首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Proteins of the kinesin superfamily define a class of microtubule-dependent motors that play crucial roles in cell division and intracellular transport. In the mouse, several kinesin motors have been characterized and are suggested to play roles in axonal and/or dendritic transport. One such kinesin is KifC2. Sequence and secondary structure analysis revealed that KifC2 is a member of the C-terminal motor family. Northern and Western blot analyses indicated that KifC2 is specifically expressed in both the central and peripheral nervous systems. The cellular locations of the KifC2 proteins were found to be mainly in neural cell bodies and dendrites but also in axons. To understand the in vivo function of the KifC2 gene, we used homologous recombination in embryonic stem cells to construct knockout mouse strains for the KifC2 gene. Homozygous KifC2 mutants were viable and reproduced normally, and their development was apparently normal. These results suggest that KifC2 is dispensable for normal neural development and behavior in the mouse.  相似文献   

2.
3.
Members of the kinesin II family are thought to play essential roles in many types of intracellular transport. One distinguishing feature of kinesin II is that it generally contains two different motor subunits from the Kif3 family. Three Kif3 family members (Kif3A, Kif3B, and Kif3C) have been identified and characterized in mice. Intracellular localization and biochemical studies previously suggested that Kif3C is an anterograde motor involved in anterograde axonal transport. To understand the in vivo function of the Kif3C gene, we used homologous recombination in embryonic stem cells to construct two different knockout mouse strains for the Kif3C gene. Both homozygous Kif3C mutants are viable, reproduce normally, and apparently develop normally. These results suggest that Kif3C is dispensable for normal neural development and behavior in the mouse.  相似文献   

4.
5.
The attachment of organelles to the cytoskeleton and directed organelle transport is essential for cellular morphology and function. In contrast to other cell organelles like the endoplasmic reticulum or the Golgi apparatus, peroxisomes are evenly distributed in the cytoplasm, which is achieved by binding of peroxisomes to microtubules and their bidirectional transport by the microtubule motor proteins kinesin-1 (Kif5) and cytoplasmic dynein. KifC3, belonging to the group of C-terminal kinesins, has been identified to interact with the human peroxin PEX1 in a yeast two-hybrid screen. We investigated the potential involvement of KifC3 in peroxisomal transport. Interaction of KifC3 and the AAA-protein (ATPase associated with various cellular activities) PEX1 was confirmed by in vivo colocalization and by coimmunoprecipitation from cell lysates. Furthermore, knockdown of KifC3 using RNAi resulted in an increase of cells with perinuclear-clustered peroxisomes, indicating enhanced minus-end directed motility of peroxisomes. The occurrence of this peroxisomal phenotype was cell cycle phase independent, while microtubules were essential for phenotype formation. We conclude that KifC3 may play a regulatory role in minus-end directed peroxisomal transport for example by blocking the motor function of dynein at peroxisomes. Knockdown of KifC3 would then lead to increased minus-end directed peroxisomal transport and cause the observed peroxisomal clustering at the microtubule-organizing center.  相似文献   

6.
What are the functions of kinesin?   总被引:2,自引:0,他引:2  
A variety of intracellular motile processes involve the directed movement of particles along microtubules, including organelle transport, endoplasmic reticulum extension, and movements in mitosis. Recently, a microtubule-dependent motor protein, kinesin, was purified and was found to be present in a soluble form in a wide variety of organisms and tissues. Because microtubules provide polar pathways over long distances within cells, kinesin and the motors which move in the opposite direction to kinesin on microtubules provide a mechanism for directed communications within cells. The possible roles of kinesin and other soluble microtubule-dependent motors in intracellular motile functions are discussed in the light of recent studies of the reconstitution of organelle motility with isolated components.  相似文献   

7.
Intracellular transport by microtubule-dependent motors is crucial for neuronal survival and function. Recent advances reveal novel strategies for the regulation of transport and the attachment of motors to cargoes. Current findings also illustrate the importance of directed transport in neuronal biology, including microtubule-motor-dependent transduction of neurotrophic signals and axonal damage signal complexes. Furthermore, recent data implicating the dysfunction of microtubule-dependent transport in the cause and development of several neurodegenerative diseases provides evidence for the vital role of transport in neuronal and organismal function.  相似文献   

8.
Eukaryotic organisms utilize microtubule-dependent motors of the kinesin and dynein superfamilies to generate intracellular movement. To identify new genes involved in the regulation of axonal transport in Drosophila melanogaster, we undertook a screen based upon the sluggish larval phenotype of known motor mutants. One of the mutants identified in this screen, roadblock (robl), exhibits diverse defects in intracellular transport including axonal transport and mitosis. These defects include intra-axonal accumulations of cargoes, severe axonal degeneration, and aberrant chromosome segregation. The gene identified by robl encodes a 97-amino acid polypeptide that is 57% identical (70% similar) to the 105-amino acid Chlamydomonas outer arm dynein-associated protein LC7, also reported here. Both robl and LC7 have homology to several other genes from fruit fly, nematode, and mammals, but not Saccharomyces cerevisiae. Furthermore, we demonstrate that members of this family of proteins are associated with both flagellar outer arm dynein and Drosophila and rat brain cytoplasmic dynein. We propose that roadblock/LC7 family members may modulate specific dynein functions.  相似文献   

9.
RNA localization is a widely conserved mechanism for generating cellular asymmetry. In Xenopus oocytes, microtubule-dependent transport of RNAs to the vegetal cortex underlies germ layer patterning. Although kinesin motors have been implicated in this process, the apparent polarity of the microtubule cytoskeleton has pointed instead to roles for minus-end-directed motors. To resolve this issue, we have analyzed participation of kinesin motors in vegetal RNA transport and identified a direct role for Xenopus kinesin-1. Moreover, in vivo interference and biochemical experiments reveal a key function for multiple motors, specifically kinesin-1 and kinesin-2, and suggest that these motors may interact during transport. Critically, we have discovered a subpopulation of microtubules with plus ends at the vegetal cortex, supporting roles for these kinesin motors in vegetal RNA transport. These results provide a new mechanistic basis for understanding directed RNA transport within the cytoplasm.  相似文献   

10.
BACKGROUND: The cytoskeleton and associated motors play an important role in the establishment of intracellular polarity. Microtubule-based transport is required in many cell types for the asymmetric localization of mRNAs and organelles. A striking example is the Drosophila oocyte, where microtubule-dependent processes govern the asymmetric positioning of the nucleus and the localization to distinct cortical domains of mRNAs that function as cytoplasmic determinants. A conserved machinery for mRNA localization and nuclear positioning involving cytoplasmic Dynein has been postulated; however, the precise role of plus- and minus end-directed microtubule-based transport in axis formation is not yet understood. RESULTS: Here, we show that mRNA localization and nuclear positioning at mid-oogenesis depend on two motor proteins, cytoplasmic Dynein and Kinesin I. Both of these microtubule motors cooperate in the polar transport of bicoid and gurken mRNAs to their respective cortical domains. In contrast, Kinesin I-mediated transport of oskar to the posterior pole appears to be independent of Dynein. Beside their roles in RNA transport, both motors are involved in nuclear positioning and in exocytosis of Gurken protein. Dynein-Dynactin complexes accumulate at two sites within the oocyte: around the nucleus in a microtubule-independent manner and at the posterior pole through Kinesin-mediated transport. CONCLUSION: The microtubule motors cytoplasmic Dynein and Kinesin I, by driving transport to opposing microtubule ends, function in concert to establish intracellular polarity within the Drosophila oocyte. Furthermore, Kinesin-dependent localization of Dynein suggests that both motors are components of the same complex and therefore might cooperate in recycling each other to the opposite microtubule pole.  相似文献   

11.
Dynein and kinesin are the main microtubule-dependent motors that mediate intracellular movement in eukaryotic organisms. We have cloned a full-length cDNA encoding rat dynein light chain protein, robl/LC7-like (class 1), from visual cortex. We found that rat robl/LC7-like gene is highly expressed in neocortex and displays the unusual feature of being rapidly down-regulated by sensory stimulation. This effect was seen at both mRNA and protein levels in visual cortex, being detectable in as little as 45 min after the onset of visual stimulation. Down-regulation by sensory stimulation was also found within ocular dominance columns of area V1 in monocularly deprived monkeys. Our results suggest a high turnover rate of the robl/LC7-like protein and the presence of a repressor mechanism in neurons that is tightly coupled to synaptic stimulation.  相似文献   

12.
Long-distance transport in cells is driven by kinesin and dynein motors that move along microtubule tracks. These motors must be tightly regulated to ensure the spatial and temporal fidelity of their transport events. Transport motors of the kinesin-1 and kinesin-3 families are regulated by autoinhibition, but little is known about the mechanisms that regulate kinesin-2 motors. We show that the homodimeric kinesin-2 motor KIF17 is kept in an inactive state in the absence of cargo. Autoinhibition is caused by a folded conformation that enables nonmotor regions to directly contact and inhibit the enzymatic activity of the motor domain. We define two molecular mechanisms that contribute to autoinhibition of KIF17. First, the C-terminal tail interferes with microtubule binding; and second, a coiled-coil segment blocks processive motility. The latter is a new mechanism for regulation of kinesin motors. This work supports the model that autoinhibition is a general mechanism for regulation of kinesin motors involved in intracellular trafficking events.  相似文献   

13.
The intracellular C-terminal domain is diverse in size and amino acid sequence among facilitative glucose transporter isoforms. The characteristics of glucose transport are also divergent, and GLUT2 has far higher Km and Vmax values compared with GLUT1. To investigate the role of the intracellular C-terminal domain in glucose transport, we expressed in Chinese hamster ovary cells the mutated GLUT1 protein whose intracellular C-terminal domain was replaced with that of GLUT2 by means of engineering the chimeric cDNA. Cytochalasin B, for which GLUT2 protein has much lower affinity, bound to this chimeric protein in a fashion similar to GLUT1. In contrast, greater transport activity was observed in this chimeric glucose transporter compared with the wild-type GLUT1 at 10 mM 2-deoxy-D-glucose concentration. The kinetic studies on 2-deoxy-D-glucose uptake revealed a 3.8-fold increase in Km and a 4.3-fold increase in Vmax in this chimeric glucose transporter compared with the wild-type GLUT1. Thus, replacement of the intracellular C-terminal domain confers the GLUT2-like property on the glucose transporter. These results strongly suggest that the diversity of intracellular C-terminal domain contributes to the diversity of glucose transport characteristics among isoforms.  相似文献   

14.
KIF1C is a new member of the kinesin superfamily of proteins (KIFs), which act as microtubule-based molecular motors involved in intracellular transport. We cloned full-length mouse kif1C cDNA, which turned out to have a high homology to a mitochondrial motor KIF1Balpha and to be expressed ubiquitously. To investigate the in vivo significance of KIF1C, we generated kif1C(-/-) mice by knocking in the beta-galactosidase gene into the motor domain of kif1C gene. On staining of LacZ, we detected its expression in the heart, liver, hippocampus, and cerebellum. Unexpectedly, kif1C(-/-) mice were viable and showed no obvious abnormalities. Because immunocytochemistry showed partial colocalization of KIF1C with the Golgi marker protein, we compared the organelle distribution in primary lung fibroblasts from kif1C(+/+) and kif1C(-/-) mice. We found that there was no significant difference in the distribution of the Golgi apparatus or in the transport from the Golgi apparatus to the endoplasmic reticulum (ER) facilitated by brefeldin A between the two cells. This retrograde membrane transport was further confirmed to be normal by time-lapse analysis. Consequently, KIF1C is dispensable for the motor-dependent retrograde transport from the Golgi apparatus to the ER.  相似文献   

15.
To isolate the murine Na+/taurocholate cotransporting polypeptide (Ntcp), we screened a mouse liver cDNA library and identified Ntcp1, encoding a 362 amino acid protein and Ntcp2, encoding a 317 amino acid protein which had a shorter C-terminal end. Both isoforms mediated saturable Na+-dependent transport of taurocholate when expressed in Xenopus laevis oocytes. Analysis of the gene revealed that Ntcp2 is produced by alternative splicing where the last intron is retained.  相似文献   

16.
Synaptic proteins are synthesized in the cell body and transported down the axon by microtubule-dependent motors. We previously reported that KIF1Bbeta and KIF1A motors are essential for transporting synaptic vesicle precursors; however the mechanisms that regulate transport, as well as cargo recognition and control of cargo loading and unloading remain largely unknown. Here, we show that DENN/MADD (Rab3-GEP) is an essential part of the regulation mechanism through direct interaction with the stalk domain of KIF1Bbeta and KIF1A. We also show that DENN/MADD binds preferentially to GTP-Rab3 and acts as a Rab3 effector. These molecular interactions are fundamental as sequential genetic perturbations revealed that KIF1Bbeta and KIF1A are essential for the transport of DENN/MADD and Rab3, whereas DENN/MADD is essential for the transport of Rab3. GTP-Rab3 was more effectively transported than GDP-Rab3, suggesting that the nucleotide state of Rab3 regulates axonal transport of Rab3-carrying vesicles through preferential interaction with DENN/MADD.  相似文献   

17.
Ras-related GTPases of the Miro family have been implicated in mitochondrial homeostasis and microtubule-dependent transport. They consist of two GTP-binding domains separated by calcium-binding motifs and of a C-terminal transmembrane domain that targets the protein to the outer mitochondrial membrane. We disrupted the single Miro-encoding gene in Dictyostelium discoideum and observed a substantial growth defect that we attribute to a decreased mitochondrial mass and cellular ATP content. However, mutant cells even showed an increased rate of oxygen consumption, while glucose consumption, mitochondrial transmembrane potential and production of reactive oxygen species were unaltered. Processes characteristic of the multicellular stage of the D. discoideum life cycle were also unaltered. Although mitochondria occasionally use microtubules for transport in D. discoideum, their size and distribution were not visibly affected. We found Miro in all branches of the eukaryotic tree with the exception of a few protist lineages (mainly those lacking typical mitochondria). Trypanosomatids and ciliates possess structurally unique homologs lacking the N-terminal or the C-terminal GTPase domain, respectively. We propose that in D. discoideum, as in yeasts and plants, Miro plays roles in mitochondrial homeostasis, but the ability to build a complex that regulates its association to kinesin for microtubule-dependent transport probably arose in metazoans.  相似文献   

18.
Dynein heavy chains are involved in microtubule-dependent transport processes. While cytoplasmic dyneins are involved in chromosome or vesicle movement, axonemal dyneins are essential for motility of cilia and flagella. Here we report the isolation of dynein heavy chain (DHC)-like sequences in man and mouse. Using polymerase chain reaction and reverse-transcribed human and mouse testis RNA cDNA fragments encoding the conserved ATP binding region of dynein heavy chains were amplified. We identified 11 different mouse and eight human dynein-like sequences in testis which show high similarity to known dyneins of different species such as rat, sea urchin or green algae. Sequence similarities suggest that two of the mouse clones and one human clone encode putative cytoplasmic dynein heavy chains, whereas the other sequences show higher similarity to axonemal dyneins. Two of nine axonemal dynein isoforms identified in the mouse testis are more closely related to known outer arm dyneins, while seven clones seem to belong to the inner arm dynein group. Of the isolated human isoforms three clones were classified as outer arm and four clones as inner arm dynein heavy chains. Each of the DHC cDNAs corresponds to an individual gene as determined by Southern blot experiments. The alignment of the deduced protein sequences between human (HDHC) and mouse (MDHC) dynein fragments reveals higher similarity between single human and mouse sequences than between two sequences of the same species. Human and mouse cDNA fragments were used to isolate genomic clones. Two of these clones, gHDHC7 and gMDHC7, are homologous genes encoding axonemal inner arm dyneins. While the human clone is assigned to 3p21, the mouse gene maps to chromosome 14.  相似文献   

19.
A cDNA encoding a zinc transporter (ZnT-1) was isolated from a rat kidney cDNA expression library by complementation of a mutated, zinc-sensitive BHK cell line. This cDNA was used to isolate the homologous mouse ZnT-1 gene. The proteins predicted for these transporters contain six membrane-spanning domains, a large intracellular loop and a C-terminal tail. ZnT-1 is homologous to zinc and cobalt resistance genes of yeast. Immunocytochemistry with an antibody to a myc epitope added to the C-terminus of ZnT-1 revealed localization to the plasma membrane. Transformation of normal cells with a mutant ZnT-1 lacking the first membrane-spanning domain conferred zinc sensitivity on wild-type cells, suggesting that ZnT-1 functions as a multimer. Deletion of the first two membrane-spanning domains resulted in a non-functional molecule, whereas deletion of the C-terminal tail produced a toxic phenotype. Mutant cells have a slightly higher steady-state level of intracellular zinc and high basal expression of a zinc-dependent reporter gene compared with normal cells. Mutant cells have a lower turnover of 65Zn compared with normal cells or mutant cells transformed with ZnT-1. We propose that ZnT-1 transports zinc out of cells and that its absence accounts for the increased sensitivity of mutant cells to zinc toxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号