and they uniformly converted more radioactivity into glyceride-glycerol.  相似文献   

15.
Carbohydrate Metabolism in Spirochaeta stenostrepta   总被引:11,自引:4,他引:7       下载免费PDF全文
The pathways of carbohydrate metabolism in Spirochaeta stenostrepta, a free-living, strictly anaerobic spirochete, were studied. The organism fermented glucose to ethyl alcohol, acetate, lactate, CO(2), and H(2). Assays of enzymatic activities in cell extracts, and determinations of radioactivity distribution in products formed from (14)C-labeled glucose indicated that S. stenostrepta degraded glucose via the Embden-Meyerhof pathway. The spirochete utilized a clostridial-type clastic reaction to metabolize pyruvate to acetyl-coenzyme A, CO(2), and H(2), without production of formate. Acetyl-coenzyme A was converted to ethyl alcohol by nicotinamide adenine dinucleotide-dependent acetaldehyde and alcohol dehydrogenase activities. Phosphotransacetylase and acetate kinase catalyzed the formation of acetate from acetyl-coenzyme A. Hydrogenase and lactate dehydrogenase activities were detected in cell extracts. A rubredoxin was isolated from cell extracts of S. stenostrepta. Preparations of this rubredoxin stimulated acetyl phosphate formation from pyruvate by diethylaminoethyl cellulose-treated extracts of S. stenostrepta, an indication that rubredoxin may participate in pyruvate cleavage by this spirochete. Nutritional studies showed that S. stenostrepta fermented a variety of carbohydrates, but did not ferment amino acids or other organic acids. An unidentified growth factor present in yeast extract was required by the organism. Exogenous supplements of biotin, riboflavin, and vitamin B(12) were either stimulatory or required for growth.  相似文献   

16.
Summary Treponema denticola was grown in serum-containing media to which 14C-labelled compounds were added. Determinations of radioactivity in the products formed indicated that the organism fermented alanine, cysteine, glycine, serine, and glucose. Fermentation products included acetate, lactate, succinate, formate, pyruvate, ethanol, CO2, H2S, and NH3. The products formed from glucose constituted a small portion of the total products. Assays of enzymatic activities in cell extracts indicated that the organism degraded glucose via the Embden-Meyerhof pathway. T. denticola possessed a coenzyme A-dependent CO2-pyruvate exchange activity associated with a clostridial-type clastic system for pyruvate metabolism. Phosphotransacetylase and acetate kinase activities were present in cell extracts. Acetyl phosphate formation and benzyl viologen reduction were detected when cell extracts were incubated with pyruvate, serine or cysteine. The data indicate that T. denticola is an amino acid fermenter and that it possesses the enzymes needed for the fermentation of glucose. However, glucose does not serve as the primary substrate when the organism grows in media including both this carbohydrate and amino acids.  相似文献   

17.
1. A method was devised for the determination of the specific radioactivity of the acetyl moiety of acetylcholine synthesized from various (14)C-labelled substrates. 2. The precursor for the acetyl moiety of acetylcholine was studied in slices of striatum and cerebral cortex from rat and guinea-pig brain. Incorporation of radioactivity into acetylcholine was determined after incubating the slices in the presence of [2-(14)C]acetate, [(14)C]bicarbonate, [1,5-(14)C]citrate, dl-[1- or 5-(14)C]glutamate or [1- or 2-(14)C]pyruvate. 3. After incubation for 1h, acetylcholine was accumulated significantly in both striatum slices (4.1nmol/mg of protein) and cerebral-cortex slices (0.57nmol/mg of protein) from the rat. Final concentrations were about 11 and 5 times respectively the initial values. 4. With slices from rat striatum, rat cerebral cortex and guinea-pig cerebral cortex, the specific radioactivity of acetylcholine derived from [2-(14)C]pyruvate was very high, reaching approx. 30, 20 and 6% respectively of the initial specific radioactivity of added pyruvate in the medium. With the striatum slices this high value was reached after incubation for 15min. Incorporation of radioactivity from [2-(14)C]acetate was only 1.25, 5.3 and 19.7% of that from [2-(14)C]pyruvate in rat striatum, rat cerebral-cortex and guinea-pig cerebral-cortex slices respectively. A small but definite incorporation was found from [5-(14)C]glutamate. No incorporation was found from the other substrates. The findings suggest that pyruvate is the most important precursor for the synthesis of the acetyl moiety of acetylcholine in brain slices. 5. The specific radioactivity of acetylcholine relative to that of citrate when [2-(14)C]pyruvate was used compared with that obtained when [2-(14)C]acetate was used. A marked difference was found in all slices, suggesting metabolic compartmentation of the acetyl-CoA pool.  相似文献   

18.
A mixture of L-(U-14C) amino acids was added to cultures of 11 strains of rumen anaerobic fungi belonging to Neocallimastix frontalis, Neocallimastix joyonii, Sphaeromonas communis and Piromonas communis. Fungi were grown in a complex medium with glucose for 4 days. The radioactivity was found in cellular protein (27.7-65.3% of the total radioactivity recovered), lactate (16.9-41.8%), volatile fatty acids (7.4-25.7%) and ethanol (4.6-10.5%). A small amount of radioactivity was recovered in lipids (0.2-1.8%) and CO2 (0.3-1.0%). The results suggest that the assimilation of amino acids by growing fungal cells was quantitatively comparable with their dissimilation to metabolites.  相似文献   

19.
Glucose metabolism by Lactobacillus divergens   总被引:3,自引:0,他引:3  
Earlier studies on the fermentation of D-[1-14C]- and D-[3,4-14C]glucose by Lactobacillus divergens showed that lactate was the major fermentation product and that it was probably produced by glycolysis. It was therefore recommend that L. divergens be reclassified as a homofermentative organism. In the present investigation, products of D-[1-14C]-,D-[2-14C]- and D-[3,4-14C]glucose fermented by L. divergens were isolated, and their specific radioactivities and the distribution patterns of radioactivity in their C-atoms were determined. The positional labelling patterns of the fermentation products, their specific radioactivities and their concentrations confirmed that glucose is degraded via the glycolytic pathway. Some secondary decarboxylation/dissimilation of pyruvate to acetate, formate and CO2 was also observed. These results provide conclusive proof that L. divergens is indeed a homofermentative organism. Results obtained with D-[U-14C]glucose showed that approximately three-quarters of the lactate but less than 10% each of the formate and acetate were produced from glucose. The remainder was presumably derived to a varying degree from endogenous non-glucose sources such as fructose and/or amino acids.  相似文献   

20.
1. The incorporation of glucose carbon in vivo into amino acids was studied in the chick optic lobes and cerebellum during postnatal growth after subcutaneous injection of [U-14C]glucose. 2. The rapid incorporation of glucose carbon into free amino acids appears between the 1st and the 2nd day of postnatal growth in the optic lobes and between the 1st and the 4th day after hatching in the cerebellum. 3. The period during which the properties of mature brain metabolism are obtained is characterized in both structures during the first 48 hr of postnatal growth by changes in the specific radioactivity of some amino acids such as aspartate and alpha-alanine, and also by transient increases of glucose and glutamine concentrations. 4. The gamma-aminobutyrate content in the optic lobes is very high; the cerebellum on the contrary is characterized by its low gamma-aminobutyrate concentration linked to a very fast metabolism of this amino acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号