首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the role of microtubules and microfilaments in regulating endothelial monolayer integrity and repair, and since microtubules and microfilaments show some co-alignment in endothelial cells, we tested the hypothesis that microtubules organize microfilament distribution. Disruption of microtubules with colchicine in resting confluent aortic endothelial monolayers resulted in disruption of microfilament distribution with a loss of dense peripheral bands, an increase in actin microfilament bundles, and an associated increase of focal adhesion proteins at the periphery of the cells. However, when microfilaments were disrupted with cytochalasin B, microtubule distribution did not change. During the early stages of wound repair of aortic endothelial monolayers, microtubules and microfilaments undergo a sequential series of changes in distribution prior to cell migration. They are initially distributed randomly relative to the wound edge, then align parallel to the wound edge and then elongate perpendicular to the wound edge. When microtubules in wounded cultures were disrupted, dense peripheral bands and lamellipodia formation were lost with increases in central stress fibers. However, following microfilament disruption, microtubule redistribution was not disrupted and the microtubules elongated perpendicular to the wound edge similar to non-treated cultures. Microtubules may organize independently of microfilaments while microfilaments require microtubules to maintain normal organization in confluent and repairing aortic endothelial monolayers.  相似文献   

2.
Endothelial repair to reestablish structural integrity following wounding is a complex process. Since the actin cytoskeleton undergoes specific changes in distribution as quiescent endothelial cells switch to activated migrating cells over a 6-h period following wounding (Lee et al. 1996), we studied tyrosine phosphorylation in association with actin microfilaments and adhesion proteins using double immunofluorescent confocal microscopy. We showed that in a confluent monolayer phosphotyrosine localized at the periphery of the cell at vinculin cell-cell adhesion sites within the actin-dense peripheral band (DPB) and centrally at talin/vinculin cell-substratum adhesion sites at the ends of central microfilaments. Over a period of 6 h following in vitro wounding there was a reduction of peripheral phosphotyrosine associated with the loss of both cell-cell adhesion sites and the DPB (stage I). Concomitantly, an increase in central phosphotyrosine was associated with an increase in cell-substratum adhesion sites and central microfilaments parallel to the wound edge (stage II), which subsequently redistributed perpendicular to the wound edge (stage III). We also localized FAK and paxillin at the ends of parallel and perpendicular central microfilaments. Immunoprecipitation of paxillin showed increased phosphotyrosine and protein levels when prominent central microfilaments were present and underwent remodeling. Inhibition of tyrosine kinases by genistein and tyrosine phosphatases by sodium orthovanadate resulted in reduced endothelial repair associated with disruption of adhesion site formation and central microfilament formation/redistribution in each stage of repair. We suggest that tyrosine phosphorylation of adhesion proteins, such as paxillin, may be important in regulating the early stages of endothelial wound repair. Received: 22 March 1999 / Accepted: 24 March 1999  相似文献   

3.
Fluorescence cytochemistry using en face preparations of rat vascular endothelial cells (ECs) revealed the localization of actin, fibronectin (FN) and fibronectin receptor (FNR) along not only central stress fibers (SFs) but also the cell margins. Electron microscopy showed very close proximity between the topographical distribution of intracellular microfilament bundles and that of subendothelial FN in the EC margins. Therefore, these basal and marginal actin cables may be comparable to the well-established central SFs present in ECs. Formation of the central SFs was induced in ECs or mesothelial cells in response to tension, by which their cellular integrity seems to be effectively maintained. However, even when central SF formation was inhibited by cytochalasin D, the ECs with marginal SFs showed high resistance to mechanical tension, whereas mesenteric mesothelial cells having no such fibers easily lost their integrity. Thus, together with central SFs, the marginal SFs characteristic of rat vascular ECs may play an essential role in strengthening cell-matrix adhesion.  相似文献   

4.
Postnatal change in the distribution of actin filaments in endothelial cells was studied in the rat aorta by use of rhodamine-phalloidin staining and confocal laser scanning microscopy. Endothelial cells of the rat aorta possessed two populations of actin filament bundles, namely, peripheral bands at the cell border and stress fibers running longitudinally in the cytoplasm. Aortic endothelial cells of the neonatal rat contained only stress fibers, whereas those of the 10-day-old rat developed both peripheral bands and stress fibers. After 20 days of age, aortic endothelial cells had predominantly peripheral bands with occasional stress fibers around the branch orifices. During postnatal development the length density of stress fibers in aortic endothelial cells decreased, whereas individual stress fibers in endothelial cells were shortened. Electron-microscopic observation revealed that the high intercellular boundaries of aortic endothelial cells at birth decreased in height and developed cytoplasmic interdigitations after 20 days of age. The occurrence of peripheral bands at the cell border is thought to be closely related to formation of cytoplasmic interdigitation which strengthens the mechanical connection between endothelial cells against increasing transmural pressure. Expression of stress fibers in aortic endothelial cells of the neonatal rat is supposed to be affected by longitudinal elongation of the developing aorta, whereas their postnatal decrease is though to be correlated with the change of fluid shear stress loaded in the aortic endothelium.  相似文献   

5.
In response to externally applied shear stress, cultured endothelial monolayers develop prominent, axially-aligned, microfilamentous bundles, termed "stress fibers" (Dewey: Journal of Biomechanical Engineering 106:31-35, 1984; Franke et al.: Nature 81:570-580, 1984; Franke et al.: Klin. Wochenschr 64:989-992, 1986; Wechezak et al.: Laboratory Investigation 53:639-647, 1985). It is unclear, however, whether similar stress fibers develop in noncontiguous endothelial cells and whether these structures are necessary for adherence of individual cells under shear stress. It also is unknown what alterations occur in microtubules, intermediate filaments, and focal contacts as a consequence of shear stress. In this study, endothelial cells, free of intercellular contact, were exposed to 93 dynes/cm2 for 2 hr. With the aid of specific labeling probes and interference reflection microscopy, the distributional patterns of microfilaments, microtubules, intermediate filaments, and focal contacts were examined. Following shear stress, microfilament bundles and their associated focal contacts were concentrated in the proximal (relative to flow direction) cell regions. In contrast, microtubules were distributed uniformly within cell contours. Intermediate filaments displayed only an occasional tendency for accumulation at proximal edges. When cells were shear-tested in the presence of cytochalasin B to inhibit microfilament assembly, considerable cell loss occurred. Following inhibition of tubulin polymerization, no increase was observed in the percentage of cells lost due to shear over nontreated controls. Nocodazole-treated cells, however, were characterized by prominent stress fibers throughout the cell. These results indicate that stress fiber and focal contact reorganization represent major responses in isolated endothelial cells exposed to shear stress and that these cytoskeletal structures are necessary for adherence.  相似文献   

6.
Changes in the microfilament (actin)organization in the germinating pollen of Hedychium coronarium Koenig were followed after TRITC-phalloidin staining without fixation. Changes in the pattern of organization of the microfilaments were visualized using eonfocal microscopy. In the hydrated pollen a reticulate network of microfilament can be observed. Before the pollen tube protrudes out from the germination pore numerous microfilaments begin to converge towards the aperture. After 10–30 mins of germination,pollen tube appears. In the pollen tube a new network of microfilament forms near the tip region. Between the pollen and the pollen tube tip region there are numerous linearly arranged microfilaments. About 1 hour after germination,the pollen tube has reached a length of about 300μm Inside the pollen, tube there are numerous longitudinally oriented microfilaments. The microfilament network in the pollen tube tip region does not change much. About 2 hours after germination,the pollen tube reaches about 1000μm in length. At this stage,the pattern of distribution of microfilament in the pollen tube is very similar to that seen at the earlier stages of development ,whereas the pattern is somewhat different in the pollen. Microfilaments in the central region of the pollen grain disappear but still a parietal network in the peripheral region. About 5 hours after germination,the microfilaments in the pollen tube become abnormally variable and produce branches. Some even change into spicules, sheets and thick bundles.  相似文献   

7.
Heavy meromyosin (HMM) decoration of actin filaments was used to detect the polarity of microfilaments in interphase and cleaving rat kangaroo (PtK2) cells. Ethanol at -20 degrees C was used to make the cells permeable to HMM followed by tannic acid-glutaraldehyde fixation for electron microscopy. Uniform polarity of actin filaments was observed at cell junctions and central attachment plaques with the HMM arrowheads always pointing away from the junction or plaque. Stress fibers were banded in appearance with their component microfilaments exhibiting both parallel and antiparallel orientation with respect to one another. Identical banding of microfilament bundles was also seen in cleavage furrows with the same variation in filament polarity as found in stress fibers. Similarly banded fibers were not seen outside the cleavage furrow in mitotic cells. By the time that a mid-body was present, the actin filaments in the cleavage furrow were no longer in banded fibers. The alternating dark and light bands of both the stress fibers and cleavage furrow fibers are approximately equal in length, each measuring approximately 0.16 micrometer. Actin filaments were present in both bands, and individual decorated filaments could sometimes be traced through four band lengths. Undecorated filaments, 10 nm in diameter, could often be seen within the light bands. A model is proposed to explain the arrangement of filaments in stress fibers and cleavage furrows based on the striations observed with tannic acid and the polarity of the actin filaments.  相似文献   

8.
The correlation between the extracellular deposition of fibronectin and the development of the actin-containing cytoskeleton was studied during the attachment and spreading of the rat mammary epithelial cell line Rama 25. During the initial phase of cell spreading, actin is localised in peripheral microfilament bundles. As cell spreading increases, the peripheral ring is displaced towards the perinuclear region. Fibronectin, deposited beneath the basal surface, co-localises with the actin-containing peripheral ring. The peripheral ring subsequently disappears and is replaced by a system of radial microfilaments that extend from the perinuclear region to the cell periphery. At this stage, there is no correlation between the distribution of fibronectin and actin. As cells form colonies, radial microfilament bundles are replaced by peripheral microfilament bundles which do not co-localise with fibronectin. Cells at the edges of colonies extend lamellae that contain microfilament stress fibres. In these structures there is co-localisation of actin, fibronectin and the a5 beta 1-integrin fibronectin receptor.  相似文献   

9.
Respreading gerbil fibroma cells (CCL146) have been found to display cytoplasmic actin-based polygonal fiber networks 10 h after replating (stage III of respreading according to Vasiliev & Gelfand, [1]). The networks have been analyzed by immunofluorescence and electron microscopy. The foci, sites of actin, α-actinin and filamin distribution, are condensed meshworks of microfilaments attached to the inner surface of the plasma membrane. The interconnecting fibers, sites of uniform actin distribution and complementary periodicities of α-actinin and myosin, are bundles of parallel microfilaments with periodic dense bodies. Heavy meromyosin (HMM) labelling of the microfilaments in the foci and interconnecting bundles confirm that they contain actin. In addition, approx. 70% of the microfilaments associated with an individual focus have a uniform polarity relative to it (arrowheads pointing away) suggesting that they have their origin there. Our results support earlier conclusions [2] that polygonal networks are structural intermediates responsible for organizing contractile proteins of the cortical microfilament layer into stress fibers.  相似文献   

10.
The repair of small endothelial wounds is an important process by which endothelial cells maintain endothelial integrity. An in vitro wound model system was used in which precise wounds were made in a confluent endothelial monolayer. The repair process was observed by time-lapse cinemicrophotography. Using fluorescence and immunofluorescence microscopy, the cellular morphological events were correlated with the localization and distribution of actin microfilament bundles and vinculin plaques, and centrosomes and their associated microtubules. Single to four-cell wounds underwent closure by cell spreading while wounds seven to nine cells in size closed by initially spreading which was then followed at approximately 1 h after wounding by cell migration. These two processes showed different cytoskeletal patterns. Cell spreading occurred independent of centrosome location. However, centrosome redistribution to the front of the cell occurred as the cells began to elongate and migrate. While the peripheral actin microfilament bundles (i.e., the dense peripheral band) remained intact during cell spreading, they broke down during migration and were associated with a reduction in peripheral vinculin plaque staining. Thus, the major events characterizing the closure of endothelial wounds were precise in nature, followed a specific sequence, and were associated with specific cytoskeletal patterns which most likely were important in maintaining directionality of migration and reducing the adhesion of the cells to their neighbors within the monolayer.  相似文献   

11.
12.
Rapid freezing and freeze substitution were used in conjunction with immunofluorescence, whole mount EM, and immunoelectron microscopy to study the organization of myosin and actin in growth cones of cultured rat superior cervical ganglion neurons. The general cytoplasmic organization was determined by whole mount EM; tight microfilament bundles formed the core of filopodia while a dense meshwork formed the underlying structure of lamellipodia. Although the central microtubule and organelle-rich region of the growth cone had fewer microfilaments, dense foci and bundles of microfilaments were usually observed. Anti-actin immunofluorescence and rhodamine phalloidin staining of f-actin both showed intense staining of filopodia and lamellipodia. In addition, staining of bundles and foci were observed in central regions suggesting that the majority of the microfilaments seen by whole mount EM are actin filaments. Anti-myosin immunofluorescence was brightest in the central region and usually had a punctate pattern. Although less intense, anti-myosin staining was also seen in peripheral regions; it was most prominent at the border with the central region, in portions of lamellipodia undergoing ruffling, and in spots along the shaft and at the base of filopodia. Immunoelectron microscopy of myosin using postembedment labeling with colloidal gold showed a similar distribution to that seen by immunofluorescence. Label was scattered throughout the growth cone, but present as distinct aggregates in the peripheral region mainly along the border with the central region. Less frequently, aggregates were also seen centrally and along the shaft and at the base of filopodia. This distribution is consistent with myosins involvement in the production of tension and movements of growth cone filopodia and lamellipodia that occur during active neurite elongation.  相似文献   

13.
The actin microfilament organization in rat embryo cells was examined by fluorescence microscopy with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin and by electron microscopy, after mock infection or infection with adenovirus type 5 (Ad5). Infected cells showed severely reduced numbers of actin microfilaments and stress fibers, detectable early after infection. Mutants defective in Ad5 early genes were used to show that reduced microfilament organization was a function of the Ad5 transformation early gene 1a (E1a) and did not require expression of any other viral gene. The product of the E1a 13s mRNA was essential for the effect, although the 12s mRNA product appeared to contribute. Ad5 infection of the cells had no observable effect on total cell actin levels or on the ratio of monomeric to polymeric actin. E1a, therefore, affected only the higher-order organization of actin.  相似文献   

14.
Fluorescein-labeled heavy meromyosin subfragment-1 (F-S-1) has been purified by ion exchange chromatography and characterized in terms of its ability to bind specifically to actin. F-S-1 activates the Mg++-adenosine triphosphatase activity of rabbit skeletal muscle actin and decorates actin as shown by negative stains and thin sections of rabbit actin and rat embryo cell microfilament bundles, respectively. Binding of F-S-1 to cellular structures is prevented by pyrophosphate and by competition with excess unlabeled S-1. The F-S-1 is used in light microscope studies to determine the distribution of actin-containing structures in wnterphase and mitotic rat embryo and rat kangaroo cells. Interphase cells display the familiar pattern of fluorescent stress fibers. Chromosome-to-pole fibers are fluorescent in mitotic cells. The glycerol extraction procedures employed provide an opportunity to examine cells prepared in an identical manner by light and electron microscopy. The latter technique reveals that actin-like microfilaments are identifiable in spindles of glycerinated cells before and after addition of S-1 or HMM. In some cases, microfilaments appear to be closely associated with spindle microtubles. Comparison of the light and electron microscope results aids in the evaluation of the fluorescent myosin fragment technique and provides further evidence for possible structural and functional roles of actin in the mitotic apparatus.  相似文献   

15.
《The Journal of cell biology》1984,99(4):1324-1334
Monospecific antibodies to chicken gizzard actin, alpha-actinin, and filamin have been used to localize these proteins at the ultrastructural level: secondary cultures of 14-d-old chicken embryo lung epithelial cells and chicken heart fibroblasts were briefly lysed with either a 0.5% Triton X-100/0.25% glutaraldehyde mixture, or 0.1% Triton X-100, fixed with 0.5% glutaraldehyde, and further permeabilized with 0.5% Triton X-100, to allow penetration of the gold-conjugated antibodies. After immunogold staining (De Mey, J., M. Moeremans, G. Geuens, R. Nuydens, and M. De Brabander, 1981, Cell Biol. Int. Rep. 5:889-899), the cells were postfixed in glutaraldehyde-tannic acid and further processed for embedding and thin sectioning. This approach enabled us to document the distribution of alpha-actinin and filamin either on the delicate cortical networks of the cell periphery or in the densely bundled stress fibers and polygonal nets. By using antiactin immunogold staining as a control, we were able to demonstrate the applicability of the method to the microfilament system: the label was distributed homogeneously over all areas containing recognizable microfilaments, except within very thick stress fibers, where the marker did not penetrate completely. Although alpha-actinin specific staining was homogeneously localized along loosely-organized microfilaments, it was concentrated in the dense bodies of stress fibers. The antifilamin-specific staining showed a typically spotty or patchy pattern associated with the fine cortical networks and stress fibers. This pattern occurred along all actin filaments, including the dense bodies also marked by anti-alpha-actinin antibodies. The results confirm and extend the data from light microscopic investigations and provide more information on the structural basis of the microfilament system.  相似文献   

16.
Maize root tip cells were examined for the distribution of actin microfilaments in various cell types and to determine the effects of microfilament disrupters. Fluorescence microscopy on fixed, stabilized, squashed cells using the F-actin specific probe, rhodamine-labelled phalloidin, allowed for a three-dimensional visualization of actin microfilaments. Microfilaments were observed as long, meandering structures in root cap cells and meristematic cells, while those in immature vascular parenchyma were abundant in the thin band of cytoplasm and were long and less curved. By modifying standard electron microscopic fixation procedures, microfilaments in plant cells could be easily detected in all cell types. Treatment with cytochalasin B, cytochalasin D and lead acetate, compounds that interfere with microfilament related processes, re-organized the microfilaments into abnormal crossed and highly condensed masses. All the treatments affected not only the microfilaments but also the accumulation of secretory vesicles. The vivid demonstration of the effects of all of these microfilament disrupters on the number and size of Golgi vesicles indicates that these vesicles may depend on microfilaments for intracellular movement.  相似文献   

17.
Summary Maize root tip cells were examined for the distribution of actin microfilaments in various cell types and to determine the effects of microfilament disrupters. Fluorescence microscopy on fixed, stabilized, squashed cells using the F-actin specific probe, rhodamine-labelled phalloidin, allowed for a three-dimensional visualization of actin microfilaments. Microfilaments were observed as long, meandering structures in root cap cells and meristematic cells, while those in immature vascular parenchyma were abundant in the thin band of cytoplasm and were long and less curved. By modifying standard electron microscopic fixation procedures, microfilaments in plant cells could be easily detected in all cell types. Treatment with cytochalasin B, cytochalasin D and lead acetate, compounds that interfere with microfilament related processes, re-organized the microfilaments into abnormal crossed and highly condensed masses. All the treatments affected not only the microfilaments but also the accumulation of secretory vesicles. The vivid demonstration of the effects of all of these microfilament disrupters on the number and size of Golgi vesicles indicates that these vesicles may depend on microfilaments for intracellular movement.  相似文献   

18.
Effect of hydrocortisone on cell morphology in C6 cells   总被引:1,自引:0,他引:1  
Hydrocortisone has been found to induce cell spreading in rat glial C6 cells by 24 hours after its addition. This spreading phenomenon is correlated with an increase in the fraction of the peripheral cytoplasm occupied by microfilaments. Cytochalasin B causes disorganization of microfilaments in the peripheral cytoplasm of the cells. Additionally, it also prevents cell spreading in response to hormonal stimulation. High levels of calcium prevent recovery of normal microfilament organization and cell spreading following removal of cytochalasin B, but have no effect on normal microfilament organization alone. Additionally both the hydrocortisone induced spreading of C6 cells and increases in peripheral microfilaments are shown to be dependent on RNA ans protein synthesis. The levels of protein co-electrophoresing with actin are not effected by hydrocortisone.  相似文献   

19.
Cell motility is produced by changes in the dynamics and organization of actin filaments. The aim of the experiments described here was to test whether growing neurites contain two actin-binding proteins, gelsolin and profilin, that regulate polymerization of actin and affect non-neuronal cell motility. The distribution of gelsolin, profilin and the microfilaments was compared by immunocytochemistry of leech neurons growing in culture. We observed that microfilaments are enriched in the peripheral motile areas of the neurites. Both gelsolin and profilin are also concentrated in these regions. Gelsolin is abundant in filopodia and is associated with single identifiable microfilament bundles in lamellipodia. Profilin is not prominent in filopodia and shows a diffuse staining pattern in lamellipodia. The colocalization of gelsolin and profilin in motile, microfilament-rich areas supports the hypothesis that they synergistically regulate the actin dynamics that underlie neurite growth.  相似文献   

20.
《The Journal of cell biology》1989,109(4):1581-1595
We investigated the mechanism of turnover of an actin microfilament system in fibroblastic cells on an electron microscopic level. A new derivative of actin was prepared by labeling muscle actin with biotin. Cultured fibroblastic cells were microinjected with biotinylated actin, and incorporated biotin-actin molecules were detected by immunoelectron microscopy using an anti-biotin antibody and a colloidal gold-labeled secondary antibody. We also analyzed the localization of injected biotin-actin molecules on a molecular level by freeze-drying techniques. Incorporation of biotin-actin was rapid in motile peripheral regions, such as lamellipodia and microspikes. At approximately 1 min after injection, biotin-actin molecules were mainly incorporated into the distal part of actin bundles in the microspikes. Heavily labeled actin filaments were also observed at the distal fringe of the densely packed actin networks in the lamellipodium. By 5 min after injection, most actin polymers in microspikes and lamellipodia were labeled uniformly. These findings suggest that actin subunits are added preferentially at the membrane-associated ends of preexisting actin filaments. At earlier times after injection, we often observed that the labeled segments were continuous with unlabeled segments, suggesting the incorporation of new subunits at the ends of preexisting filaments. Actin incorporation into stress fibers was a slower process. At 2-3 min after injection, microfilaments at the surface of stress fibers incorporated biotin-actin, but filaments in the core region of stress fibers did not. At 5-10 min after injection, increasing density of labeling along stress fibers toward their distal ends was observed. Stress fiber termini are generally associated with focal contacts. There was no rapid nucleation of actin filaments off the membrane of focal contacts and the pattern of actin incorporation at focal contacts was essentially identical to that into distal parts of stress fibers. By 60 min after injection, stress fibers were labeled uniformly. We also analyzed the actin incorporation into polygonal nets of actin bundles. Circular dense foci, where actin bundles radiate, were stable structures, and actin filaments around the foci incorporated biotin- actin the slowest among the actin-containing structures within the injected cells. These results indicate that the rate and pattern of actin subunit incorporation differ in different regions of the cytoplasm and suggest the possible role of rapid actin polymerization at the leading margin on the protrusive movement of fibroblastic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号