首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the organization and complexity of alpha satellite DNA on chromosomes 10 and 12 by restriction endonuclease mapping, in situ hybridization (ISH), and DNA-sequencing methods. Alpha satellite DNA on both chromosomes displays a basic dimeric organization, revealed as a 6- and an 8-mer higher-order repeat (HOR) unit on chromosome 10 and as an 8-mer HOR on chromosome 12. While these HORs show complete chromosome specificity under high-stringency ISH conditions, they recognize an identical set of chromosomes under lower stringencies. At the nucleotide sequence level, both chromosome 10 HORs are 50% identical to the HOR on chromosome 12 and to all other alpha satellite DNA sequences from the in situ cross-hybridizing chromosomes, with the exception of chromosome 6. An 80% identity between chromosome 6- and chromosome 10-derived alphoid sequences was observed. These data suggest that the alphoid DNA on chromosomes 6 and 10 may represent a distinct subclass of the dimeric subfamily. These sequences are proposed to be present, along with the more typical dimeric alpha satellite sequences, on a number of different human chromosomes.  相似文献   

2.
We have employed molecular probes and in situ hybridization to investigate the DNA sequences flanking the breakpoint of a group of t(14q21q) Robertsonian translocations. In all the families studied, the probands were patients with Down syndrome who carried a de novo t(14q21q) translocation. The DNA probes used were two alphoid sequences, alphaRI and alphaXT, which are specific for the centromeres of chromosomes 13 and 21 and of chromosomes 14 and 22, respectively; a satellite III sequence, pTRS-47, which is specific for the proximal p11 region of chromosomes 14 and 22; and a newly defined satellite III DNA, pTRS-63, which is specific for the distal p11 region of chromosome 14. The two alphoid probes detected approximately the same amount of autoradiographic signal on the translocated chromosomes as was expected for chromosomes 14 and 21 of the originating parent, suggesting that there has been no loss of these centromeric sequences during the translocation events. Results with the two satellite III probes indicated that the domain corresponding to pTRS-47 was retained in the translocated chromosomes, whereas the domain for pTRS-63 was lost. These results have allowed us to place the translocation breakpoint between the pTRS-47 and pTRS-63 domains within the p11 region of chromosome 14.  相似文献   

3.
Heterochromatic regions of chromosomes contain highly repetitive, tandemly arranged DNA sequences that undergo very rapid variation compared to unique DNA sequences that are predominantly conserved. In this study the chromosomal basis of speciation has been looked at in terms of repeat sequences. We have hybridized twenty-one chromosome-specific human alphoid satellite DNA probes to metaphase spreads of the chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), and orangutan (Pongo pygmaeus) to investigate the evolutionary relationship of heterochromatic regions among such hominoid species. The majority of the probes did not hybridize to their corresponding equivalent chromosome but presented hybridization signals on non-corresponding chromosomes. Such observations suggest that rapid changes may have occurred in the ancestral alphoid satellite DNA sequence, resulting in divergence among the great ape species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
5.
Comparison between results of measurements of heterochromatic regions detected by differential C and DA/DAP1 staining and the hybridization data of two cloned repeated human DNA sequences one alphoid (pH S05) and the other the satellite DNA III (pPD18) on chromosome preparations was made. A positive correlation of heterochromatic region sizes on several chromosomes and the amount of label over them detected after hybridization with both alphoid and satellite sequences was shown, the correlation with the latter being more pronounced.  相似文献   

6.
Summary We have analysed the TaqI patterns obtained with an alphoid DNA probe specific for human chromosomes 13 and 21 in a number of unrelated individuals, as well as in the somatic hybrid WA 17 which carries chromosome 21 as a unique human chromosome. In certain individuals, two types of extra bands are superimposed over the relatively simple basic banding pattern exhibited by all individuals. Thus, three independent allele-specific DNA patterns are defined. The basic and normal organization of the alpha satellite in chromosome 21 consists of tandemly arranged arrays of repeats representing 11 times the 171-bp monomer of the alphoid DNA sequences. The supernumerary bands found in some individuals are organized in tandemly arranged subsets of repeats representing 18 times and 9.5 times the 171bp basic monomer, respectively. These less fragment alleles segregate in a Mendelian fashion. Linkage analyses suggest that they originate from chromosomes 13 and 21, respectively.  相似文献   

7.
We report the isolation of a clone (pTR9) from a human chromosome 21 lambda phage library, which was found to contain two distinct components: (1) a previously unreported subfamily of human satellite III (pTR9-s3; 1,485 bp) and (2) an alpha satellite sequence (pTR9-alpha; 250 bp) containing 1.5 copies of a 171-bp alphoid unit that shows 88.4% homology to a previously reported alpha satellite consensus sequence. The two components are separated by two direct repeats of 9 bp. Use of the polymerase chain reaction (PCR) to amplify across the junction between pTR9-s3 and pTR9-alpha established that these two sequences are contiguous in total human genomic DNA and in DNA derived from somatic cell hybrids carrying human chromosomes 13, 14, or 21. A related, but considerably more diverged, sequence was also detected on chromosome 15. Southern analysis of somatic cell hybrids at high stringency revealed a common structure of the pTR9-s3 sequence on chromosomes 13, 14, and 21 but not on 15 or 22. This sequence should be useful for the study of the structural organisation of the centromere of these chromosomes and the mechanism of their involvement in Robertsonian translocations.  相似文献   

8.
Two cosmids (HRS-1 and HRS-2) containing mouse minor satellite DNA sequences have been isolated from a mouse genomic library. In situ hybridization under moderate stringency conditions to metaphase chromosomes from RCS-5, a tumor cell line derived from the SJL strain, mapped both HRS-1 and HRS-2 to the centromeric region of chromosome 4. Sequence data indicate that these cloned minor satellite DNA sequences have a basic higher order repeat of 180 bp, composed of three diverged 60-bp monomers. Digestion of mouse genomic DNA with several restriction enzymes produces a ladder of minor satellite fragments based on a 120-bp repeat. The restriction enzyme NlaIII (CATG) digests all the minor satellite DNA into three prominent bands of 120, 240, and 360 bp and a weak band of 180 bp. Thus, the majority of minor satellite sequences in the genome are arranged in repeats based on a 120-bp dimer, while the family of minor satellite sequences described here represents a rare variant of these sequences. Our results raise the possibility that there may be other variant families of minor satellites analogous to those of alphoid DNA present in humans.  相似文献   

9.
Human metaphase chromosomes were digested with StuI and subsequently hybridized in situ using chromosome 9 alphoid DNA and classical satellite III DNA as probes. The data obtained suggest that it is not possible to establish a general rule regarding the cytological effects induced by restriction enzymes in particular chromosome regions and that a number of factors, such as DNA sequences, DNA-protein interaction and enzyme structure, play a role in determining such effects.  相似文献   

10.
We describe the characterisation of four alpha satellite sequences which are found on a subset of the human acrocentric chromosomes. Direct sequence study, and analysis of somatic cell hybrids carrying specific human chromosomes indicate a unique 'higher-order structure' for each of the four sequences, suggesting that they belong to different subfamilies of alpha DNA. Under very high stringency of Southern hybridisation conditions, all four subfamilies were detected on chromosomes 13, 14 and 21, with 13 and 21 showing a slightly greater sequence homology in comparison to chromosome 14. None of these subfamilies were detected on chromosomes 15 and 22. In addition, we report preliminary evidence for a new alphoid subfamily that is specific for human chromosome 14. These results, together with those of earlier published work, indicate that the centromeres of the five acrocentric chromosomes are characterised by a number of clearly defined alphoid subfamilies or microdomains (with at least 5, 7, 3, 5 and 2 different ones on chromosomes 13, 14, 15, 21 and 22, respectively). These microdomains must impose a relatively stringent subregional pairing of the centromeres of two homologous chromosomes. The different alphoid subfamilies reported should serve as useful markers to allow further 'dissection' of the structure of the human centromere as well as the investigation of how the different nonhomologous chromosomes may interact in the aetiology of aberrations involving these chromosomes.  相似文献   

11.
The human alpha satellite DNA family is composed of diverse, tandemly reiterated monomer units of approximately 171 basepairs localized to the centromeric region of each chromosome. These sequences are organized in a highly chromosome-specific manner with many, if not all human chromosomes being characterized by individually distinct alphoid subsets. Here, we compare the nucleotide sequences of 153 monomer units, representing alphoid components of at least 12 different human chromosomes. Based on the analysis of sequence variation at each position within the 171 basepair monomer, we have derived a consensus sequence for the monomer unit of human alpha satellite DNA which we suggest may reflect the monomer sequence from which different chromosomal subsets have evolved. Sequence heterogeneity is evident at each position within the consensus monomer unit and there are no positions of strict nucleotide sequence conservation, although some regions are more variable than others. A substantial proportion of the overall sequence variation may be accounted for by nucleotide changes which are characteristic of monomer components of individual chromosomal subsets or groups of subsets which have a common evolutionary history.  相似文献   

12.
Although alphoid DNA sequences shared among acrocentric chromosomes have been identified, no human chromosome 21-specific sequence has been isolated from the centromeric region. To identify alphoid DNA restriction fragment length polymorphisms (RFLPs) specific for chromosome 21, we hybridized human genomic DNA with alphoid DNA probes [L1.26; aRI(680),21-208] shared by chromosomes 13 and 21. We detected RFLPs with restriction enzymes ECoRI, HaeIII, MboI,StuI, and TaqI. The segregation of these RFLPs was analyzed in the 40 CEPH families. Linkage analysis between these RFLPs and loci previously mapped to either chromosome 13 or 21 revealed RFLPs that appear to be specific to chromosome 21. These polymorphisms may be useful as genetic markers of the centromeric region of chromosome 21. Different alphoid loci within the centromeric region of chromosome 13 were identified.  相似文献   

13.
Centromeric alpha satellite DNA sequences are linked to the kinetochore CENP-B proteins and therefore may be involved in the centromeric function. The high heterogeneity of size of the alphoid blocks raises the question of whether small amount of alphoid DNA or "deletion" of this block may have a pathological significance in the human centromere. In the present study, we analysed the correlation between size variations of alphoid DNA and kinetochore sizes in human chromosome 21 by molecular cytogenetic and immunochemical techniques. FISH analyses of alpha satellite DNA sizes in chromosome 21 homologues correlated well with the variation of their physical size as determined by pulsed field gel electrophoresis (PFGE). By contrast, the immunostaining study of the same homologous chromosomes with antikinetochore antibodies suggested that there is no positive correlation between the alpha satellite DNA block and kinetochore sizes. FISH analysis of chromosome 21-specific alphoid DNA and immunostaining of kinetochore extended interphase chromatin fibers indicate that centromeric kinetochore-specific proteins bind to restricted areas of centromeric DNA arrays. Thus, probably, restricted regions of centromeric DNA play an important role in kinetochore formation, centromeric function and abnormal chromosome segregation leading to non-disjunction.  相似文献   

14.
We have isolated and characterised one PAC clone (dJ233C1) containing a linkage between alphoid and non-alphoid DNA. The non-alphoid DNA was found to map at the pericentromeric region of chromosome 20, both on p and q sides, and to contain homologies with one contig (ctg176, Sanger Centre), also located in the same chromosome region. At variance with the chromosome specificity shown by the majority of non-alphoid DNA, a subset of alphoid repeats derived from the PAC yielded FISH hybridisation signals located at the centromeric region of several human chromosomes, belonging to three different suprachromosomal families. The evolutionary conservation of this boundary region was investigated by comparative FISH experiments on chromosomes from great apes. The non-alphoid DNA was found to have undergone events of expansion and transposition to different pericentromeric regions of great apes chromosomes. Alphoid sequences revealed a very wide distribution of FISH signals in the great apes. The pattern was substantially discordant with the data available in the literature, which is essentially derived from the central alphoid subset. These results add further support to the emerging opinion that the pericentromeric regions are high plastics, and that the alpha satellite junctions do not share the evolutionary history with the main subsets.  相似文献   

15.
The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.  相似文献   

16.
Evolution of alpha-satellite DNA on human acrocentric chromosomes   总被引:10,自引:0,他引:10  
K H Choo  B Vissel  E Earle 《Genomics》1989,5(2):332-344
In situ hybridization of five new and one previously described alpha-satellite sequences isolated from chromosome 21 libraries gave the following chromosomal distribution patterns: (a) two sequences (pTRA-1 and -4) hybridizing to chromosomes 13, 14, 15, 21, and 22 (also 19 and 20); (b) one sequence (pTRA-7) hybridizing to chromosome 14; and (c) three sequences (pTRA-2, -11 and -15) hybridizing to chromosomes 13, 14, and 21, with significant but weaker signals on 15 and 22. These results suggested the sharing of alphoid domains between different acrocentric chromosomes and the coexistence of multiple domains on each chromosome. Analysis of somatic cell hybrids carrying a single human acrocentric chromosome using pTRA-2 demonstrated a higher-order repeating structure common to chromosomes 13, 14, and 21, but not to 15 and 22, providing direct evidence for sequence homogenization in this domain among the former three chromosomes. We present a model of evolution and genetic exchange of alpha sequences on the acrocentric chromosomes which can satisfactorily explain these and previous observations of (a) two different alphoid subfamilies, one common to chromosomes 13 and 21 and the other common to chromosomes 14 and 22, (b) a different alphoid subfamily on chromosome 22, and (c) nonrandom participation of chromosomes 13 and 14, and 14 and 21 in Robertsonian translocations.  相似文献   

17.
Organization and evolution of alpha satellite DNA from human chromosome 11   总被引:9,自引:0,他引:9  
The human alpha satellite repetitive DNA family is organized as distinct chromosomal subsets located at the centromeric regions of each human chromosome. Here, we describe a subset of the alpha satellite which is localized to human chromosome 11. The principal unit of repetition of this alpha satellite subset is an 850 bp XbaI fragment composed of five tandem diverged alphoid monomers, each 171 bp in length. The pentamer repeat units are themselves tandemly reiterated, present in 500 copies per chromosome 11. In filter hybridization experiments, the Alpha 11 probes are specific for the centromeric alpha satellite sequences of human chromosome 11. The complete nucleotide sequences of two independent copies of the XbaI pentamer reveal a pentameric configuration shared with the alphoid repeats of chromosomes 17 and X, consistent with the existence of an ancestral pentameric repeat common to the centromeric arrays of at least these three human chromosomes.  相似文献   

18.
We have isolated and characterized a human genomic DNA clone (PZ20, locus D20Z2) that identifies, under high-stringency hybridization conditions, an alphoid DNA subset specific for chromosome 20. The specificity was determined using fluorescence in situ hybridization. Sequence analysis confirmed our previously reported data on the great similarity between the chromosome 20 and chromosome 2 alphoid subsets. Comparative mapping of pZ20 on chimpanzee and gorilla chromosomes, also performed under high-stringency conditions, indicates that the alphoid subset has ancestral sequences on chimpanzee chromosome 11 and gorilla chromosome 19. However, no hybridization was observed to chromosomes 21 in the great apes, the homolog of human chromosome 20.  相似文献   

19.
K H Choo  E Earle  B Vissel  R G Filby 《Genomics》1990,7(2):143-151
We report the isolation of two distinct subfamilies of alpha satellite DNA (pTRA-20 and -25) from human chromosome 15. In situ hybridization experiments indicated that both subfamilies are highly specific for this chromosome. Southern analysis of a somatic hybrid cell line carrying human chromosome 15 revealed a likely higher-order genomic band of 2.5 kb for pTRA-20. Similar analysis for pTRA-25 showed multiple higher-order bands of 3.5, 4.5, and 5 kb at moderately high hybridization stringency, but a predominance of the 4.5-kb species at very high stringency. Direct comparison with human genomic DNA confirmed the authenticity of these higher-order structures and demonstrated polymorphic variations using both probes. The origin of the different alphoid subfamilies on chromosome 15 is discussed. These sequences should be useful for the construction of centromere-based genetic linkage maps for human chromosome 15 and, in conjunction with the other alphoid sequences already reported for chromosomes 13, 14, 21, and 22, should allow a concerted analysis of the evolution and the possible etiological role of these DNAs in aberrations commonly seen in these chromosomes.  相似文献   

20.
We have isolated a DNA clone (pMR9A) that identifies an alphoid DNA subset specific for chromosome 9. This alphoid subset is characterized by a dimeric organization as revealed by Southern blot analysis after digestion with HaeIII, HinfI, or StuI. Nonradioactive in situ hybridization demonstrated that pMR9A hybridizes only to the centromeric region of chromosome 9 and reveals chromosome 9 aneuploidies in interphase nuclei. In addition, the probe detects quantitative differences in alpha satellite DNA on chromosome 9, but these quantitative differences are not correlated with the size of the heterochromatic region. Double-labeling experiments, using a chromosome 9-specific satellite 3 clone and pMR9A, enabled us spatially to distinguish the alphoid and satellite 3 domains on metaphase chromosomes after treatment of the cultures with 5-azacytidine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号