首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence and molecular analysis of the nifL gene of Azotobacter vinelandii   总被引:9,自引:1,他引:8  
In both Klebsiella pneumoniae and Azotobacter vinelandii the nifL gene, which encodes a negative regulator of nitrogen fixation, lies immediately upstream of nifA. We have sequenced the A. vinelandii nifL gene and found that it is more homologous in its C-terminal domain to the histidine protein kinases (HPKs) than Is K. pneumoniae NifL. In particular A. vinelandii NifL contains a conserved histidine at a position shown to be phosphorylated in other systems. Both NifL proteins are homologous in their N-termini to a part of the Halobacterium halobium bat gene product; Bat is involved in regulation of bacterio-opsin, the expression of which is oxygen sensitive. The same region showed homology to the haembinding N-terminai domain of the Rhizobium meliloti fixL gene product, an oxygen-sensing protein. Like K. pneumoniae NifL, A. vinelandii NifL is shown here to prevent expression of nif genes in the presence of NH+4 or oxygen. The sequences found homologous in the C-terminal regions of NifL, FixL and Bat might therefore be involved in oxygen binding or sensing. An in-frame deletion mutation in the nifL coding region resulted in loss of repression by NH+4 and the mutant excreted high amounts of ammonia during nitrogen fixation, thus confirming a phenotype reported earlier for an insertion mutation. In addition, nifLA are cotranscribed in A. vinelandii as in K. pneumoniae, but expression from the A. vinelandii promoter requires neither RpoN nor NtrC.  相似文献   

2.
A number of in-frame deletions have been constructed in the Klebsiella pneumoniae regulatory gene nifL. The effects of each nifL mutation on NifA-mediated expression from the nifH promoter of K. pneumoniae have then been assessed with respect to both nitrogen and oxygen control. These experiments indicate that, in contrast to the situation with the homologous regulatory proteins NtrB and NtrC, NifA activity is not impaired in the absence of NifL. We conclude that the only function of NifL is to inactivate NifA in response to an increase in the nitrogen or oxygen status of the cell.  相似文献   

3.
The nifL gene product of Klebsiella pneumoniae inhibits the activity of the positive activator protein NifA in response to increased levels either of fixed nitrogen or of oxygen in the medium. In order to demonstrate that the responses to these two effectors are discrete we have subjected nifL to hydroxylamine mutagenesis and isolated nifL mutants that are impaired in their ability to respond to oxygen but not to fixed nitrogen. Two such mutations were sequenced and shown to be single base pair changes located in different parts of nifL. The amino acid sequence of NifL shows limited homology to the histidine protein kinases which comprise the sensing component of bacterial two-component regulatory systems. In the light of the location of one of the oxygen-insensitive mutations (Leu294Phe) we have reassessed this homology and we suggest that the Gln273-Leu317 region of NifL may facilitate interactions between NifL and NifA.Abbreviations X-gal 5-bromo-4-chloro-3-indolyl--D-galactopy-ranoside - USAs upstream activator sequences  相似文献   

4.
The glucose kinase gene (glkA-ORF3) of Streptomyces coelicolor A3(2) plays an essential role in glucose utilisation and in glucose repression of a variety of genes involved in the utilisation of alternative carbon sources. These genes include dagA, which encodes an extracellular agarase that permits agar utilisation. Suppressor mutants of glkA-ORF3 deletion strains capable of utilising glucose (Glc+) arise at a frequency of about 10–5 on prolonged incubation. The Glc+ phenotype of the mutants is reversible (at a frequency of about 10–3) and reflects either the activation of a normally silent glucose kinase gene or the modification of an existing sugar kinase. Although the level of glucose kinase activity in the Glc+ supressor mutants is similar to that in the glkA + parental strain, glucose repression of dagA remains defective. Expression of the glucose kinase gene of Zymomonas mobilis in glkA-ORF3 mutants restored glucose utilisation, but not glucose repression of dagA. Over-expression of glkA-ORF3 on a high-copy-number plasmid failed to restore glucose repression of dagA in glkA-ORF3 mutants and led to loss of glucose repression of dagA in a glkA + strain. These results suggest that glucose phosphorylation itself is not sufficient for glucose repression and that glkA-ORF3 plays a specific regulatory role in triggering glucose repression in S. coelicolor A3(2).  相似文献   

5.
Recombination between direct repeats has been studied in Penicillium chrysogenum using strain TD7-88 (lys pyr+), which contains two inactive copies of the lys2 gene separated by 4.5 kb of DNA (including the pyrG gene) in its genome. Gene conversion leading to products with the lys+ pyr+ phenotype was observed at a frequency of 1 in 3.2 × 103 viable spores. Two types of deletion events giving rise to lys+ pyr and lys pyr phenotypes were obtained with different frequencies. Southern analysis revealed that gene conversion occurs mainly as a result of crossing over events that remove the BamHI frameshift mutation present in one of the repeats. In lys pyr recombinants, the deletion events do not affect the frameshift mutation in the BamHI site, while lys+ pyr recombinants showed repair of the BamHI frameshift mutation and the genotype of the parental non-disrupted strain was restored. In summary, deletion events in P. chrysogenum tend to favor the restoration of the phenotype and genotype characteristic of the parental non-disrupted strain. Received: 9 November 1998 / Accepted: 14 April 1999  相似文献   

6.
7.
8.
Previous studies suggested that the exoprotein-deficient phenotype of a Δ1058::Tn551 insertion/deletion mutant of Staphylococcus aureus S6C was not owing to the insertion/deletion event, but instead was owing to the inherent instability of the agrC gene during transduction of the Δ1058::Tn551 region into S6C. The purpose of the following study was to examine S6C as a potential source of exoprotein-deficient mutants that would account for their appearance after transposition and transduction. Four stable variants of S6C were isolated that differed in their hemolysin and catalase activities. Surprisingly, the agr regulatory molecule, RNAIII, was undetectable in one of these variants, which most likely accounted for the exoprotein-deficient phenotype of this variant. When the original Δ1058::Tn551 mutation was transduced into the hemolytic, catalase-positive variant of S6C, none of the transductants exhibited an exoprotein-deficient phenotype. These data suggest that, while the exoprotein-deficient phenotype of the S6C variant is most likely due to mutations in the agr regulatory system, these mutations are not caused by the transduction of the Δ1058::Tn551 region into S6C, but instead already exist in an exoprotein-deficient variant of S6C. Received: 6 November 2000 / Accepted: 16 January 2001  相似文献   

9.
Mutations in T-box genes are associated with numerous disease states in humans. The objective of this paper was to characterize the T shao , a specific T-box mutation, in mice. T shao , a short-tailed mutant mouse strain in a B6 background, was obtained by ethylnitrosourea mutagenesis. Microsatellite genomic scans mapped the location of the mutation. RT–PCR was used to amplify the identified region and the product was sequenced. DNA of the region was sequenced and scanned for mutations. Tails of T shao mice were mostly curly with tail length ranging from less than 1 cm (tail bud) to half of the normal length. T shao presented single dominance gene inheritance, and homozygous mutant mice died approximately at E10. Scans of the F2 generation mapped the mutant gene to chromosome 17, near D17Mit143. The Brachyury (T) gene was identified as a potential candidate gene in this location. To confirm this, RT–PCR was performed on RNA from intercrossed 8.5-day embryos, and products were sequenced. A 67-nucleotide deletion in exon 2 of the mutant T gene was identified. Further sequencing of the genomic DNA from this region identified a T to A transversion at the 67th nucleotide of exon 2. The T shao mutation is a result of a deletion in exon 2 causing the early termination and loss of function of protein encoded by the T gene, manifesting as a short tail phenotype.  相似文献   

10.
11.
12.
Using the yeast Saccharomyces cerevisiae on board the Russian space station Mir, we studied the effects of long-term space flight on mutation of the bacterial ribosomal protein L gene (rpsL) cloned in a yeast-Escherichia coli shuttle vector. The mutation frequencies of the cloned rpsL gene on the Mir and the ground (control) yeast samples were estimated by transformation of E. coli with the plasmid DNAs recovered from yeast and by assessment of the conversion of the rpsL wild-type phenotype (SmS) to its mutant phenotype (SmR). After a 40-day space flight, some part of space samples gave mutation frequencies two to three times higher than those of the ground samples. Nucleotide sequence analysis showed no apparent difference in point mutation rates between the space and the ground mutant samples. However, the greater part of the Mir mutant samples were found to have a total or large deletion in the rpsL sequence, suggesting that space radiation containing high-linear energy transfer (LET) might have caused deletion-type mutations.  相似文献   

13.
The nucleotide sequence of a plasmid-borne 3.9 kb XhoI-SmaI fragment comprising the 3-region of the nifM gene, the nifL and nifA genes and the 5-region of nifB gene of Enterobacter agglomerans was determined. The genes were identified by their homology to the corresponding nif genes of Klebsiella pneumoniae. A typical 54-dependent promoter and a consensus NtrC-binding motif were identified upstream of nifL. The predicted amino acid sequence of NifL showed close similarities to NifL of K. pneumoniae and Azotobacter vinelandii. However, no histidine residue was found to correspond to histidine-304 of A. vinelandii NifL, which had been proposed to be required for the repressor activity of NifL. The NifA sequence with a putative DNA binding motif (Q(X3) A (X3) G (X5)I) and an ATP binding site in the C-terminal and central domains, respectively, resembles that of other known NifA proteins. The function of the nifL and nifA genes was demonstrated in vivo using a binary plasmid system by their ability to activate a nifH promoter-lacZ fusion at different temperatures and concentrations of NH 4 + . Maximal promoter activity occurred at 25°C, and it appears that the sensitivity of NifA to elevated temperatures is independent of NifL. The expression of nifL inhibited promoter activity in the presence of NifA when the initial NH 4 + concentration in the medium exceeded 4 mM.Communicated by H. Böhme  相似文献   

14.
Leaf color mutants are widespread in higher plants and can be used as markers in crop breeding or as important material in understanding the regulatory mechanisms of chlorophyll biosynthesis and chloroplast development. A stably inherited plant etiolated mutation (pem) was obtained from its wild‐type ‘FT’ (a doubled haploid line of the Chinese cabbage variety ‘Fukuda 50’) by combining 60Co‐γ radiation and isolated microspore culture in Chinese cabbage. Compared to the wild‐type ‘FT’, the chlorophyll content in the pem mutant was decreased, the photosynthetic capacity was reduced and the chloroplast development was retarded. These physiological changes may lead to a reduction in growth and yield in the pem mutant line. Genetic analysis showed that the mutant phenotype was controlled by the single recessive nuclear pem gene. The pem gene was mapped to a 25.88 kb region on the A03 chromosome. Cloning and sequencing results showed that there was only one DNA sequence variation in this region, which was a 30 bp deletion on the promoter of Bra024218. Its homologous gene encodes EMBRYO DEFECTIVE 1923 (EMB1923) in Arabidopsis thaliana. We therefore predicted that Bra024218 was the mutated gene associated with etiolated leaves in Chinese cabbage. The pem mutant is a useful line for researching chloroplast development and the mechanism of leaf color mutation in Chinese cabbage.  相似文献   

15.
16.
Summary A Saccharomyces cerevisiae mutant which exhibits a considerably increased cellular lysine pool has been isolated and characterized. Assay of enzymes of the lysine and arginine pathways shows that the mutation harboured by this mutant alters the specific repression of lysine but does not influence the general control of amino acid biosynthesis. Because it is recessive to the wild-type allele and acts pleiotropically on the synthesis of several lysine pathway enzymes, this regulatory mutation has been denominated lys80-1 (or lysR –1). It is believed to affect the synthesis or the structure of a factor which plays a negative role in the control of LYS gene expression.  相似文献   

17.
Summary A mutation in the purB gene of E. coli K-12, isolated and partially characterized by Geiger and Speyer (1977), confers a temperature sensitive requirement for adenine and an antimutator phenotype at 30°C. Several hypotheses about the mechanism of action of this mutation, named mud for mutation defective, were tested in the present work. The mud mutation has no effect upon the induction of the SOS response, so the antimutator phenotype is unlikely to be due to repression of mutagenic repair. Mud cells are resistant to the cytotoxic and mutagenic effects of alkylating agents such as MNNG, but this resistance is not due simply to derepression of the adaptive response. DNA isolated from mud cells is not undermethylated relative to DNA from purB + cells, so the antimutator phenotype of mud cannot be due to reduced hotspot base-substitution mutation at methylated cytosine residues. Nor is there a longer lag in post-replicative DNA methylation, which indicates that there is no enhancement of mismatch repair resulting from an extended time window for strand discrimination. Measurement of nucleotide pool levels demonstrated an elevation of dCTP in mud cells and a reduction of all other nucleoside triphosphates.This work was supported in part by Public Health Service grants numbers GM15697 and CA32182  相似文献   

18.
The role of HoxX in hydrogenase biosynthesis of Alcaligenes eutrophus H16 was re-examined. The previously characterized hoxX deletion mutant HF344 and a newly constructed second hoxX mutant carrying a smaller in-frame deletion were studied. The second mutant was impaired in the activity of both the soluble and the membrane-bound hydrogenase. The two hydrogenase activities were reduced by approximately 50% due to delayed processing of the active-site-containing large subunits, while hydrogenase gene expression was not affected. We conclude that the mutation in mutant HF344 causes polarity resulting in the observed regulatory phenotype of this mutant. The data presented in this report point to an enhancing function of HoxX in the conversion of the soluble hydrogenase and of the membrane-bound hydrogenase large-subunit precursor. Thus, hoxX encodes a member of the Hyp proteins that are required for the formation of active hydrogenase and was accordingly renamed hypX. Received: 15 June 1998 / Accepted: 5 August 1998  相似文献   

19.
20.
Summary Several spontaneous Lac deletion derivatives of the β-galactosidase gene ofLactobacillus bulgaricus were analyzed for their phenotypic stability. We found that one of these mutants,lac139, carrying a deletion of 30 by within the gene, was able to revert to a Lac+ phenotype. Genetical analysis of revertants indicated that an internal region of 72 by was duplicated immediately next to the deletion site. The region involved in the duplication event is flanked by direct repeated sequences of 13 by in length. Both events, the deletion and the duplication, were mediated by the presence of such short direct repeats. Enzymatic studies of the purified proteins indicated identical kinetic parameters, but showed considerable instability of the revertant protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号