首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have produced and characterized six murine monoclonal antibodies to human apolipoprotein A-I named A-I-9, A-I-12, A-I-15, A-I-16, A-I-19, and A-I-57. All monoclonal antibodies were specific for apolipoprotein A-I and bound between 55% and 100% of 125I-labeled high density lipoproteins (HDL) in a fluid phase radioimmunoassay. All antibodies possessed a higher affinity to apoA-I in HDL than to free, delipidated apoA-I. Two of them, particularly A-I-12 and A-I-15, which were directed to the same or very close epitopes on the molecule, recognized very poorly the delipidated protein. Binding of apoA-I to phospholipid restored the immunoreactivity of the monoclonal antibodies to the protein suggesting that lipids play an important role in determining the immunochemical structure of apoA-I. Using CNBr fragments and synthetic peptides, the epitopes for the antibodies were mapped as follows: A-I-19, CNBr fragment 1; A-I-12 and 15, CNBr fragment 2; A-I-9 and A-I-16, CNBr fragment 3; A-I-57, CNBr fragment 4. Antibody A-I-57 failed to recognized a mutant form of apoA-I, A-IMilano (Arg173----Cys) by immunoblotting and by competitive radioimmunoassay demonstrating that substitution of a single amino acid in human apoA-I may cause the loss of an antigenic determinant.  相似文献   

2.
Heparitinase digestion of the hydrophobic membrane-associated heparan sulfate proteoglycans (HSPG) of fetal human lung fibroblasts yields core proteins of various sizes: i.e. monomeric core proteins of 125, 90, 64, 48, and 35 kDa and a disulfide-linked dimeric core protein composed of approximately 35-kDa subunits. By immunizing BALB/c mice with liposome-incorporated HSPG, we have obtained a total of five anti-HSPG monoclonal antibodies (Mabs, i.e. Mabs S1, 1C7, 2E9, 6G12, and 10H4) with different specificities. Polyacrylamide gel electrophoresis of 125I-labeled membrane HSPG immunoprecipitated with these Mabs revealed that Mabs 1C7 and 2E9 bind only membrane HSPG which yield a 125-kDa core protein after heparitinase digestion, whereas Mab S1-bound HSPG yield a 64-kDa core protein, and Mabs 6G12 and 10H4 retain membrane HSPG with a 48-kDa core protein. Western blotting of the heparitinase-digested proteoglycans and immunostaining with the Mabs confirmed this pattern of reactivity. However, in this assay, Mabs 6G12 and 10H4 also detected a minor approximately 90-kDa core protein in addition to the 48-kDa core protein. Except perhaps for the 10H4 epitope, the epitopes recognized by these Mabs appear to be part of the peptide moieties as they resisted complete deglycosylation of the HSPG with trifluoromethanesulfonic acid. Since these data were inconsistent with a direct relationship between the major core proteins, the 48-, 64-, and 125-kDa core proteins were immunopurified and further compared by peptide mapping with Staphylococcus aureus protease V8, trypsin, and CNBr cleavage. Clearly distinct peptide patterns were obtained for the three different core proteins. These results imply that the 48-, 64-, and the 125-kDa membrane HSPG core proteins of human lung fibroblasts are derived from distinct proteoglycans.  相似文献   

3.
Three mouse monoclonal antibodies (Mabs) to human apo A-I were produced using apolipoprotein A-I or HDL3 as immunogens. These monoclonal antibodies, 2G11, 4A12 and 4B11, were characterized for their reactivity with isolated apolipoprotein A-I and HDL in solution. The immunoblotting patterns of the HDL3 two-dimensional electrophoresis show that these three monoclonal antibodies reacted with all the polymorphic forms of apolipoprotein A-I. Cotitration experiments indicated that they correspond to three distinct epitopes. In order to locate these three antigenic determinants on the isolated apolipoprotein A-I, the reactivity of the three monoclonal antibodies has been studied on CNBr-cleaved apolipoprotein A-I. The monoclonal antibodies 2G11 and 4A12 addressed to the amino (CNBr 1) and carboxy (CNBr 4) terminal segments, respectively. In comparison with the monoclonal antibodies characterized by Weech et al. ((1985) Biochim. Biophys. Acta 835, 390-401), monoclonal antibody 4A12 is the only one described in the literature which is specific of the carboxy terminal segment of apolipoprotein A-I. Monoclonal antibody 4B11 does not react with any CNBr fragment, its binding is temperature dependent, it could be directed to a conformational epitope. Relative differences were demonstrated in the expression of the three epitopes in HDL subfractions isolated by density gradient ultracentrifugation. According to Curtiss and Edgington ((1985) J. Biol. Chem. 260, 2982-2993) our results indicate the existence of an immunochemical heterogeneity in the organization of apolipoprotein A-I at the surface of HDL particles as well as in the soluble form of apolipoprotein A-I.  相似文献   

4.
We have studied the binding of 125I-labeled high density lipoproteins (HDL3) to liver plasma membranes, which are thought to contain specific HDL receptor sites, using anti-peptide antibodies directed against two sites in the carboxyl-terminal region of human apoA-I. Two distinct antibody populations raised to peptides corresponding to amino acid residues 205-220 and 230-243, respectively, recognized regions of apoA-I that are exposed in the lipid environment of HDL3. However, anti-AI[230-243] IgG, but not anti-AI[205-220] IgG, recognized HDL2, suggesting that residues 205-220 of apoA-I are expressed differently in the two HDL populations. In addition, anti-AI[230-243] IgG showed strong cross-reactivity toward apoA-II. Epitope mapping studies showed that anti-AI[230-243] binds to an epitope located in the carboxyl-terminus of apoA-II, demonstrating significant structural homology between the carboxyl-terminal of apoA-II, demonstrating significant structural homology between the carboxyl-terminal regions of apoA-I and A-II, two candidate proteins for mediating the specific cellular interaction of HDL3. Fab fragments from anti-AI[205-220] and anti-AI[230-243] inhibited the binding of 125I-HDL3 to liver plasma membranes by approximately 80% and 60%, respectively. These findings are in agreement with our recent work using isolated CNBr fragments of apoA-I (Morrison, J., Fidge, N. H., and Tozuka, M. (1991) J. Biol. Chem. 266, 18780-18785), which suggest that the carboxyl-terminal region of apoA-I contains a binding domain which mediates the specific interaction of HDL3 with liver plasma membranes, possibly through the involvement of specific HDL receptors.  相似文献   

5.
Incubation of human serum or high density lipoprotein (HDL) at 37 degrees C in the presence of Fe2+, Fe2+/Fe3+, or Mn2+ results in the increased immunoreactivity (up to 12-, 40-, and 80-fold, respectively) of specific apoA-I epitopes identified as 3D4 and 6B8, while Mg2+, Ca2+, or Cu2+ have minimal or nonsignificant effects. The effect of Mn2+ on the 3D4 epitope requires a specific association with lipids since it can be observed with HDL but not with apoHDL, even in the presence of other lipoproteins. The increase in immunoreactivity noted with Fe2+/Fe3+ or Mn2+ can be blocked with either EDTA or antioxidants (GSH and ascorbic acid), suggesting that it takes place during a peroxidative reaction of the lipids. The peroxidation of lipids which accompanies the increase in immunoreactivity does cross-link apoA-I both with itself and with apoA-II but does not cleave the molecule. The apoA-I-containing lipoproteins which float between 1.18 and 1.22 g/ml and have a pre B-electrophoretic migration are characterized by a very low immunoreactivity with monoclonal antibody 3D4 but are 10-fold or more responsive to Mn2+ treatment than other lipoprotein subfractions, thus demonstrating heterogeneity under oxidative conditions. Proteoliposomes containing apoA-I, cholesterol, and dilinoleyl-lecithin are sensitive to Mn2+ treatment, but not those made with dioleyl- or dimyristoyl-lecithins. However, the increase in 3D4 immunoreactivity is weak and transient and is followed by the disappearance of the epitope caused by cross-linking. We conclude that lipid peroxidation can specifically cross-link apoA-I and change its conformation and antigenicity.  相似文献   

6.
To evaluate the factors that regulate HDL catabolism in vivo, we have measured the clearance of human apoA-I from rabbit plasma by following the isotopic decay of (125)I-apoA-I and the clearance of unlabeled apoA-I using a radioimmunometric assay (RIA). We show that the clearance of unlabeled apoA-I is 3-fold slower than that of (125)I-apoA-I. The mass clearance of iodinated apoA-I, as determined by RIA, is superimposable with the isotopic clearance of (125)I-apoA-I. The data demonstrate that iodination of tyrosine residues alters the apoA-I molecule in a manner that promotes an accelerated catabolism. The clearance from rabbit plasma of unmodified apoA-I on HDL(3) and a reconstituted HDL particle (LpA-I) were very similar and about 3-4-fold slower than that for (125)I-apoA-I on the lipoproteins. Therefore, HDL turnover in the rabbit is much slower than that estimated from tracer kinetic studies. To determine the role of the kidney in HDL metabolism, the kinetics of unmodified apoA-I and LpA-I were reevaluated in animals after a unilateral nephrectomy. Removal of one kidney was associated with a 40-50% reduction in creatinine clearance rates and a 34% decrease in the clearance rate of unlabeled apoA-I and LpA-I particles. In contrast, the clearance of (125)I-labeled molecules was much less affected by the removal of a kidney; FCR for (125)I-LpA-I was reduced by <10%. The data show that the kidneys are responsible for most (70%) of the catabolism of apoA-I and HDL in vivo, while (125)I-labeled apoA-I and HDL are rapidly catabolized by different tissues. Thus, the kidney is the major site for HDL catabolism in vivo. Modification of tyrosine residues on apoA-I may increase its plasma clearance rate by enhancing extra-renal degradation pathways.  相似文献   

7.
Primary cultures of rabbit hepatocytes which were preincubated for 20 h in a medium containing lipoprotein-deficient serum subsequently bound, internalized and degraded 125I-labeled high-density lipoproteins2 (HDL2). The rate of degradation of HDL2 was constant in incubations from 3 to 25 h. As the concentration of HDL2 in the incubation medium was increased, binding reached saturation. At 37 degrees C, half-maximal binding (Km) was achieved at a concentration of 7.3 micrograms of HDL2 protein/ml (4.06 X 10(-8)M) and the maximum amount bound was 476 ng of HDL2 protein/mg of cell protein. At 4 degrees C, HDL2 had a Km of 18.6 micrograms protein/ml (1.03 X 10(-7)M). Unlabeled low-density lipoproteins (LDL) inhibited only at low concentrations of 125I-labeled HDL2. Quantification of 125I-labeled HDL2 binding to a specific receptor (based on incubation of cells at 4 degrees C with and without a 50-fold excess of unlabeled HDL) yielded a dissociation constant of 1.45 X 10(-7)M. Excess HDL2 inhibited the binding of both 125I-labeled HDL2 and 125I-labeled HDL3, but excess HDL3 did not affect the binding of 125I-labeled HDL3. Preincubation of hepatocytes in the presence of HDL resulted in only a 40% reduction in specific HDL2 receptors, whereas preincubation with LDL largely suppressed LDL receptors. HDL2 and LDL from control and hypercholesterolemic rabbits inhibited the degradation of 125I-labeled HDL2, but HDL3 did not. Treatment of HDL2 and LDL with cyclohexanedione eliminated their capacity to inhibit 125I-labeled HDL2 degradation, suggesting that apolipoprotein E plays a critical role in triggering the degradative process. The effect of incubation with HDL on subsequent 125I-labeled LDL binding was time-dependent: a 20 h preincubation with HDL reduced the amount of 125I-labeled LDL binding by 40%; there was a similar effect on LDL bound in 6 h but not on LDL bound in 3 h. The binding of 125I-labeled LDL to isolated liver cellular membranes demonstrated saturation kinetics at 4 degrees C and was inhibited by EDTA or excess LDL. The binding of 125I-labeled HDL2 was much lower than that of 125I-labeled LDL and was less inhibited by unlabeled lipoproteins. The binding of 125I-labeled HDL3 was not inhibited by any unlabeled lipoproteins. EDTA did not affect the binding of either HDL2 or HDL3 to isolated liver membranes. Hepatocytes incubated with [2-14C]acetate in the absence of lipoproteins incorporated more label into cellular cholesterol, nonsaponifiable lipids and total cellular lipid than hepatocytes incubated with [2-14C]acetate in the presence of any lipoprotein fraction. However, the level of 14C-labeled lipids released into the medium was higher in the presence of medium lipoproteins, indicating that the effect of those lipoproteins was on the rate of release of cellular lipids rather than on the rate of synthesis.  相似文献   

8.
Nine monoclonal antibodies (mAbs) against apoA-I reacting with distinct but overlapping epitopes covering more than 90% of the sequence have been used to block the interaction of 125I-labeled high density lipoprotein (125I-HDL) with HepG2 cells in order to delineate the cell binding domain of apolipoprotein A-I (apoA-I). While 2 mAbs reacting with epitopes exclusively localized in the N-terminal region (residues 1 to 86) enhanced slightly association of 125I-HDL, all other mAbs, which react with epitopes localized in the regions of amphipathic alpha-helical repeats, inhibited that association by 9 to 15%. Although this inhibition is not significant compared to the effect of an irrelevant mAb, combination of these mAbs could significantly inhibit the association of 125I-HDL (32 to 43%) as could polyclonal antibodies (up to 95%). These results are compatible with the concept of HDL binding to these cells via the nonexclusive interaction of each of the amphipathic alpha-helical repeats of apoA-I. When the same approach was applied to block the association of 3H-cholesteryl ether (CE)-labeled HDL to HepG2 cells, each anti-apoA-I could inhibit by 15 to 25% the cellular association of cholesteryl ether while mAbs in combination or polyclonal antibodies could inhibit this association up to 45% or 60%, respectively. The cholesteryl ether radioactivity that remained associated with the cells (40%) in the presence of polyclonal antibodies could be effectively blocked by addition of an antibody against the receptor binding domain of apoE (1D7). Therefore, the differential cellular association of cholesteryl ether compared to apolipoprotein can be explained by the presence of apoE secreted by HepG2 and apoE or apoB/E receptors. Thus, we conclude that the optimum uptake of both cholesteryl ether and apoA-I of HDL by cells requires the accessibility of the entire apoA-I and the cooperative binding of the amphipathic alpha-helical repeats to HepG2 cell membranes. This type of interaction would explain the competitive binding observed for apoA-I, -A-II, and -A-IV by others.  相似文献   

9.
The kinetics of apolipoprotein A-IV associated with high density lipoproteins (HDL) of plasma from fasting human subjects was followed for 15 days in five healthy normolipidemic volunteers. Purified apoA-IV and apoA-I were radioiodinated, respectively, with 125I and 131I, incubated in vitro with normal HDL, isolated at density 1.250 g/ml, and finally reinjected intravenously as HDL-125I-labeled apoA-IV and HDL-131I-labeled apoA-I. Blood samples were withdrawn at regular intervals for 15 days, and 24-h urine samples were collected. More than 93% (93.5 +/- 0.9%) of apoA-IV was recovered in apoA-I-containing lipoprotein particles after affinity chromatography on an anti-apoA-I column and 69.7 +/- 4.8% was bound to apoA-II in apoA-I:A-II particles separated on an anti-apoA-II column. 125I-labeled apoA-IV showed a much faster decay than 131I-labeled apoA-I for the first 5 days and thereafter the curves became parallel. Urinary/plasma ratios (U/P) for the 125I-labeled parallel. Urinary/plasma ratios (U/P) for the 125I-labeled apoA-IV were much higher than those for 131I-labeled apoA-I for the first days, but the U/P curves became parallel for the last 7 days, suggesting heterogeneity of apoA-IV metabolism. A heterogeneous multicompartmental model was constructed to describe the metabolism of lipoprotein particles containing apoA-IV and apoA-I and to calculate the kinetic parameters, fitting simultaneously all plasma and urine data for both tracers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We measured the amount of apoA-I in serum by isotope dilution, finding 1.33 mg/ml (standard deviation 0.177) in six normolipidemic, healthy subjects. We developed this method by adapting published techniques to purify apoA-I from 3 ml of serum in two steps: density gradient ultracentrifugation and high performance liquid chromatography gel filtration. The 125I-labeled apoA-I tracer was first screened, by incubation with serum, to select labeled apoA-I which retained the ability to exchange with native apoA-I and bind to HDL. A known amount of 125I-labeled apoA-I-labeled HDL was added to unknown serum samples; apoA-I was reisolated from the serum and its specific radioactivity was used to calculate the dilution of the added, labeled apoA-I by the unlabeled apoA-I in the unknown serum. By not relying on immunochemical techniques, the isotope dilution assay provided results that are independent of the expression of individual apoA-I antigenic sites. Therefore, sera that have been assayed by isotope dilution can serve as standards to evaluate the accuracy of immunoassays for serum apoA-I and provide primary standards for such immunoassays.  相似文献   

11.
Eight stable murine monoclonal antibodies (mabs) were raised against human high-density lipoproteins (HDL). Three different antibody reactivities were demonstrated by immunoblotting. A group of five antibodies were specific for apolipoprotein A-I (apoA-I) and bound to similar or overlapping epitopes. The second type of reactivity, shown by mab-32, was specific for apoA-II. In the third group, two antibodies showed high reactivity with apoA-II and slight cross-reactivity with apoA-I. The properties of two antibodies, mab M-30 specific for apoA-I and mab M-32 specific for apoAII, were characterized in detail as probes of HDL structure. The association of 125I-labeled HDL or synthetic complexes of apoA-I and phosphatidylcholine with mab M-30 was lipid dependent. Mab M-32 binding to apoA-II was independent of lipid. The lipid-dependent epitope bound by mab M-30 has been localized to an 18 amino acid synthetic apoA-I peptide. Moreover, studies with HDL2, HDL3, and immunoadsorbed HDL subfractions indicate that binding of mab M-30 to HDL is influenced by some component within the microenvironment individual HDL particles. These lines of evidence suggest that the molar ratio of apoA-I to apoA-II is the critical determinant. Binding of mab M-32 to HDL increased the reactivity of HDL to mab M-30 in a dose-dependent manner, indicating an unusual form of cooperativity between two mabs that recognize different proteins in HDL. These monoclonal antibodies will be valuable in studies of the metabolic significance of protein-protein and lipid-protein interactions in HDL.  相似文献   

12.
Apolipoprotein (apo) A-I is the major protein in high density lipoproteins (HDL) and is found in two major subclasses of lipoproteins, those containing apolipoprotein A-II (termed LpA-I,A-II) and those without apoA-II (termed LpA-I). The in vivo kinetics of apoA-I on LpA-I and LpA-I,A-II were investigated in normolipidemic human subjects. In the first series of studies, radiolabeled apoA-I and apoA-II were reassociated with autologous plasma lipoproteins and injected into normal subjects. LpA-I and LpA-I,A-II were isolated from plasma at selected time points by immunoaffinity chromatography. By 24 h after injection, only 52.8 +/- 1.0% of the apoA-I in LpA-I remained, whereas 66.9 +/- 2.7% of apoA-I in LpA-I,A-II remained (P less than 0.01). In the second series of studies, purified apoA-I was labeled with either 131I or 125I and reassociated with autologous plasma. Isolated LpA-I and LpA-I,A-II particles differentially labeled with 131I-labeled apoA-I and 125I-labeled apoA-I, respectively, were simultaneously injected into study subjects. The plasma residence time of apoA-I injected on LpA-I (mean 4.39 days) was substantially shorter than that of apoA-I injected on LpA-I,A-II (mean 5.17 days), with a mean difference in residence times of 0.79 +/- 0.08 days (P less than 0.001). These data demonstrate that apoA-I injected on LpA-I is catabolized more rapidly than apoA-I injected on LpA-I,A-II. The results are consistent with the concept that LpA-I and LpA-I,A-II have divergent metabolic pathways.  相似文献   

13.
Recently identified epitopes in apoA-I define a distinct N-terminal region with a complex tertiary structure, characterized by multiple discontinuous epitopes. Other epitopes are constituted of short domains centered either on beta-turns or random coils or on the 22-mer amphipathic alpha-helices (Marcel, Y. L., Provost, P. R., Koa, H., Raffa?, E., Vu Dac, N., Fruchart, J.-C., and Rassart, E. (1991) J. Biol. Chem. 266, 3644-3653). The compared immunoreactivity of seven epitopes studies here in response first to delipidation of high density lipoprotein (HDL) apoA-I by detergents, and second to modifications of HDL lipid composition by phospholipase A2 or by enrichment in surface lipids demonstrates that apoA-I has a flexible conformation which is readily responsive to the nature and concentration of bound lipids and that the structure of lipid-free apoA-I is significantly different from that of HDL-bound apoA-I, possibly representing a condensed molecule with several masked domains. In HDL apoA-I, these epitopes define five distinct domains which are characterized by particular responses to lipid modifications. However, two domains, each starting at the N-terminal beta-turn of an amphipathic alpha-helical repeat (residues 99-121 and 186-209, respectively) have almost identical immunoreactivity whether after detergent treatment or after changes in cholesterol and phospholipid levels, a property which probably reflects the known periodicity of apoA-I structural 22-mers. The immunoreactivity of a discontinuous epitope, representative of the N-terminal domain, is inversely related to the concentration of phospholipids, a unique characteristic among the epitopes tested here which indicates that the complex N-terminal region interacts with phospholipids, either directly or indirectly. These studies demonstrate that the conformation of multiple domains of HDL apoA-I is dependent on lipid phase composition and differentially affected by cholesterol and phospholipids.  相似文献   

14.
Previous evidence indicated that discoidal reconstituted high density lipoproteins (rHDL) of apolipoprotein A-I (apoA-I) can interact with lipid membranes (Tricerri, M. A., Córsico, B., Toledo, J. D., Garda, H. A., and Brenner, R. R. (1998) Biochim. Biophys. Acta 1391, 67-78). With the aim of studying this interaction, photoactivable reagents and protein cleavage with CNBr and hydroxylamine were used. The generic hydrophobic reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine gave information on the apoA-I regions in contact with the lipid phase in the rHDL discs. Two protein regions loosely bound to lipids were detected: a C-terminal domain and a central one located between residues 87 and 112. They consist of class Y amphipathic alpha-helices that have a different distribution of the charged residues in their polar faces by comparison with class A helices, which predominate in the rest of the apoA-I molecule. The phospholipid analog 1-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoro-methyl-3-H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine, which does not undergo significant exchange between membranes and lipoproteins, was used to identify the apoA-I domain directly involved in the interaction of rHDL discs with membranes. By incubating either rHDL or lipid-free apoA-I with lipid vesicles containing 125I-TID-PC, only the 87-112 apoA-I segment becomes labeled after photoactivation. These results indicate that the central domain formed by two type Y helices swings away from lipid contact in the discoidal lipoproteins and is able to insert into membrane bilayers, a process that may be of great importance for the mechanism of cholesterol exchange between high density lipoproteins and cell membranes.  相似文献   

15.
Rat plasma low- and high-density lipoproteins were labeled with [3H]cholesteryl linoleyl ether and isolated by rate-zonal ultracentrifugation into apolipoprotein B-containing LDL, apolipoprotein E-containing HDL1 and apolipoprotein E-poor HDL2. These fractions were incubated with cultured rat hepatocytes and comparable amounts of all lipoproteins were taken up by the cells. Rat HDL was isolated at d 1.085-1.21 g/ml and apolipoprotein E-free HDL was prepared by heparin Sepharose chromatography. The original HDL and the apolipoprotein E-free HDL were labeled with 125I or with [3H]cholesteryl linoleyl ether and incubated with rat hepatocytes or adrenal cells in culture. The uptake of apolipoprotein E-free [3H]cholesterol linoleyl ether HDL by the cultured hepatocytes was 20-40% more than that of the original HDL. Comparison of uptake of cholesteryl ester moiety (represented by uptake of [3H]cholesteryl linoleyl ether) and of protein moiety (represented by metabolism of 125I-labeled protein) was carried out using both original and apolipoprotein E-free HDL. In experiments in which low concentrations of HDL were used, the ratio of 3H/125I exceeded 1.0. In cultured adrenal cells, the uptake of [3H]cholesteryl linoleyl ether-labeled HDL was stimulated 3-6-fold by 1 X 10(-7) M ACTH, while the uptake of 125I-labeled HDL increased about 2-fold. The ratio of 3H/125I representing cellular uptake was 2-3 and increased to 5 in ACTH-treated cells. The present results indicate that in cultured rat hepatocytes the uptake of homologous HDL does not depend on the presence of apolipoprotein E. Evidence was also presented for an uptake of cholesteryl ester independent of protein uptake in cultured rat adrenal cells and to a lesser extent in rat hepatocytes.  相似文献   

16.
The epitopes for two monoclonal antibodies (MAbs) directed towards human apolipoprotein A-I (apoA-I), designated AI-1 and AI-3, have been more precisely defined. Previous work in our laboratory demonstrated that AI-1 and AI-3 recognize antigenic determinants located within cyanogen bromide (CNBr) fragments 1 (CF1) and 3 (CF3), respectively. Using peptides generated from endoproteinase cleavage of CF1 and CF3, we now report that both MAbs are specific for two previously unreported epitopes along the apoA-I molecule. The ability of whole endoproteinase digest mixtures to bind the MAbs, as determined by means of a competitive enzyme-linked immunosorbent assay (ELISA), indicated regions of CF1 and CF3 that were likely to form the epitopes. Purified peptides derived from the digests were then used to localize the epitopes recognized by MAbs AI-1 and AI-3 to within residues 28-47 and 140-147 of apoA-I, respectively. We have previously reported that the epitopes for both MAbs are exposed on HDL2, HDL3, and free apoA-I. Thus, the precise mapping of the binding sites recognized by AI-1 and AI-3 has enabled the identification of regions along apoA-I that are exposed on the surface of lipoprotein particles.  相似文献   

17.
This study compares the specificities of selective uptake and transfer mediated by plasma cholesteryl ester transfer protein (CETP) for various species of cholesteryl esters in high density lipoproteins (HDL). [3H]Cholesterol was esterified with a series of variable chain length saturated acids and a series of variably unsaturated 18-carbon acids. These were incorporated into synthetic HDL particles along with 125I-labeled apoA-I as a tracer of HDL particles and [14C]cholesteryl oleate as an internal standard for normalization between preparations. Selective uptake by Y1-BS1 mouse adrenal cortical tumor cells was most extensively studied, but uptake by human HepG2 hepatoma cells and fibroblasts of human, rat, and rabbit origin were also examined. Acyl chain specificities for selective uptake and for CETP-mediated transfer were conversely related; selective uptake by all cell types decreased with increasing acyl chain length and increased with the extent of unsaturation of C18 chains. In contrast, CETP-mediated transfer increased with acyl chain length, and decreased with unsaturation of C18 chains. The specificities of human and rabbit CETP were also compared, and were found to differ little. Associated experiments showed that HDL-associated triglycerides, traced by [3H]glyceryl trioleyl ether, were selectively taken up but at a lesser rate than cholesteryl esters. The mechanism of this uptake appears to be the same as for selective uptake of cholesteryl esters.  相似文献   

18.
We have previously described the presence of two (high- and low-affinity) HDL binding sites on the hepatoma cell line (HepG2) (R. Barbaras, X. Collet, H. Chap, and B. Perret (1994) Biochemistry 33, 2335-2340]. Moreover, apoA-I, the major HDL apolipoprotein, interacts with these two binding sites, while lipid-free apoA-I binds only to the high-affinity sites. Using tryptic HDL fragments and HepG2 cell monolayers as an "affinity matrix," we identified an apoA-I peptide of 16 amino acids, spanning between residues 62 and 77, as a ligand domain. The corresponding synthetic peptide displays high-affinity (K(d) approximately 10(-7) M) and low-capacity (B(max) 8 pmol/mg of cell protein) binding components. Competition experiments with this peptide, using (125)I-labeled free apoA-I as a ligand, show that this binding corresponds to the high-affinity binding sites already described. In conclusion, we identified the apoA-I 62-77 region as a specific high-affinity ligand domain of HDL on HepG2 cells.  相似文献   

19.
We have characterized the epitopes of a panel of 12 monoclonal antibodies (Mabs) directed to normal human cellular prion protein (PrP(C)) using ELISA and Western blotting of recombinant PrP or synthetic peptide fragments of PrP. The first group of antibodies, which is represented by Mabs 5B2 and 8B4, reacts with PrP(23-145), indicating that the epitopes for these Mabs are located in the 23 to 145 N-terminal region of human PrP. The second group includes Mabs 1A1, 6H3, 7A9, 8C6, 8H4, 9H7 and 2G8. These antibodies bind to epitopes localized within N-terminally truncated recombinant PrP(90-231). Finally, Mabs 5C3, 2C9 and 7A12 recognize both PrP(23-145) and PrP(90-231), suggesting that the epitopes for this group are located in the region encompassing residues 90 to 145. By Western blotting with PepSpot(TM), only three of Mabs studied (5B2, 8B4 and 2G8) bind to linear epitopes that are present in 13-residue long synthetic peptides corresponding to human PrP fragments. The remaining nine Mabs appear to recognize conformational epitopes. Two N terminus-specific Mabs were found to prevent the binding of the C terminus-specific Mab 6H3. This observation suggests that the unstructured N-terminal region may influence the local conformation within the folded C-terminal domain of prion protein.  相似文献   

20.
Rat liver parenchymal cell binding, uptake, and proteolytic degradation of rat 125I-labeled high density lipoprotein (HDL) subfraction, HDL3 (1.10 less than d less than 1.210 g/ml), in which apo-A-I is the major polypeptide, were investigated. Structural and metabolic integrity of the isolated cells was verified by trypan blue exclusion, low lactic dehydrogenase leakage, expected morphology, and gluconeogenesis from lactate and pyruvate. 125I-labeled HDL3 was incubated with 10 X 10(6) cells at 37 degrees and 4 degrees in albumin and Krebs-Henseleit bicarbonate buffer, pH 7.4. Binding and uptake were determined by radioactivity in washed cells. Proteolytic degradation was determined by trichloroacetic acid-soluble radioactivity in the incubation medium. At 37 degrees, maximum HDL3 binding (Bmax) and uptake occurred at 30 min with a Bmax of 31 ng/mg dry weight of cells. The apparent dissociation constant of the HDL3 receptor system (Kd) was 60 X 10(-8) M, based on Mr = 28,000 of apo-A-I, the predominant rat HDL3 protein. Proteolytic degradation showed a 15-min lag and then constant proteolysis. After 2 hours 5.8% of incubated 125I-labeled HDL3 was degraded. Sixty per cent of cell radioactivity at 37 degrees was trypsin-releasable. At 37 degrees, 125I-labeled HDL3 was incubated with cells in the presence of varying concentrations of native (cold) HDL3, very low density lipoproteins, and low density lipoproteins. Incubation with native HDL3 resulted in greatest inhibition of 125I-labeled HDL3 binding, uptake, and proteolytic degradation. When 125I-labeled HDL3 was preincubated with increasing amounts of HDL3 antiserum, binding and uptake by cells were decreased to complete inhibition. Cell binding, uptake, and proteolytic degradation of 125I-labeled HDL3 were markedly diminished at 4 degrees. Less than 1 mM chloroquine enhanced 125I-labeled HDL3 proteolysis but at 5 mM or greater, chloroquine inhibited proteolysis with 125I-labeled HDL3 accumulation in cells. L-[U-14C]Lysine-labeled HDL3 was bound, taken up, and degraded by cells as effectively as 125I-labeled HDL3. These data suggest that liver cell binding, uptake, and proteolytic degradation of rat HDL3 are actively performed and linked in the sequence:binding, then uptake, and finally proteolytic degradation. Furthermore, there may be a specific HDL3 (lipoprotein A) receptor of recognition site(s) on the plasma membrane. Finally, our data further support our previous reports of the important role of liver lysosomes in proteolytic degradation of HDL3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号