首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The commercial potential of RNAi is assessed on the basis of successful translation of technology into applications in three areas: (1) drug discovery and research-currently the biggest segment; (2) potential therapeutic applications; and (3) the role of microRNA in molecular diagnostics. RNAi is an important method for analyzing gene function and identifying new drug targets that use dsRNA to knock down or silence specific genes. Sets of siRNAs focused on a specific gene class (siRNA libraries) have the capacity to greatly increase the pace of pathway analysis and functional genomics. RNAi plays an important role in drug discovery by facilitating target validation. The discovery of the role of microRNA (miRNAs) in various pathological processes opens up possible applications in molecular diagnostics, particularly that of cancer. The advantages of RNAi-based therapeutics over traditional pharmaceuticals include the capability for more specific therapies with small molecule siRNA. Drawbacks include the development of resistance in cancer and viral infections as well as the interferon effect. RNAi is closely related to gene therapy and the vectors developed for gene therapy are also being used for delivery of siRNAs. RNAi, along with other related technologies, will contribute to the development of personalised medicine. Although none of the RNAi-based drugs is in the market yet, some are in clinical trials. By the year 2010 the market for RNAi-based drugs is expected to be worth 3.5 billion dollars and is expected to expand to 10.5 billion dollars by the year 2015.  相似文献   

2.
A novel laboratory revolution for disease therapy, the RNA interference (RNAi) technology, has adopted a new era of molecular research as the next generation "Gene-targeted prophylaxis." In this review, we have focused on the chief technological challenges associated with the efforts to develop RNAi-based therapeutics that may guide the biomedical researchers. Many non-curable maladies, like neurodegenerative diseases and cancers have effectively been cured using this technology. Rapid advances are still in progress for the development of RNAi-based technologies that will be having a major impact on medical research. We have highlighted the recent discoveries associated with the phenomenon of RNAi, expression of silencing molecules in mammals along with the vector systems used for disease therapeutics.  相似文献   

3.
Over millions of years pathogens have coevolved with their respective hosts utilizing host cell functions for survival and replication. Despite remarkable progress in developing antibiotics and vaccination strategies in the last century, infectious diseases still remain a severe threat to human health. Meanwhile, genomic research offers a new era of data-generating platforms that will dramatically enhance our knowledge of pathogens and the diseases they cause. Improvements in gene knockdown studies by RNA interference (RNAi) combined with recent developments in instrumentation and image analysis enable the use of high-throughput screening approaches to elucidate host gene functions exploited by pathogens. Although only a few RNAi-based screens focusing on host genes have been reported so far, these studies have already uncovered hundreds of genes not previously known to be involved in pathogen infection. This review describes recent progress in RNAi screening approaches, highlighting both the limitations and the tremendous potential of RNAi-based screens for the identification of essential host cell factors during infection.  相似文献   

4.
RNA干扰(RNAi)是真核生物体内重要的基因表达调控方式之一.RNAi的一种原始的作用是帮助生物体抵抗病毒,早期的研究表明无脊椎动物可以利用RNAi抵抗病毒,但是哺乳动物是否存在这一机制一直存在争议.最新的研究发现了哺乳动物RNAi抗病毒的强有力的证据,并且研究人员认为,这是一种之前被忽视的、全新的免疫途径.值得注意...  相似文献   

5.
RNAi的发现使基因功能的研究和人类疾病的治疗有了新的途径,特别是在抗病毒、抗肿瘤研究中具有较高的应用前景,同时在心血管疾病、神经系统疾病、内分泌系统疾病等研究中也将发挥重要作用。RNAi将会是医学实验动物模型建立与研究的有力工具。  相似文献   

6.
RNA干扰(RNA interference,RNAi)在植物、动物和真菌的生长、发育、病毒防御和转座子失活中起着至关重要的作用。目前已成功利用RNAi技术培育出抗病虫和品质改良等具有优良性状的生物技术产品,为农业绿色发展提供了强有力的支撑。然而,目前RNAi的相关机制尚未完全明确,基于RNAi技术的转基因植物面临着一些亟待解决的问题,同时,对于RNAi转基因植物应用的安全高效监管也需进一步完善。基于此,对RNAi转基因植物的监管现状及其面临的育种上的挑战进行了综述,并对存在的问题提出了解决建议,以期为RNAi技术进一步应用于农业植物改良育种提供新思路,并为其监管评价提供依据。  相似文献   

7.
Ito M  Kawano K  Miyagishi M  Taira K 《FEBS letters》2005,579(26):5988-5995
Progress is being made in the development of RNA interference-based (RNAi-based) strategies for the control of gene expression. It has been demonstrated that small interfering RNAs (siRNAs) can silence the expression of target genes in a sequence-specific manner in mammalian cells. Various groups, including our own, have developed systems for vector-mediated specific RNAi. Vector-based siRNA- (or shRNA) expression libraries directed against the entire human genome and siRNA libraries based on chemically synthesized oligonucleotides now allow the rapid identification of functional genes and potential drug targets. Use of such libraries will enhance our understanding of numerous biological phenomena and contribute to the rational design of drugs against heritable, infectious and malignant diseases.  相似文献   

8.
Davidson BL  Boudreau RL 《Neuron》2007,53(6):781-788
RNA interference (RNAi), a mediator of gene silencing, has swiftly become one of the most exciting and applicable biological discoveries. There has been rapid progress in identifying RNAi pathway components and elucidating the mechanisms of microRNA (miRNA) biogenesis and gene suppression. As a result, RNAi technologies have been successfully employed in a variety of systems as biological tools, and studies are underway to test the therapeutic utility of RNAi. In the span of several years, significant advances in the delivery of inhibitory RNAs in the nervous system have been made. We have glimpses into how endogenous miRNAs interface with neuronal development and function; in addition, RNAi has shown therapeutic efficacy in several mouse models of human neurological conditions. In this review, we summarize the current state-of-the-art of RNAi and its utility to neuroscientists.  相似文献   

9.
RNA interference (RNAi) is a sequence-specific gene-silencing mechanism in eukaryotes, which is believed to function as a defence against viruses and transposons. Since its discovery, RNAi has been developed into a widely used technique for generating genetic knock-outs and for studying gene function by reverse genetics. Additionally, inhibition of virus replication by means of induced RNAi has now been reported for numerous viruses, including several important human pathogens such as human immunodeficiency virus type 1, hepatitis C virus, hepatitis B virus, dengue virus, poliovirus and influenza virus A. In this review, we will summarize the current data on RNAi-mediated inhibition of virus replication and discuss the possibilities for the development of RNAi-based antiviral therapeutics.  相似文献   

10.
The silent treatment: RNAi as a defense against virus infection in mammals   总被引:1,自引:0,他引:1  
RNA interference (RNAi) is a mechanism for sequence-specific gene silencing guided by double-stranded RNA. In plants and insects it is well established that RNAi is instrumental in the response to viral infections; whether RNAi has a similar function in mammals is under intense investigation. Recent studies to address this question have identified some unanticipated interactions between the RNAi machinery and mammalian viruses. Furthermore, introduction of virus-specific small interfering RNAs (siRNAs) into cells, thus programming the RNAi machinery to target viruses, is an effective therapeutic approach to inhibit virus replication in vitro and in animal models. Although several issues remain to be addressed, such as delivery and viral escape, these findings hold tremendous potential for the development of RNAi-based antiviral therapeutics.  相似文献   

11.
转基因动物在microRNA研究中的应用   总被引:1,自引:0,他引:1  
MicroRNA是一类在转录后水平上调节基因表达的非编码小分子RNA,在生物体生理、病理等过程中发挥重要作用.MicroRNA功能的研究将是未来人们关注的焦点.通过转基因技术建立的多种动物模型在整体水平揭示了基因的功能.近年,以microRNA为研究对象的转基因动物模型数量不断增加,构建策略不断丰富.通过miRNA过表达、敲除及敲减等手段已揭示了miRNA在肿瘤、心血管系统疾病等多方面的作用.转基因动物正成为microRNA研究中不可或缺的工具.  相似文献   

12.
RNAi在基因缺陷模型方面的应用   总被引:3,自引:1,他引:2  
谭余良  殷勤伟 《遗传学报》2005,32(4):434-441
RNA干扰(RNA interference,RNAi)是指双链RNA(double-stranded RNA,dsRNA)分子导入细胞内后,促进与之同源的mRNA发生特异性的降解,从而高效并特异地阻断或抑制相应基因表达活性的现象。RNAi技术现已成为调控基因的表达,阐明细胞的信号通路和研究功能基因组学的有力工具,并迅速在临床医学上展现出基因药物的诱人前景。目前,人们已开始对RNAi技术在人类疾病预防和治疗中的应用进行研究.这些研究涉及到病毒感染、癌症、代谢性疾患以及遗传病等各个方面。通过综述siRNA分子的作用机制、载体构建以及其在基因缺陷模型的建立等方面的应用,从而展示出RNAi在相关疾病的分子机制研究和基因治疗方面的诱人前景。  相似文献   

13.
Current prospects for RNA interference-based therapies   总被引:1,自引:0,他引:1  
RNA interference (RNAi) is a powerful approach for reducing expression of endogenously expressed proteins. It is widely used for biological applications and is being harnessed to silence mRNAs encoding pathogenic proteins for therapy. Various methods - including delivering RNA oligonucleotides and expressing RNAi triggers from viral vectors - have been developed for successful RNAi in cell culture and in vivo. Recently, RNAi-based gene silencing approaches have been demonstrated in humans, and ongoing clinical trials hold promise for treating fatal disorders or providing alternatives to traditional small molecule therapies. Here we describe the broad range of approaches to achieve targeted gene silencing for therapy, discuss important considerations when developing RNAi triggers for use in humans, and review the current status of clinical trials.  相似文献   

14.
Strategies for silencing human disease using RNA interference   总被引:14,自引:0,他引:14  
  相似文献   

15.
RNAi-mediated gene inactivation has become a cornerstone of the present day gene function studies that are the foundation of mechanism and target based drug discovery and development, which could potentially shorten the otherwise long process of drug development. In particular, the coming of age of "RNAi drug" could provide new promising therapeutics bypassing traditional approaches. However, there are technological hurdles need to overcome and the biological limitations need to consider for achieving effective therapeutics. Major hurdles include the intrinsic poor pharmacokinetic property of siRNA and major biological restrictions include off-target effects, interferon response and the interference with endogenous miRNA. Recent innovations in nucleic acid chemistry, formulations and delivery methods have gradually rendered it possible to develop effective RNAi-based therapeutics. Careful design based on the newest RNAi/miRNA biology can also help to minimize the potential tissue toxicity. If successful with systemic application, RNAi drug will no doubt revolutionize the whole drug development process. This review attempts to describe the progress in this area, including applications in preclinical models and recent favorable experience in a number of human trials of local diseases, along with the discussion on the potential limitations of RNAi therapeutics.  相似文献   

16.
RNA interference (RNAi) is being widely used in functional gene research and is an important tool for drug discovery. However, canonical double-stranded short interfering RNAs are unstable and induce undesirable adverse effects, and thus there is no currently RNAi-based therapy in the clinic. We have developed a novel class of RNAi agents, and evaluated their effectiveness in vitro and in mouse models of acute lung injury (ALI) and pulmonary fibrosis. The novel class of RNAi agents (nkRNA®, PnkRNA™) were synthesized on solid phase as single-stranded RNAs that, following synthesis, self-anneal into a unique helical structure containing a central stem and two loops. They are resistant to degradation and suppress their target genes. nkRNA and PnkRNA directed against TGF-β1mRNA ameliorate outcomes and induce no off-target effects in three animal models of lung disease. The results of this study support the pathological relevance of TGF-β1 in lung diseases, and suggest the potential usefulness of these novel RNAi agents for therapeutic application.  相似文献   

17.
RNAi mechanisms and applications   总被引:19,自引:0,他引:19  
Kim D  Rossi J 《BioTechniques》2008,44(5):613-616
Within the past two decades we have become increasingly aware of the roles that RNAs play in regulation of gene expression. The RNA world was given a booster shot with the discovery of RNA interference (RNAi), a compendium of mechanisms involving small RNAs (less than 30 bases long) that regulate the expression of genes in a variety of eukaryotic organisms. Rapid progress in our understanding of RNAi-based mechanisms has led to applications of this powerful process in studies of gene function as well as in therapeutic applications for the treatment of disease. RNAi-based therapies involve two-dimensional drug designs using only identification of good Watson-Crick base pairing between the RNAi guide strand and the target, thereby resulting in rapid design and testing of RNAi triggers. To date there are several clinical trials using RNAi, and we should expect the list of new applications to grow at a phenomenal rate. This article summarizes our current knowledge about the mechanisms and applications of RNAi.  相似文献   

18.
19.
Several arenaviruses, including Lassa fever virus, cause severe, often lethal hemorrhagic fever in humans. No licensed vaccines are available in the United States, and currently there is no efficacious therapy to treat this viral infection. Therefore the importance of developing effective antiviral approaches to combat pathogenic arenaviruses is clear. Moreover, the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is an important model for the study of viral persistence and associated diseases, as well as for exploring therapies to treat viral chronic infections. The use of small interfering RNAs (siRNAs) to downregulate gene expression via RNA interference (RNAi) has emerged as a powerful genetic tool for the study of gene function. In addition, the successful use of siRNAs to target a variety of animal viruses has led us to consider RNAi as a potential novel antiviral strategy. We have investigated the use of RNAi therapy against LCMV. Here, we show that siRNAs targeting sequences within the viral L polymerase and Z mRNAs inhibit LCMV multiplication in cultured cells. Unexpectedly, the antiviral efficacy of RNAi-based therapy against LCMV was highly dependent on the method used to deliver effector siRNA molecules. Thus, transfection of chemically synthesized siRNA pools to L and Z was ineffective in preventing virus multiplication. In contrast, targeting of the same viral L and Z gene products with siRNAs produced inside cells using a replication-deficient recombinant adenovirus expression system inhibited LCMV multiplication very efficiently. Notably, transduction with the replication-deficient recombinant adenovirus expression system to Z and L effectively cured persistently LCMV-infected cells, suggesting the feasibility of using RNAi therapy to combat viral chronic infections by riboviruses.  相似文献   

20.
RNAi-based nucleic acid molecules have attracted considerable attention as compelling therapeutics providing safe and competent delivery systems are available. Dendrimers are emerging as appealing nanocarriers for nucleic acid delivery thanks to their unique well-defined architecture and the resulting cooperativity and multivalency confined within a nanostructure. The present review offers a brief overview of the structurally flexible triethanolamine-core poly(amidoamine) (PAMAM) dendrimers developed in our group as nanovectors for the delivery of RNAi therapeutics. Their excellent activity for delivering different RNAi therapeutics in various disease models in vitro and in vivo will be highlighted here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号