首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Normacromerine (NMC), a dimethoxylated phenethylamine obtained from the Dona Ana cactus, was compared with mescaline (MES), psilocin (PSI), amphetamine (AMP), and pentobarbital (PEN) in several tests designed to detect psychoactive properties. Only the highest dose of NMC impaired the conditioned avoidance response, while MES, PSI, and AMP enhanced the response. NMC, AMP, PSI, and MES all produced increases in locomotor activity. NMC produced activity patterns (measured as pauses between active periods) similar to patterns resulting from treatment with MES or PSI. NMC appears to be psychoactive and correlates more closely with MES and PSI than with the other two drugs on the basis of the tests performed in this study.  相似文献   

2.

Background

The classical serotonergic psychedelics LSD, psilocybin, mescaline are not known to cause brain damage and are regarded as non-addictive. Clinical studies do not suggest that psychedelics cause long-term mental health problems. Psychedelics have been used in the Americas for thousands of years. Over 30 million people currently living in the US have used LSD, psilocybin, or mescaline.

Objective

To evaluate the association between the lifetime use of psychedelics and current mental health in the adult population.

Method

Data drawn from years 2001 to 2004 of the National Survey on Drug Use and Health consisted of 130,152 respondents, randomly selected to be representative of the adult population in the United States. Standardized screening measures for past year mental health included serious psychological distress (K6 scale), mental health treatment (inpatient, outpatient, medication, needed but did not receive), symptoms of eight psychiatric disorders (panic disorder, major depressive episode, mania, social phobia, general anxiety disorder, agoraphobia, posttraumatic stress disorder, and non-affective psychosis), and seven specific symptoms of non-affective psychosis. We calculated weighted odds ratios by multivariate logistic regression controlling for a range of sociodemographic variables, use of illicit drugs, risk taking behavior, and exposure to traumatic events.

Results

21,967 respondents (13.4% weighted) reported lifetime psychedelic use. There were no significant associations between lifetime use of any psychedelics, lifetime use of specific psychedelics (LSD, psilocybin, mescaline, peyote), or past year use of LSD and increased rate of any of the mental health outcomes. Rather, in several cases psychedelic use was associated with lower rate of mental health problems.

Conclusion

We did not find use of psychedelics to be an independent risk factor for mental health problems.  相似文献   

3.
Hallucinogens, including mescaline, psilocybin, and lysergic acid diethylamide (LSD), profoundly affect perception, cognition, and mood. All known drugs of this class are 5-HT(2A) receptor (2AR) agonists, yet closely related 2AR agonists such as lisuride lack comparable psychoactive properties. Why only certain 2AR agonists are hallucinogens and which neural circuits mediate their effects are poorly understood. By genetically expressing 2AR only in cortex, we show that 2AR-regulated pathways on cortical neurons are sufficient to mediate the signaling pattern and behavioral response to hallucinogens. Hallucinogenic and nonhallucinogenic 2AR agonists both regulate signaling in the same 2AR-expressing cortical neurons. However, the signaling and behavioral responses to the hallucinogens are distinct. While lisuride and LSD both act at 2AR expressed by cortex neurons to regulate phospholipase C, LSD responses also involve pertussis toxin-sensitive heterotrimeric G(i/o) proteins and Src. These studies identify the long-elusive neural and signaling mechanisms responsible for the unique effects of hallucinogens.  相似文献   

4.
Both LSD and d-amphetamine decreased food intake in the dog; however, the dose-response curve for amphetamine had a significantly steeper slope than that for LSD. Psilocin and mescaline also suppressed food intake with dose-response curves parallel to that of LSD. Seven ring-substituted phenylisopropylamine derivatives, that have been abused for their supposed hallucinogenic properties, also decreased food intake and produced dose-response curves parallel to that of d-amphetamine. It is concluded that the appetite suppressant effects of amphetamine and LSD can be distinguished by differences in slopes of the dose response curves. However, this difference does not pertain to all LSD-like drugs since some substituted amphetamines with LSD-like neuropharmacologic and behavioral profiles can show slopes for appetite suppression as steep as that of amphetamine.  相似文献   

5.
Marijuana and its main psychotropic ingredient Δ9-tetrahydrocannabinol (THC) exert a plethora of psychoactive effects through the activation of the neuronal cannabinoid receptor type 1 (CB1), which is expressed by different neuronal subpopulations in the central nervous system. The exact neuroanatomical substrates underlying each effect of THC are, however, not known. We tested locomotor, hypothermic, analgesic, and cataleptic effects of THC in conditional knockout mouse lines, which lack the expression of CB1 in different neuronal subpopulations, including principal brain neurons, GABAergic neurons (those that release γ aminobutyric acid), cortical glutamatergic neurons, and neurons expressing the dopamine receptor D1, respectively. Surprisingly, mice lacking CB1 in GABAergic neurons responded to THC similarly as wild-type littermates did, whereas deletion of the receptor in all principal neurons abolished or strongly reduced the behavioural and autonomic responses to the drug. Moreover, locomotor and hypothermic effects of THC depend on cortical glutamatergic neurons, whereas the deletion of CB1 from the majority of striatal neurons and a subpopulation of cortical glutamatergic neurons blocked the cataleptic effect of the drug. These data show that several important pharmacological actions of THC do not depend on functional expression of CB1 on GABAergic interneurons, but on other neuronal populations, and pave the way to a refined interpretation of the pharmacological effects of cannabinoids on neuronal functions.  相似文献   

6.
Marijuana and its main psychotropic ingredient Δ9-tetrahydrocannabinol (THC) exert a plethora of psychoactive effects through the activation of the neuronal cannabinoid receptor type 1 (CB1), which is expressed by different neuronal subpopulations in the central nervous system. The exact neuroanatomical substrates underlying each effect of THC are, however, not known. We tested locomotor, hypothermic, analgesic, and cataleptic effects of THC in conditional knockout mouse lines, which lack the expression of CB1 in different neuronal subpopulations, including principal brain neurons, GABAergic neurons (those that release γ aminobutyric acid), cortical glutamatergic neurons, and neurons expressing the dopamine receptor D1, respectively. Surprisingly, mice lacking CB1 in GABAergic neurons responded to THC similarly as wild-type littermates did, whereas deletion of the receptor in all principal neurons abolished or strongly reduced the behavioural and autonomic responses to the drug. Moreover, locomotor and hypothermic effects of THC depend on cortical glutamatergic neurons, whereas the deletion of CB1 from the majority of striatal neurons and a subpopulation of cortical glutamatergic neurons blocked the cataleptic effect of the drug. These data show that several important pharmacological actions of THC do not depend on functional expression of CB1 on GABAergic interneurons, but on other neuronal populations, and pave the way to a refined interpretation of the pharmacological effects of cannabinoids on neuronal functions.  相似文献   

7.
Yang PB  Swann AC  Dafny N 《Life sciences》2003,73(22):2899-2911
Consequence of the long-term use of psychostimulants as treatment for attention deficit/hyperactivity disorder (ADHD) is unknown, particularly whether treatment with psychostimulants at an early age increases an individual's potential for cross-sensitization to other stimulants exposed at a later age. Cross-sensitization occurs when pretreatment with one stimulant leads to greater sensitivity to another stimulant. The aims of this study were to investigate whether chronic treatment with methylphenidate (MPD; Ritalin) in both juvenile and adult rats induced cross-sensitization to amphetamine at a later time and whether this cross-sensitization to amphetamine was age-dependent. Male Sprague-Dawley rats were randomly divided into four treatment groups: (1) group treated intraperitoneally (i.p.) with saline as juveniles and adults, (2) group treated with 0.6 mg/kg amphetamine, i.p., as juveniles and adults, (3) group treated with 2.5 mg/kg MPD, i.p., as juveniles and adults, and (4) group treated with saline, i.p., as juveniles and 2.5 mg/kg MPD, i.p., as adults. All of the animals received an amphetamine (0.6 mg/kg, i.p.) challenge on the last experimental day. We examined the effects of chronic MPD treatment in juvenile and adult rats on their locomotor response to an acute amphetamine exposure. Three different locomotor indices were studied using an automated activity monitoring system. Changes in the locomotor responses to amphetamine of these animals were compared to those of control rats that were pretreated with saline as juveniles and as adults. It was found that prior chronic treatment with MPD produced cross-sensitization to the locomotor response to amphetamine as observed in the horizontal activity and total distance traveled. It also appears that this cross-sensitization to amphetamine may not be dependent on the age of the subjects, i.e., whether subjects were juvenile or adult rats when they received drugs, but rather it depended on the behavioral index examined.  相似文献   

8.
β‐Site APP‐cleaving Enzyme 1 (BACE1) is a protease that has been linked to schizophrenia, a severe mental illness that is potentially characterized by enhanced dopamine (DA) release in the striatum. Here, we used acute amphetamine administration to stimulate neuronal activity and investigated the neurophysiological and locomotor‐activity response in BACE1‐deficient (BACE1?/?) mice. We measured locomotor activity at baseline and after treatment with amphetamine (3.2 and 10 mg/kg). While baseline locomotor activity did not vary between groups, BACE1?/? mice exhibited reduced sensitivity to the locomotor‐enhancing effects of amphetamine. Using high‐performance liquid chromatography (HPLC) to measure DA and DA metabolites in the striatum, we found no significant differences in BACE1?/? compared with wild‐type mice. To determine if DA neuron excitability is altered in BACE1?/? mice, we performed patch‐clamp electrophysiology in putative DA neurons from brain slices that contained the substantia nigra. Pacemaker firing rate was slightly increased in slices from BACE1?/? mice. We next measured G protein‐coupled potassium currents produced by activation of D2 autoreceptors, which strongly inhibit firing of these neurons. The maximal amplitude and decay times of D2 autoreceptor currents were not altered in BACE1?/? mice, indicating no change in D2 autoreceptor‐sensitivity and DA transporter‐mediated reuptake. However, amphetamine (30 µm )‐induced potassium currents produced by efflux of DA were enhanced in BACE1?/? mice, perhaps indicating increased vesicular DA content in the midbrain. This suggests a plausible mechanism to explain the decreased sensitivity to amphetamine‐induced locomotion, and provides evidence that decreased availability of BACE1 can produce persistent adaptations in the dopaminergic system.  相似文献   

9.
The human intestinal epithelium is composed of several cell types, mainly enterocytes and goblet (mucin-secreting) cells. This study compares the cellular response of Fe transporters in Caco-2, HT29-MTX, and Caco-2/HT29-MTX co-culture models for Fe bioavailability. Caco-2 cells in vitro differentiate into enterocyte-like cells and HT29-MTX cell lineage into a mucin-secreting cellular population. Cell cultures were exposed to digests of Fe+3, Fe+3/ascorbic acid, cooked fish (high-available Fe) or white beans (low-available Fe). Cell responses as shown by mRNA expression of the main Fe transporters, DMT1 and DcytB, and cell ferritin formation were monitored. In Caco-2/HT29-MTX co-cultures, the mucin layer lowered the pool of free Fe to diffuse towards the cell brush border membrane of enterocytes, which was accompanied of an upregulation of DMT1 mRNA expression. In contrast, cultures exposed to digests of fish or white beans showed no significant differences in the regulation of Fe transporters.  相似文献   

10.
Marijuana and its main psychotropic ingredient Delta(9)-tetrahydrocannabinol (THC) exert a plethora of psychoactive effects through the activation of the neuronal cannabinoid receptor type 1 (CB1), which is expressed by different neuronal subpopulations in the central nervous system. The exact neuroanatomical substrates underlying each effect of THC are, however, not known. We tested locomotor, hypothermic, analgesic, and cataleptic effects of THC in conditional knockout mouse lines, which lack the expression of CB1 in different neuronal subpopulations, including principal brain neurons, GABAergic neurons (those that release gamma aminobutyric acid), cortical glutamatergic neurons, and neurons expressing the dopamine receptor D1, respectively. Surprisingly, mice lacking CB1 in GABAergic neurons responded to THC similarly as wild-type littermates did, whereas deletion of the receptor in all principal neurons abolished or strongly reduced the behavioural and autonomic responses to the drug. Moreover, locomotor and hypothermic effects of THC depend on cortical glutamatergic neurons, whereas the deletion of CB1 from the majority of striatal neurons and a subpopulation of cortical glutamatergic neurons blocked the cataleptic effect of the drug. These data show that several important pharmacological actions of THC do not depend on functional expression of CB1 on GABAergic interneurons, but on other neuronal populations, and pave the way to a refined interpretation of the pharmacological effects of cannabinoids on neuronal functions.  相似文献   

11.
Hallucinogens (psychotomimetic agents) are capable of producing various discriminative stimuli for animals. Serotonergic involvement has been implicated as playing a role in the behavioral effects elicited by, for example, mescaline and DOM. Because certain tryptamine analogs possess high serotonin (5-HT) receptor binding affinities, it was of interest to examine one of the more potent agents. Employing a standard operant test chamber, six rats were trained to respond under a variable-interval 15-second schedule of sweetened-milk reinforcement. 5-Methoxy-N, N-dimethyltryptamine (5-OMe DMT), which possesses a 5-HT receptor affinity much higher than that of mescaline, but nearly equivalent to that of DOM, was found to serve as a discriminative stimulus. Furthermore, the 5-OMe DMT stimulus could be attenuated by the 5-HT antagonist BC-105. The 5-OMe DMT stimulus generalized with DOM suggesting that these two hallucinogens produce qualitatively similar interoceptive cues in rats.  相似文献   

12.
Amphetamine Response in Rat after Dopamine Neurone Destruction   总被引:2,自引:0,他引:2  
AMPHETAMINE increases spontaneous locomotor activity and induces stereotyped motor responses in rats. The magnitude of these two behavioural responses varies according to the dose and which optical isomer of the drug is used1,2. Amphetamine is known to influence the uptake and release of catecholamines in the brain both in vitro3 and in vivo4,5 and the finding that inhibition of catecholamine synthesis by α methyl-p-tyrosine abolishes the behavioural effect of the drug6,7 suggests that a release of catecholamines may mediate these effects. The amine transmitters noradrenaline (NA) and dopamine (DA) are localized in different anatomical systems in the brain8,9 and attempts have been made to correlate the specific behavioural effects of amphetamine with one or other of these aminergic systems. Taylor and Snyder, on the basis of comparisons of the potency of d- and l-amphetamine in behavioural and biochemical tests, suggested that a release of NA mediates the locomotor activity and DA the stereotypy responses. We have attempted to pursue these hypotheses with lesions to aminergic pathways.  相似文献   

13.
Albert J. Siemens 《Life sciences》1977,20(11):1891-1904
Δ9-Tetrahydrocannabinol (THC), 10 or 50 mg/kg, administered intragastrically one hour before intraperitoneal injection of 14C-d-amphetamine, 4 mg/kg, did not modify the disappearance from the blood or the tissue distribution of amphetamine in fasted rats. Furthermore, THC did not influence the urinary excretion of unchanged amphetamine or its major metabolite, p-hydroxyamphetamine, in these animals. However, when the interval between drug treatments was increased to two hours, THC, 10 mg/kg, minimally reduced the rate of disappearance of 14C-amphetamine from the blood of fasted rats. This effect was much more pronounced in rats which had food available throughout the experiment. THC also inhibited the urinary excretion of total radioactivity as well as 14C-amphetamine metabolites in fed but not in fasted animals during the first 4 hours following 14C-amphetamine injection. In addition, fasted rats excreted significantly more total radioactivity and unchanged 14C-amphetamine than fed rats during the 0 – 4 hour urine collection interval. The pH of urine collected during this and all other periods was significantly more acid for faster than fed rats. It is concluded that THC can inhibit amphetamine metabolism in rats depending upon the time interval between the administration of the two drugs and the dietary state of the animals.  相似文献   

14.
The delta sleep-inducing peptide (DSIP) has been shown to induce effects other than only delta sleep. One of these effects was the paradoxical thermoregulatory and locomotor response of rats to amphetamine after DSIP administration. In the present investigation we found similar effects of DSIP on the locomotor activity in mice. However, two different doses of DSIP (30 and 120 nmol/kg) and 3 doses of amphetamine (4, 10, and 15 mg/kg) produced a complex pattern of effects in mice tested at 22 degrees C. In general, DSIP-treated mice showed lower locomotor activity after amphetamine than controls, but under two conditions, both using 15 mg/kg amphetamine, DSIP produced higher scores; this occurred in the first two hours after amphetamine for the 30 nmol/kg DSIP group and in the third hour for mice given 120 nmol/kg DSIP. The results indicate that the effects of DSIP on locomotor behavior were dependent on the dosage of the peptide and the time of measurement as well as the level of amphetamine stimulation.  相似文献   

15.
The effects after the acute activation of the kappa opioid receptor (KOR) can be distinguished from the effect after repeated administration of KOR agonist. Here, we report the effect of repeated administration of U69593 during abstinence after amphetamine-induced locomotor sensitization. Rats were injected once daily with amphetamine for five consecutive days. From day 6 to 9, rats that developed locomotor sensitization, received once daily injection of U69593 or vehicle. On day 10, all rats were injected with a challenging dose of amphetamine and locomotor activity was measured to assess the expression of sensitization. Microdialysis studies were carried out to assess dopamine extracellular levels in NAc. Rats that develop and express horizontal locomotor sensitization to amphetamine show increased dopamine release in the NAc induced by high K(+). The repeated treatment with U69593 reverses the sensitized depolarization-stimulated dopamine release in the NAc, but not the expression of locomotor sensitization induced by amphetamine. Thus, repeated activation of KORs during early amphetamine withdrawal dissociates the behavioral responses and the neurochemical responses that accompany the expression of sensitization to amphetamine.  相似文献   

16.
Changes in medial prefrontal cortex (mPFC) dopamine receptor expression and in mPFC projections to the nucleus accumbens in adolescence suggest that there may be age differences in the regulation of drug‐related behavior by the mPFC. The age‐specific role of prelimbic D1 dopamine receptors on amphetamine‐induced locomotor activity was investigated. In experiment 1, rats aged postnatal day 30 (P30), P45, and P75, corresponding to early and late adolescence and adulthood, were given an injection of D1 and D2 antagonists into the prelimbic mPFC before a systemic injection of 1.5 mg/kg of amphetamine and locomotor activity was recorded. In experiment 2, effects of intra‐prelimbic injections of a D1 agonist and antagonist on locomotor activity produced by a lower dose (0.5 mg/kg) of amphetamine were investigated. D2 receptor antagonist did not alter amphetamine‐induced activity, whereas the D1 receptor antagonist reduced activity produced by 1.5 mg/kg of amphetamine more in P30 than in P45 and P75 rats. In addition, D1 agonist enhanced the locomotor activating effects of 0.5 mg/kg of amphetamine in adolescent rats and decreased activity in adult rats. These results suggest that insufficient activation of mPFC D1 receptors may underlie the reduced activity at the low dose of amphetamine in early adolescent compared to adult rats. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

17.
Oscillographic polarography has been applied for the mescaline and pellotine estimation. These alkaloids produce in 0.5 N NaOH electrolyte a sharp peak within the cathode region of the oscillogram, each of them showing different potential. It makes possible to estimate them at a concentration of 5.10(-6) g/ml. All the forms of Lophophora williamsii were found to contain mescaline and lower content of pellothine, L. jourdaniana--to have equal content of both alkaloide, L. diffusa and L. fricii--to contain pellotine and only traces of mescaline. Plants grown in the greenhouse accumulated the same amount of alkaloids as native plants. Grafting on roodstock which does not produce essential amount of the alkaloids, does not affect the ability of Lophophora to synthesize mescaline and pellotine.  相似文献   

18.
The behavioral effects of β-endorphin, enkephalin analogs, morphine and etorphine were briefly compared. In the tail-flick test in mice and in the wet shake test in rats, β-endorphin and D-Ala2-D-Leu5-enkephalin had equal antinociceptive activity; D-Ala2 -Met-enkephalinamide and D-Leu5-enkephalin were less active. The order of activity of the enkephalin analogs and opiate alkaloids for stimulating locomotor activity in mice paralleled their analgesic activities; β-endorphin, however, had only minimal stimulatory actions. Morphine sulfate, 50 μg injected into the periaqueductal gray, produced hyperactivity but this effect was not observed with etorphine or opioid peptides. By contrast, “wet dog” shakes was observed with the opioid peptides but not with either opiate alkaloid. These heterogenous behavioral responses, which were all antagonized by naloxone, indicate that multiple types of receptors mediate the effects of opiates in the central nervous system.  相似文献   

19.
Δ9-Tetrahydrocannabinol (Δ9THC), 1 mg/kg injected intravenously into conscious, unrestrained rats induced “cateleptoid” postures, vocalization, and in about half of the animals, a unique jumping behavior. During the period of cataleptoid behavior at 20 minutes after injection, the flows of blood to dorsal hippocampus, hypothalamus, cerebellum and basal ganglia were reduced significantly, whereas perfusion of cortical areas was unaffected. These regional changes in flow are believed to reflect acute functional responses to Δ9THC.  相似文献   

20.
Polydrug use is common, and might occur because certain individuals experience positive effects from several different drugs during early stages of use. This study examined individual differences in subjective responses to single oral doses of d-amphetamine, alcohol, and delta-9-tetrahydrocannabinol (THC) in healthy social drinkers. Each of these drugs produces feelings of well-being in at least some individuals, and we hypothesized that subjective responses to these drugs would be positively correlated. We also examined participants’ drug responses in relation to personality traits associated with drug use. In this initial, exploratory study, 24 healthy, light drug users (12 male, 12 female), aged 21–31 years, participated in a fully within-subject, randomized, counterbalanced design with six 5.5-hour sessions in which they received d-amphetamine (20mg), alcohol (0.8 g/kg), or THC (7.5 mg), each paired with a placebo session. Participants rated the drugs’ effects on both global measures (e.g. feeling a drug effect at all) and drug-specific measures. In general, participants’ responses to the three drugs were unrelated. Unexpectedly, “wanting more” alcohol was inversely correlated with “wanting more” THC. Additionally, in women, but not in men, “disliking” alcohol was negatively correlated with “disliking” THC. Positive alcohol and amphetamine responses were related, but only in individuals who experienced a stimulant effect of alcohol. Finally, high trait constraint (or lack of impulsivity) was associated with lower reports of liking alcohol. No personality traits predicted responses across multiple drug types. Generally, these findings do not support the idea that certain individuals experience greater positive effects across multiple drug classes, but instead provide some evidence for a “drug of choice” model, in which individuals respond positively to certain classes of drugs that share similar subjective effects, and dislike other types of drugs.

Trial Registration

ClinicalTrials.gov NCT02485158  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号