首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This pilot experiment in a simian immunodeficiency virus (SIV) chronic infection model aimed at extending our previous findings that vaccination with delipidated SIV resulted in more potent and diversified antiviral responses (1). Macaques chronically infected with SIVmac239 treated with antiretroviral therapy (ART) were vaccinated with autologous delipidated virus via consecutive lymph node targeted immunizations-1, 1 and 10 mug of virus spaced monthly. Results showed all animals had lasting viral load reduction approaching 1 log compared to set-point, and disease delay. Delipidation may enhance processing/ presentation of viral antigen eliciting potent antiviral control even at such late infection stage.  相似文献   

2.
Prolonged antiretroviral therapy (ART) is not likely to eradicate human immunodeficiency virus type I (HIV-I) infection. Here we explore the effect of therapeutic immunization in the context of ART during primary infection using the simian immunodeficiency virus (SIV251) macaque model. Vaccination of rhesus macaques with the highly attenuated poxvirus-based NYVAC-SIV vaccine expressing structural genes elicited vigorous virus-specific CD4 + and CD8+ T cell responses in macaques that responded effectively to ART. Following discontinuation of a six-month ART regimen, viral rebound occurred in most animals, but was transient in six of eight vaccinated animals. Viral rebound was also transient in four of seven mock-vaccinated control animals. These data establish the importance of antiretroviral treatment during primary infection and demonstrate that virus-specific immune responses in the infected host can be expanded by therapeutic immunization.  相似文献   

3.
There is currently no SIV macaque model in which the effects of combination antiretroviral therapy on tissue immune responses and latent reservoirs have been measured. This study was performed to define the impact of combination therapy on the specificity and distribution of the T lymphocyte response in multiple tissue compartments. Pigtailed macaques (Macaca nemestrina) were infected with SIV/17E-Fr and treated with combination antiretroviral therapy consisting of 9-R-(2-phosphonomethoxypropyl)adenine (PMPA) and beta-2',3'-dideoxy-3'-thia-5-fluorocytidine (FTC). The SIV-specific T lymphocyte response was measured in peripheral blood, spleen and several lymph nodes at necropsy by IFN-gamma Elispot analysis. Two animals (one treated, one untreated) had high acute peak viremia, which was associated with lower SIV-specific T lymphocyte responses in the peripheral blood and lymphoid tissues. In the treated animal, viremia was controlled to low or undetectable for the study duration, and virus-specific responses remained low. The untreated animal remained viremic throughout the study and developed clinical symptoms of AIDS. In contrast, the two animals that had lower acute peak viremia (one treated, one untreated) had more robust T lymphocyte responses, and controlled viral replication. Virus-specific responses were detected in the treated animal despite 6 months of suppressive therapy. These data suggest that in this model, in the context of acute peak viremia and weak T cell responses, combination therapy may be essential to control virus replication and disease progression. Conversely, in the setting of low initial viremia and robust T lymphocyte responses, treatment does not have a detrimental effect on the immune response.  相似文献   

4.
BACKGROUND: Acute human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infections are accompanied by a systemic loss of memory CD4 T cells, with mucosal sites serving as a major site for viral replication, dissemination and CD4 T cell depletion. Protecting the mucosal CD4 T cell compartment thus is critical to contain HIV, and preserve the integrity of the mucosal immune system. The primary objective of this study was to determine if systemic vaccination with DNA/rAd-5 encoding SIV-mac239-env, gag and pol could prevent the destruction of CD4 T cells in mucosal tissues. METHODS: Rhesus macaques were immunized with DNA/r-Ad-5 encoding SIV genes and compared with those immunized with sham vectors following high dose intravenous challenge with SIVmac251. SIV specific CD4 and CD8 T cell responses, cell associated viral loads and mucosal CD4 T cell dynamics were evaluated. RESULTS: Strong SIV specific immune responses were induced in mucosal tissues of vaccinated animals as compared with sham controls. These responses expanded rapidly following challenge suggesting a strong anamnestic response. Immune responses were associated with a decrease in cell associated viral loads, and a loss of fewer mucosal CD4 T cells. Approximately 25% of mucosal CD4 T cells were preserved in vaccinated animals as compared with <5% in sham controls. These results demonstrate that systemic immunization strategies can induce immune responses in mucosal tissues that can protect mucosal CD4 T cells from complete destruction following challenge. CONCLUSIONS: Preservation of mucosal CD4 T cells can contribute to maintaining immune competence in mucosal tissues and provide a substantial immune benefit to the vaccinees.  相似文献   

5.
The contribution of immune reconstitution following antiretroviral treatment to the prevention or treatment of human immunodeficiency virus-related primary or reactivation tuberculosis remains unknown. Macaque models of simian immunodeficiency virus-Mycobacterium bovis BCG (SIV/BCG) coinfection were employed to determine the extent to which anti-Mycobacterium tuberculosis immunity can be restored by antiretroviral therapy. Both SIV-infected macaques with active BCG reinfection and naive animals with simultaneous SIV/BCG coinfection were evaluated. The suppression of SIV replication by antiretroviral treatment resulted in control of the active BCG infection and blocked development of the fatal SIV-related tuberculosis-like disease. The resolution of this disease coincided with the restoration of BCG purified protein derivative (PPD)-specific T-cell immune responses. In contrast, macaques similarly coinfected with SIV/BCG but not receiving antiretroviral therapy had depressed PPD-specific primary and memory T-cell immune responses and died from tuberculosis-like disease. These results provide in vivo evidence that the restoration of anti-mycobacterial immunity by antiretroviral agents can improve the clinical outcome of an AIDS virus-related tuberculosis-like disease.  相似文献   

6.
ABSTRACT: Immunotherapy aims to assist the natural immune system in achieving control over viral infection. Various immunotherapy formats have been evaluated in either therapy-naive or therapy-experienced HIV-infected patients over the last 20 years. These formats included non-antigen specific strategies such as cytokines that stimulate immunity or suppress the viral replication, as well as antibodies that block negative regulatory pathways. A number of HIV-specific therapeutic vaccinations have also been proposed, using in vivo injection of inactivated virus, plasmid DNA encoding HIV antigens, or recombinant viral vectors containing HIV genes. A specific format of therapeutic vaccines consists of ex vivo loading of autologous dendritic cells with one of the above mentioned antigenic formats or mRNA encoding HIV antigens. This review provides an extensive overview of the background and rationale of these different therapeutic attempts and discusses the results of trials in the SIV macaque model and in patients. To date success has been limited, which could be explained by insufficient quality or strength of the induced immune responses, incomplete coverage of HIV variability and/or inappropriate immune activation, with ensuing increased susceptibility of target cells. Future attempts at therapeutic vaccination should ideally be performed under the protection of highly active antiretroviral drugs in patients with a recovered immune system. Risks for immune escape should be limited by a better coverage of the HIV variability, using either conserved or mosaic sequences. Appropriate molecular adjuvants should be included to enhance the quality and strength of the responses, without inducing inappropriate immune activation. Finally, to achieve a long-lasting effect on viral control (i.e. a "functional cure") it is likely that these immune interventions should be combined with anti-latency drugs and/or gene therapy.  相似文献   

7.
8.
Therapeutic dendritic-cell vaccine for simian AIDS   总被引:27,自引:0,他引:27  
Lu W  Wu X  Lu Y  Guo W  Andrieu JM 《Nature medicine》2003,9(1):27-32
An effective immune response against human immunodeficiency virus or simian immunodeficiency virus (SIV) is critical in achieving control of viral replication. Here, we show in SIV-infected rhesus monkeys that an effective and durable SIV-specific cellular and humoral immunity is elicited by a vaccination with chemically inactivated SIV-pulsed dendritic cells. After three immunizations made at two-week intervals, the animals exhibited a 50-fold decrease of SIV DNA and a 1,000-fold decrease of SIV RNA in peripheral blood. Such reduced viral load levels were maintained over the remaining 34 weeks of the study. Molecular and cellular analyses of axillary and inguinal node lymphocytes of vaccinated monkeys revealed a correlation between decreased SIV DNA and RNA levels and increased SIV-specific T-cell responses. Neutralizing antibody responses were augmented and remained elevated. Inactivated whole virus-pulsed dendritic cell vaccines are promising means to control diseases caused by immuno- deficiency viruses.  相似文献   

9.
A limited period of chemotherapy during primary immunodeficiency virus infection might provide a long-term clinical benefit even if treatment is initiated at a time point when virus is already detectable in plasma. To evaluate this strategy, we infected rhesus macaques with the pathogenic simian/human immunodeficiency virus RT-SHIV and treated them with the antiretroviral drug (R)-9-(2-phosphonylmethoxypropyl)adenine (PMPA) for 8 weeks starting 7 or 14 days postinfection. PMPA treatment suppressed viral replication efficiently in all of the monkeys. After chemotherapy ended, virus replication rebounded and viral RNA in plasma reached levels comparable to that of the controls in four of the six monkeys. However, in the other two animals, virus loads peaked only moderately after withdrawal of the drug and then declined to low or even undetectable levels. These low levels of viremia remained stable for at least 31 weeks after cessation of therapy. At this time point, these two monkeys were challenged with SIV(8980) to evaluate whether the host responses which were able to keep RT-SHIV replication under control were also sufficient to protect against infection with a highly pathogenic heterologous virus. Both monkeys proved to be protected against the heterologous virus. In one of the two animals, low levels of SIV(8980) replication were detected. Thus, by chemotherapy during the acute phase of pathogenic virus replication, we could achieve not only persistent virus load suppression in two out of six monkeys but also protection from subsequent heterologous challenge. By this chemotherapeutic attenuation, the replication kinetics of attenuated viruses could be mimicked and a vaccination effect similar to that induced by live attenuated simian immunodeficiency virus vaccines was achieved.  相似文献   

10.
Simian immunodeficiency virus (SIV) infection in macaques is so far the best animal model for human immunodeficiency virus type 1 (HIV-1) studies, but suppressing viral replication in infected animals remains challenging. Using a novel single-round infectivity assay, we quantitated the antiviral activities of antiretroviral drugs against SIV. Our results emphasize the importance of the dose-response curve slope in determining the inhibitory potential of antiretroviral drugs and provide useful information for regimen selection in treating SIV-infected animals in models of therapy and virus eradication.  相似文献   

11.
Immunotherapies that induce durable immune control of chronic HIV infection may eliminate the need for life-long dependence on drugs. We investigated a DNA vaccine formulated with a novel genetic adjuvant that stimulates immune responses in the blood and gut for the ability to improve therapy in rhesus macaques chronically infected with SIV. Using the SIV-macaque model for AIDS, we show that epidermal co-delivery of plasmids expressing SIV Gag, RT, Nef and Env, and the mucosal adjuvant, heat-labile E. coli enterotoxin (LT), during antiretroviral therapy (ART) induced a substantial 2-4-log fold reduction in mean virus burden in both the gut and blood when compared to unvaccinated controls and provided durable protection from viral rebound and disease progression after the drug was discontinued. This effect was associated with significant increases in IFN-γ T cell responses in both the blood and gut and SIV-specific CD8+ T cells with dual TNF-α and cytolytic effector functions in the blood. Importantly, a broader specificity in the T cell response seen in the gut, but not the blood, significantly correlated with a reduction in virus production in mucosal tissues and a lower virus burden in plasma. We conclude that immunizing with vaccines that induce immune responses in mucosal gut tissue could reduce residual viral reservoirs during drug therapy and improve long-term treatment of HIV infection in humans.  相似文献   

12.
In the present era of increasing resistance of human immunodeficiency virus (HIV) to antiviral drugs, exploration of adjunct therapies directed at immune responses in combination with antiretroviral drugs may be of value for the treatment of acquired immunodeficiency syndrome. In this study, we designed a model for immune therapy using SIVmac251 infection in rhesus macaques. We explored the outcomes of primary infection on viral loads and the resulting T-cell immune responses in primates. The SIV-infected rhesus macaque model exhibited features similar to those observed in HIV-1 infection of humans. Major histocompatibility complex (MHC) segregation with viral loads were found to associate with viral containment and hence the duration of the disease-free latency period. Thus a better understanding of the relative roles of MHC class I allele in control of viral replication may provide important information for prophylactic or therapeutic vaccine designs. Mamu-A01 is significantly associated with higher immune response and control of viral replication. This allele is frequent in rhesus macaques of Indian origin (22%). Interestingly, Mamu-B01 (26% animals) was associated with lower immune responses and higher viral loads. Another allele, A08 was also predominantly present in 37% of the animals in this study. We observed higher viral replication in individual SIV-infected rhesus monkeys that did not demonstrate strong cellular immune responses. The results are important for understanding SIV disease progression in different MHC Mamu alleles and also for improving the interpretation and quality of pre-clinical studies in rhesus monkeys.  相似文献   

13.
Immunotherapy aims to assist the natural immune system in achieving control over viral infection. Various immunotherapy formats have been evaluated in either therapy-naive or therapy-experienced HIV-infected patients over the last 20?years. These formats included non-antigen specific strategies such as cytokines that stimulate immunity or suppress the viral replication, as well as antibodies that block negative regulatory pathways. A number of HIV-specific therapeutic vaccinations have also been proposed, using in vivo injection of inactivated virus, plasmid DNA encoding HIV antigens, or recombinant viral vectors containing HIV genes. A specific format of therapeutic vaccines consists of ex vivo loading of autologous dendritic cells with one of the above mentioned antigenic formats or mRNA encoding HIV antigens. This review provides an extensive overview of the background and rationale of these different therapeutic attempts and discusses the results of trials in the SIV macaque model and in patients. To date success has been limited, which could be explained by insufficient quality or strength of the induced immune responses, incomplete coverage of HIV variability and/or inappropriate immune activation, with ensuing increased susceptibility of target cells. Future attempts at therapeutic vaccination should ideally be performed under the protection of highly active antiretroviral drugs in patients with a recovered immune system. Risks for immune escape should be limited by a better coverage of the HIV variability, using either conserved or mosaic sequences. Appropriate molecular adjuvants should be included to enhance the quality and strength of the responses, without inducing inappropriate immune activation. Finally, to achieve a long-lasting effect on viral control (i.e. a ??functional cure??) it is likely that these immune interventions should be combined with anti-latency drugs and/or gene therapy.  相似文献   

14.
A successful HIV vaccine may need to stimulate antiviral immunity in mucosal and systemic immune compartments, because HIV transmission occurs predominantly at mucosal sites. We report here the results of a combined DNA-modified vaccinia virus Ankara (MVA) vaccine approach that stimulated simian/human immunodeficiency virus (SHIV)-specific immune responses by vaccination at the nasal mucosa. Fifteen male rhesus macaques, divided into three groups, received three nasal vaccinations on day 1, wk 9, and wk 25 with a SHIV DNA plasmid producing noninfectious viral particles (group 1), or SHIV DNA plus IL-2/Ig DNA (group 2), or SHIV DNA plus IL-12 DNA (group 3). On wk 33, all macaques were boosted with rMVA expressing SIV Gag-Pol and HIV Env 89.6P, administered nasally. Humoral responses were evaluated by measuring SHIV-specific IgG and neutralizing Abs in plasma, and SHIV-specific IgA in rectal secretions. Cellular responses were monitored by evaluating blood-derived virus-specific IFN-gamma-secreting cells and TNF-alpha-expressing CD8+ T cells, and blood- and rectally derived p11C tetramer-positive T cells. Many of the vaccinated animals developed both mucosal and systemic humoral and cell-mediated anti-SHIV immune responses, although the responses were not homogenous among animals in the different groups. After rectal challenge of vaccinated and naive animals with SHIV89.6P, all animals became infected. However a subset, including all group 2 animals, were protected from CD4+ T cell loss and AIDS development. Taken together, these data indicate that nasal vaccination with SHIV-DNA plus IL-2/Ig DNA and rMVA can provide significant protection from disease progression.  相似文献   

15.
Inoculation of cats, goats and monkeys with plasmids encoding full-length proviral genomes results in persistent lentiviral infections. This system could be used as a method for administration of an attenuated human immunodeficiency virus (HIV) vaccine. Here, we compare the virology and immunology in rhesus macaques inoculated with either simian/human immunodeficiency virus 89.6 (SHIV 89.6) virus or a plasmid containing the SHIV 89.6 proviral genome. There was a delay in appearance of systemic infection in DNA-inoculated animals compared with virus-inoculated animals, but otherwise the pattern of infection was similar. The serum immunoglobulin G anti-simian immunodeficiency virus (SIV) binding antibody response in DNA-inoculated animals was also delayed compared with virus-inoculated animals, but ultimately there was no difference between live virus and DNA-inoculation in the ability to induce the anti-SIV immune responses that were measured. Thus, the data support the concept that plasmid DNA encoding an attenuated virus could be used instead live virus for vaccination.  相似文献   

16.
To explore the efficacy of novel complementary prime-boost immunization regimens in a nonhuman primate model for HIV infection, rhesus monkeys primed by different DNA vaccines were boosted with virus-like particles (VLP) and then challenged by repeated low-dose rectal exposure to simian immunodeficiency virus (SIV). Characteristic of the cellular immune response after the VLP booster immunization were high numbers of SIV-specific, gamma interferon-secreting cells after stimulation with inactivated SIV particles, but not SIV peptides, and the absence of detectable levels of CD8(+) T cell responses. Antibodies specific to SIV Gag and SIV Env could be induced in all animals, but, consistent with a poor neutralizing activity at the time of challenge, vaccinated monkeys were not protected from acquisition of infection and did not control viremia. Surprisingly, vaccinees with high numbers of SIV-specific, gamma interferon-secreting cells were infected fastest during the repeated low-dose exposures and the numbers of these immune cells in vaccinated macaques correlated with susceptibility to infection. Thus, in the absence of protective antibodies or cytotoxic T cell responses, vaccine-induced immune responses may increase the susceptibility to acquisition of immunodeficiency virus infection. The results are consistent with the hypothesis that virus-specific T helper cells mediate this detrimental effect and contribute to the inefficacy of past HIV vaccination attempts (e.g., STEP study).  相似文献   

17.
Abstract: An effective immune response involves the specific recognition of and elimination of an infectious organism at multiple levels. In this context DNA immunization can present functional antigenic proteins to the host for recognition by all arms of the immune system, yet provides the opportunity to delete any genes of the infectious organism which code for antigens or pieces of antigens that may have deleterious effects. Our group has developed the use of nucleic acid immunization as a possible method of vaccination against Human immunodeficiency virus type 1 (HIV-1) [1,2,3,10,11,12]. Sera from non-human primates immunized with DNA vectors that express the envelope proteins from HIV-1 contain antibodies specific to the HIV-1 envelope. These sera also neutralize HIV-1 infection in vitro and inhibit cell to cell infection in tissue culture. Analysis of cellular responses is equally encouraging. T cell proliferation as well as cytotoxic T cell lysis of relevant env expressing target cells were observed. In addition, evidence that DNA vaccines are capable of inducing a protective response against live virus was demonstrated using a chimeric SIV/HIV (SHIV) challenge in vaccinated cynomologous macaques. We found that nucleic acid vaccination induced protection from challenge in one out of four immunized cynomolgus macaques and viral load was lower in the vaccinated group of animals versus the control group of animals. These data encouraged us to analyze this vaccination technique in chimpanzees, the most closely related animal species to man. We observed the induction of both cellular and humoral immune responses with a DNA vaccine in chimpanzees. These studies demonstrate the utility of this technology to induce relevant immune responses in primates which may ultimately lead to effective vaccines.  相似文献   

18.
19.
Gut-associated lymphoid tissue (GALT) is an early target of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) and a site for severe CD4+ T-cell depletion. Although antiretroviral therapy (ART) is effective in suppressing HIV replication and restoring CD4+ T cells in peripheral blood, restoration in GALT is delayed. The role of restored CD4+ T-cell help in GALT during ART and its impact on antiviral CD8+ T-cell responses have not been investigated. Using the SIV model, we investigated gut CD4+ T-cell restoration in infected macaques, initiating ART during either the primary stage (1 week postinfection), prior to acute CD4+ cell loss (PSI), or during the chronic stage at 10 weeks postinfection (CSI). ART led to viral suppression in GALT and peripheral blood mononuclear cells of PSI and CSI animals at comparable levels. CSI animals had incomplete CD4+ T-cell restoration in GALT. In PSI animals, ART did not prevent acute CD4+ T-cell loss by 2 weeks postinfection in GALT but supported rapid and complete CD4+ T-cell restoration thereafter. This correlated with an accumulation of central memory CD4+ T cells and better suppression of inflammation. Restoration of CD4+ T cells in GALT correlated with qualitative changes in SIV gag-specific CD8+ T-cell responses, with a dominance of interleukin-2-producing responses in PSI animals, while both CSI macaques and untreated SIV-infected controls were dominated by gamma interferon responses. Thus, central memory CD4+ T-cell levels and qualitative antiviral CD8+ T-cell responses, independent of viral suppression, were the immune correlates of gut mucosal immune restoration during ART.  相似文献   

20.
Molecular clones were constructed that express nucleocapsid (NC) deletion mutant simian immunodeficiency viruses (SIVs) that are replication defective but capable of completing virtually all of the steps of a single viral infection cycle. These steps include production of particles that are viral RNA deficient yet contain a full complement of processed viral proteins. The mutant particles are ultrastructurally indistinguishable from wild-type virus. Similar to a live attenuated vaccine, this approach should allow immunological presentation of a full range of viral epitopes, without the safety risks of replicating virus. A total of 11 Macaca nemestrina macaques were inoculated with NC mutant SIV expressing DNA, intramuscularly (i.m.) in one study and i.m. and subcutaneously in another study. Six control animals received vector DNA lacking SIV sequences. Only modest and inconsistent humoral responses and no cellular immune responses were observed prior to challenge. Following intravenous challenge with 20 animal infectious doses of the pathogenic SIV(Mne) in a long-term study, all control animals became infected and three of four animals developed progressive SIV disease leading to death. All 11 NC mutant SIV DNA-immunized animals became infected following challenge but typically showed decreased initial peak plasma SIV RNA levels compared to those of control animals (P = 0.0007). In the long-term study, most of the immunized animals had low or undetectable postacute levels of plasma SIV RNA, and no CD4(+) T-cell depletion or clinical evidence of progressive disease, over more than 2 years of observation. Although a subset of immunized and control animals were boosted with SIV(Mne) proteins, no apparent protective benefit was observed. Immunization of macaques with DNA that codes for replication-defective but structurally complete virions appears to protect from or at least delay the onset of AIDS after infection with a pathogenic immunodeficiency virus. With further optimization, this may be a promising approach for vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号