首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of sulphate uptake into right-side-out plasma-membrane vesicles isolated from roots of Brassica napus L., Metzger, cv. Drakkar, and purified by aqueous polymer two-phase partitioning, were investigated. Sulphate uptake into the vesicles was driven by an artificially imposed pH gradient (acid outside), and could be observed for 5–10 min before a plateau was reached and no further net uptake occurred. The uptake was partially inhibited in the presence of depolarizing agents and little uptake was observed in the absence of an imposed pH gradient. Uptake was strongly pH-dependent, being greatest at more acidic pH. After imposition of a pH gradient, the capacity for uptake decreased slowly (t1/2>10 min). The uptake had a high-affinity component which was strongly dependent on the external proton concentration (K m=10μM at pH 5.0, 64 μM at pH 6.5). The K m for protons varied from 0.4–1.9 μM as the sulphate concentration was reduced from 33 to 1 μM. A low-affinity component was observed which could be resolved at low temperatures (0 °C). Microsomal membranes that partitioned into the lower phase of the two-phase system gave no indication of high-affinity sulphate transport. Sulphate uptake into plasma-membrane vesicles isolated from sulphur-starved plant material was approximately twofold greater than that observed in those isolated from sulphate-fed plant material. Isolated vesicles therefore mirror the well-known in-vivo response of roots, indicating an increase in the number of transporters to be, at least in part, the underlying cause of derepression.  相似文献   

2.
The uptake of sulphate into roots of barley seedlings is highly sensitive to phenylglyoxal (PhG), an arginine-binding reagent. Uptake was inhibited by >80% by a 1-h pre-treatment of roots with 0.45 mol · m–3 PhG. Inhibition was maximal in pre-treatment solutions buffered between pH 4.5 and 6.5. Phosphate uptake, measured simultaneously by double-labelling uptake solutions with 32P and 35S, was less susceptible to inhibition by PhG, particularly at pH <6.5, and was completely insensitive to the less permeant reagent p-hydroxyphenylglyoxal (OH-PhG) administered at 1 mol · m–3 at pH at 5.0 or 8.2; sulphate uptake was inhibited in -S plants by 90% by OH-PhG-treatment. Root respiration in young root segments was unaffected by OH-PhG pre-treatment for 1 h and inhibited by only 17% after 90 min pre-treatment. The uptake of both ions was inhibited by the dithiol-specific reagent, phenylarsine oxide even after short exposures (0.5–5.0 min). Sulphate uptake was more severely inhibited than that of phosphate, but in both cases inhibition could be substantially reversed by 5 min washing of treated roots by 5 mol · m–3 dithioerythritol. After longer pre-treatment (50 min) with phenylarsine oxide, inhibition of the ion fluxes was not relieved by washing with dithioerythritol. Inhibition of sulphate influx by PhG was completely reversed by washing the roots for 24 h with culture solution lacking the inhibitor. The reversal was dependent on protein synthesis; less than 20% recovery was seen in the presence of 50 mmol · m–3 cycloheximide. Sulphate uptake declined rapidly when -S roots were treated with cycloheximide. In the same roots the phosphate influx was little affected, small significant inhibitions being seen only after 4 h of treatment. Respiration was depressed by only 20% in apical and by 31% in basal root segments by cycloheximide pre-treatment for 2 h. Similar rates of collapse of the sulphate uptake and insensitivity of phosphate uptake were seen when protein synthesis was inhibited by azetidine carboxylic acid, p-fluorophenylalanine and puromycin. Considering the effects of all of the protein-synthesis inhibitors together leads to the conclusion that the sulphate transporter itself, or some essential sub-component of the uptake system, turns over rapidly with a half-time of about 2.5 h. The turnover of the phosphate transporter is evidently much slower. The results are discussed in relation to strategies for identifying the transport proteins and to the regulation of transporter activity during nutrient stress.Abbreviations CAP chloramphenicol - CHM cycloheximide - DTE dithioerythritol - OH-PhG p-hydroxyphenylglyoxal - PhAsO phenylarsine - PhG phenylglyoxal Paper dedicated to the memory of the late Ken Treharne who did much to encourage this collaboration.D.T.C. gratefully acknowledges a fellowship provided by Le Ministére des Etrangers during his stay in Montpellier.  相似文献   

3.
The cellular and subcellular localization of proteinase Inhibitors I and II proteins, synthesized in transgenic tomato (Lycopersicon esculentum L.) plants from chimeric genes regulated by the 35S promoter, was investigated by immunocytochemical techniques. Newly synthesized inhibitor proteins were deposited in the cell vacuoles as in wild-type plants, but were also secreted into the cell walls of outer epidermal and secretory cells of the root cap. The Na ionophore monensin increased the levels of proteinase inhibitors found in rough endoplasmic reticulum, Golgi cisternae and in the cell walls of transgenic plants, supporting a role for the secretory pathway in the sorting and targeting of Inhibitor I and II proteins. The two inhibitor proteins were detected by Western-blot analysis in water-washes obtained from roots of transgenic tomato seedlings, confirming their extracellular presence. Wild-type tomato plants exhibited the presence of Inhibitor I and II proteins in the external cell walls, using silver-enhanced immunogold labelling, but not by Western-blot analysis. The extracellular Inhibitor I from transgenic plant roots migrated in electrophoretic gels with a slightly different apparent mass than the Inhibitor I isolated from tomato leaf vacuoles, indicating that specific structural features of this inhibitor protein have been altered during or after extracellular deposition. The presence of extracellular inhibitors in roots may help provide protection for the growing meristems against insects or microorganisms present in the soil.Abbreviations CaMV cauliflower mosaic virus - TEM transmission electron microscope Transmission electron microscopy was performed at the Electron Microscopy Center (EMC) of Washington State University. The authors thank the EMC staff for their technical advice and collaboration. We also thank Greg Wichelns for growing our plants and Greg Pearce, Scott Johnson, and Martha L. Orozco for their advice and technical help. The work was supported in part by the Washington State College of Agriculture and Home Economics Project No. 1791 and National Science Foundation grants Nos. DCB-8702538 and DCB-8608594.  相似文献   

4.
Muday GK  Lomax TL  Rayle DL 《Planta》1995,195(4):548-553
Roots of the tomato (Lycopersicon esculentum, Mill.) mutant diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action.Abbreviations BCA bicinchoninic acid - IAA indole 3-acetic acid - dgt diageotropica - IC50 concentration for 50% inhibition of growth - NPA N-1-naphthylphthalamic acid - SCB-1 semicarbazone 1 This research was supported by grants from Sandoz Agro, Inc. (G.K.M), the National Aeronautics and Space Administration (NASA) and the National Science Foundation (T.L.L), and NASA (D.L.R.).  相似文献   

5.
The abscission zone in tomato (Lycopersicon esculentum (L.) Mill. flower pedicels is morphologically distinguishable prior to separation and is delineated by an indentation of the epidermis. Exposure of excised pedicels with the flower attached to ethylene results in abscission within 12 h and this can be accelerated by flower removal. Abscission of excised pedicels with the flower removed takes place in the absence of exogenous ethylene but this is delayed by pretreatment with aminoethoxyvinyl glycine, an inhibitor of ethylene biosynthesis. The data presented support the hypothesis that flower tissue is the source of an abscission inhibitor.Abbreviations AVG aminoethoxyvinyl glycine - IAA indole-3-acetic acid  相似文献   

6.
Seed water content is high during early development of tomato seeds (10–30 d after pollination (DAP)), declines at 35 DAP, then increases slightly during fruit ripening (following 50 DAP). The seed does not undergo maturation drying. Protein content during seed development peaks at 35 DAP in the embryo, while in the endosperm it exhibits a triphasic accumulation pattern. Peaks in endosperm protein deposition correspond to changes in endosperm morphology (i.e. formation of the hard endosperm) and are largely the consequence of increases in storage proteins. Storage-protein deposition commences at 20 DAP in the embryo and endosperm; both tissues accumulate identical proteins. Embryo maturation is complete by 40 DAP, when maximum embryo protein content, size and seed dry weight are attained. Seeds are tolerant of premature drying (fast and slow drying) from 40 DAP.Thirty-and 35-DAP seeds when removed from the fruit tissue and imbibed on water, complete germination by 120 h after isolation. Only seeds which have developed to 35 DAP produce viable seedlings. The inability of isolated 30-DAP seed to form viable seedlings appears to be related to a lack of stored nutrients, since the germinability of excised embryos (20 DAP and onwards) placed on Murashige and Skoog (1962, Physiol. Plant. 15, 473–497) medium is high. The switch from a developmental to germinative mode in the excised 30- and 35-DAP imbibed seeds is reflected in the pattern of in-vivo protein synthesis. Developmental and germinative proteins are present in the embryo and endosperm of the 30- and 35-DAP seeds 12 h after their isolation from the fruit. The mature seed (60 DAP) exhibits germinative protein synthesis from the earliest time of imbibition. The fruit environment prevents precocious germination of developing seeds, since the switch from development to germination requires only their removal from the fruit tissue.Abbreviations DAP days after pollination - kDa kilodaltons - SP1-4 storage proteins 1–4 - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - HASI hours after seed isolation - MS medium Murashige and Skoog (1962) medium This work is supported by National Science and Engineering Research Council of Canada grant A2210 to J.D.B.  相似文献   

7.
When plasma-membrane vesicles isolated from oat (Avena sativa L.) root cells were incubated with [-32P]ATP, the H+-ATPase was found to be phosphorylated at serine and threonine residues. Phosphotyrosine was not detected. Endogenous ATPase kinase activity was also observed in plasma-membrane vesicles isolated from potato (Solanum tuberosum L.) root cells as well as from yeast (Saccharomyces cerevisiae). Identity of the phosphorylated oat root Mr=100 000 polypeptide as the ATPase was confirmed using conventional glycerol density-gradient centrifugation to purify the native enzyme and by a new procedure for purifying the denatured polypeptide using reversephase high-performance liquid chromatography. Kinase-mediated phosphorylation of the oat root plasma-membrane H+-ATPase was stimulated by the addition of low concentrations of Ca2+ and by a decrease in pH, from 7.2 to 6.2. These results demonstrate that kinase-mediated phosphorylation of the H+-ATPase is a plausible mechanism for regulating activity. They further indicate that changes in the cytoplasmic [Ca2+] and pH are potentially important elements in modulating the kinase-mediated phosphorylation.Abbreviations EDTA ethylenediaminetetraacetic acid - EGTA ethylene glycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid - Mr relative molecular mass - RP-HPLC reverse-phase high-performance liquid chromatography - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

8.
Changes in gene expression during foliar senescence and fruit ripening in tomato (Lycopersicon esculentum Mill.) were examined using in-vitro translation of isolated RNA and hybridization against cDNA clones.During the period of chlorophyll loss in leaves, changes occurred in mRNA in-vitro translation products, with some being reduced in prevalence, whilst others increased. Some of the translation products which changed in abundance had similar molecular weights to those known to increase during tomato fruit ripening. By testing RNA from senescing leaves against a tomato fruit ripening-related cDNA library, seven cDNA clones were identified for mRNAs whose prevalence increased during both ripening and leaf senescence. Using dot hybridization, the pattern of expression of the mRNAs corresponding to the seven clones was examined. Maximal expression of the majority of the mRNAs coincided with the time of greatest ethylene production, in both leaves and fruit. Treatment of mature green leaves or unripe fruit with the ethylene antagonist silver thiosulphate prevented the onset of senescence or ripening, and the expression of five of the seven ripening- and senescence-related genes.The results indicate that senescence and ripening in tomato involve the expression of related genes, and that ethylene may be an important factor in controlling their expression.Abbreviations cDNA copy-DNA - MW molecular weight - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate  相似文献   

9.
The cellular pathway of postphloem sugar transport in developing tomato fruit   总被引:14,自引:0,他引:14  
The cellular pathway of postphloem sugar transport was elucidated in the outer pericarp of tomato (Lycopersicon esculentum Mill cv. Floradade) fruit at 13–14 and 23–25 days after anthesis (DAA). These developmental stages are characterized by phloem-imported sugars being accumulated as starch and hexose, respectively. The symplasmic tracer, 5(6)-carboxyfluorescein, loaded into the storage parenchyma cells of pericarp discs, moved readily in the younger fruit but was immobile in fruit at 23–25 DAA. Symplasmic mobility of [14C]glucose was found to be identical to 5(6)-carboxyfluorescein. For the older fruit, the pericarp apoplasm was shown to be freely permeable to the apoplasmic tracer, trisodium 3-hydroxy-5,8,10-pyrenetrisulfonate. Indeed, the transport capacity of the pericarp apoplasm was such that the steady-state rate of in-vitro glucose uptake by pericarp discs accounted fully for the estimated rate of in-vivo glucose accumulation. For fruit at 23–25 DAA, the inhibitory effects of the sulfhydryl group modifier, p-chloromer-curibenzenesulfonic acid (PCMBS), on [14C]glucose and [14C]fructose uptake by the pericarp discs depended on the osmolality of the external solution. The inhibition was most pronounced for pericarp discs enriched in storage parenchyma. Consistent with the PCMBS study, strong fluorescent signals were exhibited by the storage parenchyma cells of pericarp discs exposed to the membrane-impermeable thiol-binding fluorochrome, mono-bromotrimethylammoniobimane. The fluorescent weak acid, sulphorhodamine G, was accumulated preferentially by the storage parenchyma cells. Accumulation of sulphorhodamine G was halted by the ATPase inhibitor erythrosin B, suggesting the presence of a plasma-membrane-bound H+-ATPase. A linkage between the putative H+-ATPase activity and hexose transport was demonstrated by an erythrosin-B inhibition of [14C]glucose and [14C]fructose uptake. In contrast, comparable evidence for an energy-coupled hexose porter could not be found in the pericarp of younger fruit at 13–14 DAA. Overall, the data are interpreted to indicate that: (i) The postphloem cellular pathway in the outer fruit pericarp shifts from the symplasm during starch accumulation (13–14 DAA) to the apoplasm for rapid hexose accumulation (23–25 DAA). (ii) An energy-coupled plasma-membrane hexose carrier is expressed specifically in storage parenchyma cells at the latter stage of fruit development.  相似文献   

10.
Hans Peter Getz 《Planta》1991,185(2):261-268
Sucrose uptake into tonoplast vesicles, which were prepared from red beet (Beta vulgaris L.) vacuoles isolated by two different methods, was stimulated by MgATP. Using the same medium as for osmotic disruption of vacuoles, membrane vesicles were prepared from tissue homogenates of dormant red beet roots and separated by high-speed centrifugation through a discontinuous dextran gradient. A low-density microsomal fraction highly enriched in tonoplast vesicles could be further purified from contaminating ER vesicles by inclusion of 5 mM MgCl2 in the homogenization medium. These vesicles were able to transport sucrose in an ATP-dependent manner against a concentration gradient, whereas vesicles from regions of other densities lacked this feature, indicating that ATP stimulation of sucrose uptake took place only at the tonoplast membrane. Sucrose uptake was optimal at pH 7 in the presence of MgATP and could be stimulated by superimposed pH gradients (vesicle interior acidic) in the absence of MgATP, which is consistent with the operation of a sucrose/H+-antiporter at the tonoplast. Tonoplast vesicles, obtained in high yield from tissue homogenates of red beet roots, exhibited sugar-uptake characteristics comparable to those of intact vacuoles; these characteristics included similarities in K m (1.7 mM), sensitivity to inhibitors and specificity for sucrose.Many experiments were carried out at the Experiment Station of the HSPA, Aiea, Hawaii and financed by an NSF grant to Dr. Maretzki and Mrs. M. Thom.  相似文献   

11.
Root cultures of Senecio erucifolius (Asteraceae) efficiently took up and incorporated [14C]putrescine and [14C]arginine into the pyrrolizidine alkaloid (PA) senecionine N-oxide. Pulse-chase experiments covering a growth period of 10 to 19 days revealed the absence of any significant alkaloid turnover. The only metabolic activity was a slow but progressive transformation of senecionine N-oxide into its dehydrogenation product, seneciphylline N-oxide. Tracer experiments with single roots showed that the sites of enhanced PA synthesis coincided with the sites of preferred protein synthesis, i.e. root apices, indicating a close correlation between growth activity and alkaloid synthesis. Long-term pulse-chase experiments (10 to 12 days) with 14C-labelled arginine, putrescine and senecionine fed to single roots indicated that in spite of its metabolic inertia, senecionine N-oxide is a mobile compound which is translocated into tissues newly grown during the chase.Dedicated to Dr. Friedrich Constabel on the occasion of his 60th birthday  相似文献   

12.
From measurements of the rates of depletion of labelled ions from solution in the low concentration range, we described the phosphate and potassium uptake characteristics of the roots of intact barley plants in terms of the kinetic parameters, K m and I max (the maximum rate of uptake). In relatively young (13 d) and older (42 d) plants, cessation of phosphate supply for 4 d or more caused a marked increase in I max (up to four times), without concomitant change in K m, which remained between 5 and 7 M. By contrast, 1 d of potassium starvation with 14-d plants caused a decline in the K m (i.e. an increased apparent affinity for potassium) from 53 M to 11 M, without alteration to I max. After longer periods of potassium starvation, I max increased (about two times) while the K m remained at the same low value. Growth of shoots and roots were unaffected by these treatments, so that concentrations of ions in the tissues declined after 1 d or more of nutrient starvation, but we could not identify a characteristic endogenous concentration for either nutrient at which changes in kinetic parameters were invariably induced. The possible mechanisms regulating carriermediated transport, and the importance of changes induced in kinetic parameters in ion uptake from solution and soil are discussed.Symbol I max the maximum rate of absorption at saturating concentrations  相似文献   

13.
S. Abel  K. Glund 《Planta》1987,172(1):71-78
A ribonuclease which was previously shown to be located in isolated vacuoles from suspension-cultured cells of tomato (Lycopersicon esculentum L.; Abel and Glund 1986, Physiol. Plant. 66, 79–86) has been purified to near homogeneity. Purification was up to 55000-fold with a yield of about 20%. The vacuolar origin of the protein was evidenced by comparing its electrophoretic mobility, isoelectric point, pH-optimum for activity and other properties with that of the RNA-degrading activity present in isolated vacuoles. The molecular weight of the native single polypeptide chain was estimated at 17500 and 20300 by gel filtration and sedimentation analysis, respectively. The enzyme hydrolyzed only single-stranded RNA with a mode of action that was endonucleolytic. The vacuolar ribonuclease had no requirement for divalent metal ions, and did not exhibit phosphomonoesterase (EC 3.1.3.1; EC 3.1.3.2) and phosphodiesterase (EC 3.1.15.1; EC 3.1.16.1) activity. The specificity of the enzyme has been studied by using homopolyribonucleotides as substrates. The end-products obtained were the respective nucleoside 2:3-cyclic monophosphates and, to minor extents, the corresponding nucleoside 3(2)-monophosphates. According to these observations, the vacuolar ribonuclease from tomato can be classified as ribonuclease I (EC 3.1.27.1).Abbreviations DEAE diethylaminoethyl - RNase ribonuclease - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

14.
M. C. Drew  L. R. Saker 《Planta》1984,160(6):500-507
The extent to which uptake and transport of either phosphate, potassium or chloride are controlled by the concentration of these ions within the root, perhaps through an allosteric mechanism, was investigated with young barley plants in nutrient solution culture. Plants were grown with their roots divided between two containers, such that a single seminal root was continuously supplied with all the required nutrient ions, while the remaining four or five seminal roots were either supplied with the same solution (controls) or, temporarily, a solution lacking a particular nutrient ion (nutrient-deficient treatment). Compared with controls, there was a marked stimulation of uptake and transport of labelled ions by the single root following 24 h or more of nutrient dificiency to the remainder of the root system. This stimulation, which comprised an increased transport to the shoot and, for all ions except Cl-, increased transport to the remainder of the root system, took place without appreciable change in the concentration of particular ions within the single root. However, nutrient deficiency quickly caused a lower concentration of ions in the shoot and the remaining roots. The results are discussed in relation to various mechanisms, proposed in the literature, by which the coordination of ion uptake and transport may be maintained within the plant. We suggest that under our conditions any putative allosteric control of uptake and transport by root cortical cells was masked by an alternative mechanism, in which ion influx appears to be regulated by ion efflux to the xylem, perhaps controlled by the concentration of particular ions recycled in the phloem to the root from the shoot.  相似文献   

15.
The mechanism and specificity of amino-acid transport at the plasma membrane of Ricinus communis L. roots was investigated using membrane vesicles isolated by phase partitioning. The transport of glutamine, isoleucine, glutamic acid and aspartic acid was driven by both a pH gradient and a membrane potential (internally alkaline and negative), created artificially across the plasma membrane. This is consistent with transport via a proton symport. In contrast, the transport of the basic amino acids, lysine and arginine, was driven by a negative internal membrane potential but not by a pH gradient, suggesting that these amino acids may be taken up via a voltage-driven uniport. The energized uptake of all of the amino acids tested showed a saturable phase, consistent with carrier-mediated transport. In addition, the membrane-potential-driven transport of all the amino acids was greater at pH 5.5 than at pH 7.5, which suggests that there could be a direct pH effect on the carrier. Several amino-acid carriers could be resolved, based on competition studies: a carrier with a high affinity for a range of neutral amino acids (apart from asparagine) but with a low affinity for basic and acidic amino acids; a carrier which has a high affinity for a range of neutral amino acids except isoleucine and valine, but with a low affinity for basic and acidic amino acids; and a carrier which has a higher affinity for basic and some neutral amino acids but has a lower affinity for acidic amino acids. The existence of a separate carrier for acidic amino acids is discussed.Abbreviations PM plasma membrane - TPP+ tetraphenylphosphonium ion - pH pH gradient - membrane potential This work was supported by the Agricultural and Food Research Council and The Royal Society. We would like to thank Mrs. Sue Nelson for help with some of the membrane preparations.  相似文献   

16.
The potential of barley (Hordeum vulgare L.) and tomato (Lycopersicon esculentum Mill.) roots for net NO 3 - absorption increased two-to five fold within 2 d of being deprived of NO 3 - supply. Nitrogen-starved barley roots continued to maintain a high potential for NO 3 - absorption, whereas NO 3 - absorption by tomato roots declined below control levels after 10 d of N starvation. When placed in a 0.2 mM NO 3 - solution, roots of both species transported more NO 3 - and total solutes to the xylem after 2 d of N starvation than did N-sufficient controls. However, replenishment of root NO 3 - stores took precedence over NO 3 - transport to the xylem. Consequently, as N stress became more severe, transport of NO 3 - and total solutes to the xylem declined, relative to controls. Nitrogen stress caused an increase in hydraulic conductance (L p) and exudate volume (J v) in barley but decrased these parameters in tomato. Nitrogen stress had no significant effect upon abscisic acid (ABA) levels in roots of barley or flacca (a low-ABA mutant) tomato, but prevented an agerelated decline in ABA in wild-type tomato roots. Applied ABA had the same effect upon barley and upon the wild type and flacca tomatoes: L p and J v were increased, but NO 3 - absorption and NO 3 - flux to the xylem were either unaffected or sometimes inhibited. We conclude that ABA is not directly involved in the normal changes in NO 3 - absorption and transport that occur with N stress in barley and tomato, because (1) the root ABA level was either unaffected by N stress (barley and flacca tomato) or changed, after the greatest changes in NO 3 - absorption and transport and L p had been observed (wild-type tomato); (2) changes in NO 3 - absorption/transport characteristics either did not respond to applied ABA, or, if they did, they changed in the direction opposite to that predicted from changes in root ABA with N stress; and (3) the flacca tomato (which produces very little ABA in response to N stress) responded to N stress with very similar changes in NO 3 - transport to those observed in the wild type.Abbreviation and symbols ABA abscisic acid - Jv exudate volume - Lp root hydraulic conductance  相似文献   

17.
Photoheterotrophic and heterotrophic suspension cultures of tobacco (Nicotiana tabacum L.) were grown with 1 mM glutathione (reduced; GSH) as sole source of sulfur. Addition of sulfate to both cultures did not alter the rate of exponential growth, but affected the removal of GSH and sulfate in different ways. In photoheterotrophic suspensions, addition of sulfate caused a decline in the net uptake of GSH, whereas sulfate was taken up by the green cells immediately. In heterotrophic suspensions, however, addition of sulfate did not affect the net uptake of GSH and sulfate was only taken up by the cells after the GSH supply in the medium had been exhausted. Apparently, GSH uptake in photoheterotrophic cells is inhibited by sulfate, whereas sulfate uptake is inhibited by GSH in heterotrophic cells. The differences in the effect of GSH on sulfate uptake in photoheterotrophic and heterotrophic tobacco suspensions cannot be attributed to differences in the kinetic properties of sulfate carriers. In short-time transport experiments, both cultures took up sulfate almost entirely by an active-transport system as shown by experiments with metabolic inhibitors; sulfate transport of both cultures obeyed monophasic Michaelis-Menten kinetics with similar app. Km (photoheterotrophic cells: 16.0±2.0 M; heterotrophic cells: 11.8±1.8 M) and Vmax (photoheterotrophic cells: 323±50 nmol·min-1·g-1 dry weight; heterotrophic cells: 233±3 nmol·min-1·g-1 dry weight). Temperature- and pH-dependence of sulfate transport showed almost identical patterns. However, the cultures exhibited remarkable differences in the inhibition of sulfur influx by GSH in short-time transport experiments. Whereas 1 mM GSH inhibited sulfate transport into heterotrophic tobacco cells completely, sulfate transport into photoheterotrophic cells proceeded at more than two-thirds of its maximum velocity at this GSH concentration. The mode of action of GSH on sulfate transport in chloroplast-free tobacco cell does not appear to be direct: a 14-h exposure to 1 mM GSH was found to be necessary to completely block sulfate transport; a 4-h time of exposure did not affect this process. Consequently, glutathione does not seem to be a product of sulfur metabolism acting on sulfate-carrier entities by negative feedback control. When transferred to the whole plant, the observed differences in sulfate and glutathione influx into green and chloroplast-free cells may be interpreted as a regulatory device to prevent the uptake of excess sulfate by plants.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - DNP dinitrophenol - DW dry weight - FW fresh weight - GSH reduced glutathione  相似文献   

18.
Eliot M. Herman 《Planta》1987,172(3):336-345
The synthesis of a major oil-body membrane brotein was studied in maturing soybean (Glycine max (L.) Merr.) cotyledons. The membrane contained four abundant proteins with apparent molecular mass (Mr) of 34000, 24000, 18000 and 17000. The Mr=24000 protein (mP 24) was selected for more detailed analysis. The protein was purified to apparent homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and isolated from the gel by electroelution or chemical hydrolysis of gel crosslinks. It was then used to elicit rabbit antibodies which were judged to be specific when assayed by SDS-PAGE-immunoblot procedures. The mP 24 was localized in immature soybean cotyledon cells by indirect immunogold procedures on thin sections of Lowicryl- and LR-White-embedded tissue. Indirect labeling with the primary antiserum followed by colloidal gold-protein A showed specific labeling of the oil-body membrane and an absence of label on the other subcellular organelles including the endoplasmic reticulum (ER). Parallel tissue samples were studied by conventional transmission electron microscopy. Although segments of the ER were observed to be closely juxtaposed to the oil bodies, continuity between the two organelles was not observed. The synthesis of mP 24 was studied by in-vitro translation and in-vivo labeling with [3H]leucine followed by indirect immunoaffinity isolation of the labeled products. The SDS-PAGE fluorography results indicated that the primary translation product and the in-vivo synthesized protein have the same Mr, and this is also the same Mr as the protein in the mature membrane.Abbreviations and symbols DATD N N'-diallyltartardiamide - EM electron microscopy/scopic - ER endoplasmic reticulum - IgG immunoglobulin G - Mr apparent molecular mass - PBS phosphate-buffered saline - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TBS Trisbuffered saline  相似文献   

19.
The stationary radial volume flows across maize (Zea mays L.) root segments without steles (sleeves) were measured under isobaric conditions. The driving force of the volume flow is an osmotic difference between the internal and external compartment of the root preparations. It is generated by differences in the concentrations of sucrose, raffinose or polyethylene glycol. The flows are linear functions of the corresponding osmotic differences ( ) up to osmotic values which cause plasmolysis. The straight lines obtained pass through the origin. No asymmetry of the osmotic barrier could be detected within the range of driving forces applied ( =±0.5 MPa), corresponding to volume-flow densities of jv, s=±7·10–8 m·s–1. Using the literature values for the reflection coefficients of sucrose and polyethylene glycol in intact roots (E. Steudle et al. (1987) Plant Physiol.84, 1220–1234), values for the sleeve hydraulic conductivity of about 1·10–7 m·s–1 MPa–1 were calculated. They are of the same order of magnitude as those reported in the literature for the hydraulic conductivity of intact root segments when hydrostatic pressure is applied.Abbreviations and symbols a s outer surface of sleeve segment - c concentration of osmotically active solute - j v, s radial volume flow density across sleeve segment - Lps hydraulic conductivity of sleeves - Lpr hydraulic conductivity of intact roots - N thickness of Nernst diffusion layer - reflection coefficient of root for solute - osmotic value of bulk phase - osmotic coefficient  相似文献   

20.
Barley (Hordeum vulgare L.) plants were grown hydroponically with or without inorganic phosphate (Pi) in the medium. Leaves were analyzed for the intercellular and the intracellular distribution of Pi. Most of the leaf Pi was contained in mesophyll cells; Pi concentrations were low in the xylem sap, the apoplast and in the cells of the epidermis. The vacuolar concentration of Pi in mesophyll cells depended on Pi availability in the nutrient medium. After infiltrating the intercellular space of leaves with solutions containing Pi, Pi was taken up by the mesophyll at rates higher than 2.5 mol· (g fresh weight)–1 · h–1. Isolated mesophyll protoplasts did not possess a comparable capacity to take up Pi from the medium. Phosphate uptake by mesophyll protoplasts showed a biphasic dependence on Pi concentration. Uptake of Pi by Pi-deficient cells was faster than uptake by cells which had Pi stored in their vacuoles, although cytoplasmic Pi concentrations were comparable. Phosphate transport into isolated mesophyll vacuoles was dependent on their Pi content; it was stimulated by ATP. In contrast to the vacuolar Pi concentration, and despite different kinetic characteristics of the uptake systems for pi of the plasmalemma and the tonoplast, the cytoplasmic pi concentration was regulated in mesophyll cells within narrow limits under very different conditions of Pi availability in the nutrient medium, whereas vacuolar Pi concentrations varied within wide limits.Dedicated to Professor Wilhelm Simonis on the occasion of his 80th birthdayThis investigation was part of the research efforts of the Sonderforschungsbereich 176 of the Bayerische Julius-Maximilians-Universität Würzburg. We are grateful to Dr. Olaf Wolf for introducing us to the method for preparation of xylem sap of barley plants and to Mr. Yin Zuhua for fluorimetric experiments with the dye pyranine. T. Mimura is indebted to the Alexander-von-Humboldt-Stiftung for a postdoctoral research fellowship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号