共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Titchenell PM Lin CM Keil JM Sundstrom JM Smith CD Antonetti DA 《The Biochemical journal》2012,446(3):455-467
Pro-inflammatory cytokines and growth factors such as VEGF (vascular endothelial growth factor) contribute to the loss of the BRB (blood-retinal barrier) and subsequent macular oedema in various retinal pathologies. VEGF signalling requires PKCβ [conventional PKC (protein kinase C)] activity; however, PKCβ inhibition only partially prevents VEGF-induced endothelial permeability and does not affect pro-inflammatory cytokine-induced permeability, suggesting the involvement of alternative signalling pathways. In the present study, we provide evidence for the involvement of aPKC (atypical PKC) signalling in VEGF-induced endothelial permeability and identify a novel class of inhibitors of aPKC that prevent BRB breakdown in vivo. Genetic and pharmacological manipulations of aPKC isoforms were used to assess their contribution to endothelial permeability in culture. A chemical library was screened using an in vitro kinase assay to identify novel small-molecule inhibitors, and further medicinal chemistry was performed to delineate a novel pharmacophore. We demonstrate that aPKC isoforms are both sufficient and required for VEGF-induced endothelial permeability. Furthermore, these specific, potent, non-competitive, small-molecule inhibitors prevented VEGF-induced tight junction internalization and retinal endothelial permeability in response to VEGF in both primary culture and in rodent retina. The results of the present study suggest that aPKC inhibition with 2-amino-4-phenyl-thiophene derivatives may be developed to preserve the BRB in retinal diseases such as diabetic retinopathy or uveitis, and the BBB (blood-brain barrier) in the presence of brain tumours. 相似文献
3.
4.
Ferro T Neumann P Gertzberg N Clements R Johnson A 《American journal of physiology. Lung cellular and molecular physiology》2000,278(6):L1107-L1117
We tested the hypothesis that protein kinase C-alpha (PKC-alpha) mediates tumor necrosis factor-alpha (TNF-alpha)-induced alterations in permeability of pulmonary microvessel endothelial monolayers (PEM). The permeability of PEM was assessed by the clearance rate of Evans blue-labeled albumin. PEM lysates were analyzed for PKC-alpha mRNA (Northern cDNA blot), protein (Western immunoblot), and activity (translocation and phosphorylation of myristoylated arginine-rich C kinase substrate). Incubation of PEM with TNF-alpha (1,000 U/ml) for 4 h resulted in increases in 1) PKC-alpha protein, 2) cytoskeletal-associated PKC-alpha, 3) PKC-alpha activity, and 4) permeability to albumin. The TNF-alpha-induced increase in PKC-alpha protein, PKC-alpha activity, and permeability was prevented by a 4-h pretreatment with PKC-alpha antisense oligonucleotide but not by the scrambled nonsense oligonucleotide. The TNF-alpha-induced increase in permeability to albumin was prevented by myristoylated protein kinase C inhibitor (an inhibitor of PKC-alpha/beta, 100 microM) and calphostin (an inhibitor of the classic and novel PKC isotypes, 200 nM). The treatment with calphostin from 0.5 to 3.0 h after TNF-alpha still prevented barrier dysfunction induced by 4 h of TNF-alpha treatment. The data indicate that prolonged activation of PKC-alpha, maintained by a translation-dependent pool of PKC-alpha protein, mediates TNF-alpha-induced increases in endothelial permeability in PEM. 相似文献
5.
Protein phosphatase 2A associates with and regulates atypical PKC and the epithelial tight junction complex 总被引:12,自引:0,他引:12
Nunbhakdi-Craig V Machleidt T Ogris E Bellotto D White CL Sontag E 《The Journal of cell biology》2002,158(5):967-978
Tight junctions (TJs) play a crucial role in the establishment of cell polarity and regulation of paracellular permeability in epithelia. Here, we show that upon calcium-induced junction biogenesis in Madin-Darby canine kidney cells, ABalphaC, a major protein phosphatase (PP)2A holoenzyme, is recruited to the apical membrane where it interacts with the TJ complex. Enhanced PP2A activity induces dephosphorylation of the TJ proteins, ZO-1, occludin, and claudin-1, and is associated with increased paracellular permeability. Expression of PP2A catalytic subunit severely prevents TJ assembly. Conversely, inhibition of PP2A by okadaic acid promotes the phosphorylation and recruitment of ZO-1, occludin, and claudin-1 to the TJ during junctional biogenesis. PP2A negatively regulates TJ assembly without appreciably affecting the organization of F-actin and E-cadherin. Significantly, inhibition of atypical PKC (aPKC) blocks the calcium- and serum-independent membrane redistribution of TJ proteins induced by okadaic acid. Indeed, PP2A associates with and critically regulates the activity and distribution of aPKC during TJ formation. Thus, we provide the first evidence for calcium-dependent targeting of PP2A in epithelial cells, we identify PP2A as the first serine/threonine phosphatase associated with the multiprotein TJ complex, and we unveil a novel role for PP2A in the regulation of epithelial aPKC and TJ assembly and function. 相似文献
6.
Randal O Dull Bracken J DeWitt Ramani Dinavahi Larry Schwartz Christopher Hubert Nathan Pace Clara Fronticelli 《Journal of applied physiology》2004,97(5):1930-1937
Hemoglobin (Hb)-based O2 carriers (HBOC) are undergoing extensive development as potential "blood substitutes." A major problem associated with these molecules is an increase in microvascular permeability and peripheral vascular resistance. In this paper, we utilized bovine lung microvascular endothelial cell monolayers and simultaneously measured Hb-induced changes in transendothelial electrical resistance, diffusive albumin permeability, and diffusive Hb permeability (PDH) for three forms of Hb: natural tetrameric human Hb-A and two polymerized recombinant HBOCs containing alpha-human and beta-bovine chains designated Hb-Polytaur (molecular mass: 500 kDa) and Hb-(Polytaur)n (molecular mass: approximately 1,000,000 Da), respectively. Hb-Polytaur and Hb-(Polytaur)n are being evaluated for clinical use as HBOCs. All three Hb molecules induce a rapid decline of transendothelial electrical resistance to 30% of baseline. Diffusive albumin permeabiltiy increases, on average, approximately ninefold (2.78 x 10(-7) vs. 2.47 x 10(-6) cm/s) in response to Hb exposure. All three Hb molecules induce an increase in their own permeability, a process that we have called Hb-induced Hb permeability. The magnitude of change of PDH is also related to Hb size. When PDH is corrected for the diffusive coefficient for each Hb species, no evidence of restricted diffusion is found. Immunofluorescent images demonstrate Hb-induced actin stress fiber formation and large intercellular gaps. These data provide the first quantitative assessment of the effect of polymerized HBOC on their own diffusion rates over time. We discuss the importance of these findings in terms of Hb extravasation rates, molecular sieving, and clinical consequences of HBOC use. 相似文献
7.
Neumann P Gertzberg N Vaughan E Weisbrot J Woodburn R Lambert W Johnson A 《American journal of physiology. Lung cellular and molecular physiology》2006,290(4):L674-L684
We tested the hypothesis that tumor necrosis factor (TNF)-alpha induces a peroxynitrite (ONOO(-))-dependent increase in permeability of pulmonary microvessel endothelial monolayers (PMEM) that is associated with generation of nitrated beta-actin (NO(2)-beta-actin). The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin. beta-Actin was extracted from PMEM lysate with a DNase-Sepharose column. The extracted beta-actin was quantified in terms of its nitrotyrosine/beta-actin ratio with anti-nitrotyrosine and anti-beta-actin antibodies, sequentially, by dot-blot assays. The cellular compartmentalization of NO(2)-beta-actin was displayed by showing confocal localization of nitrotyrosine-immunofluorescence with beta-actin-immunofluorescence but not with F-actin fluorescence. Incubation of PMEM with TNF (100 ng/ml) for 0.5 and 4.0 h resulted in increases in permeability to albumin. There was an increase in the nitrotyrosine/beta-actin ratio at 0.5 h with minimal association of the NO(2)-beta-actin with F-actin polymers. The TNF-induced increase in the nitrotyrosine/beta-actin ratio and permeability were prevented by the anti-ONOO(-) agent Urate. The data indicate that TNF induces an ONOO(-)-dependent barrier dysfunction, which is associated with the generation of NO(2)-beta-actin. 相似文献
8.
Yoo J Nichols A Song JC Mammen J Calvo I Worrell RT Cuppoletti J Matlin K Matthews JB 《American journal of physiology. Gastrointestinal and liver physiology》2003,284(4):G703-G712
Tumor necrosis factor (TNF) increases epithelial permeability in many model systems. Protein kinase C (PKC) isozymes regulate epithelial barrier function and alter ligand-receptor interactions. We sought to define the impact of PKC on TNF-induced barrier dysfunction in T84 intestinal epithelia. TNF induced a dose- and time-dependent fall in transepithelial electrical resistance (TER) and an increase in [(3)H]mannitol flux. The TNF-induced fall in TER was not PKC mediated but was prevented by pretreatment with bryostatin-1, a PKC agonist. As demonstrated by a pattern of sensitivity to pharmacological inhibitors of PKC, this epithelial barrier preservation was mediated by novel PKC isozymes. Bryostatin-1 reduced TNF receptor (TNF-R1) surface availability, as demonstrated by radiolabeled TNF binding and cell surface biotinylation assays, and increased TNF-R1 receptor shedding. The pattern of sensitivity to isozyme-selective PKC inhibitors suggested that these effects were mediated by activation of PKC-epsilon. In addition, after bryostatin-1 treatment, PKC-delta and TNF-R1 became associated, as determined by mutual coimmunoprecipitation assay, which has been shown to lead to receptor desensitization in neutrophils. TNF-induced barrier dysfunction occurs independently of PKC, but selective modulation of novel PKC isozymes may regulate TNF-R1 signaling. 相似文献
9.
Shi S Garcia JG Roy S Parinandi NL Natarajan V 《American journal of physiology. Lung cellular and molecular physiology》2000,279(3):L441-L451
Reactive oxygen species (ROS) generated by activated leukocytes play an important role in the disruption of endothelial cell (EC) integrity, leading to barrier dysfunction and pulmonary edema. Although ROS modulate cell signaling, information remains limited regarding the mechanism(s) of ROS-induced EC barrier dysfunction. We utilized diperoxovanadate (DPV) as a model agent to explore the role of tyrosine phosphorylation in the regulation of EC barrier function. DPV disrupted EC barrier function in a dose-dependent manner. Tyrosine kinase inhibitors, genistein, and PP-2, a specific inhibitor of Src, reduced the DPV-mediated barrier dysfunction. Consistent with these results, DPV-induced Src activation was attenuated by PP-2. Furthermore, DPV increased the association of Src with cortactin and myosin light chain kinase, indicating their potential role as cytoskeletal targets for Src. Transient overexpression of either wild-type Src or a constitutively active Src mutant potentiated the DPV-mediated decline in barrier dysfunction, whereas a dominant negative Src mutant attenuated the response. These studies provide the first direct evidence for Src involvement in DPV-induced EC barrier dysfunction. 相似文献
10.
11.
Bove K Neumann P Gertzberg N Johnson A 《American journal of physiology. Lung cellular and molecular physiology》2001,280(5):L914-L922
We tested the hypothesis that endothelial cell nitric oxide synthase (ecNOS) mediates the tumor necrosis factor (TNF)-alpha-induced increase in nitric oxide (NO) and albumin permeability in pulmonary microvessel endothelial monolayers (PEM). PEM lysates were analyzed for ecNOS mRNA (RT-PCR), ecNOS protein (Western immunoblot), NO levels (NO, the oxidation product of NO), and barrier function (albumin clearance rate). PEM were incubated with TNF (50 ng/ml) for 0.5, 2, 4, and 24 h. TNF induced a decrease in ecNOS mRNA at 2, 4, and 24 h. TNF induced an acute (0.5 h) increase followed by a protracted decrease (4-24 h) in ecNOS protein levels. The other NOS isotypes, inducible and brain NOS, could not be detected in the PEM using RT-PCR and Western blot assay. ecNOS antisense oligonucleotide decreased ecNOS protein, which prevented the increase in NO and albumin permeability at TNF-4 h. Spermine-NONOATE, the NO agonist, ablated the protective effect of ecNOS antisense oligonucleotide on albumin permeability in response to TNF-4 h. However, ecNOS antisense oligonucleotide had no effect on the TNF-induced increase in albumin permeability at 24 h despite prevention of the increase in NO. The data indicate that the isotype ecNOS mediates generation of NO and the acute (i.e., 4 h) barrier dysfunction; however, the prolonged (i.e., 24 h) increase in the TNF-induced increase in endothelial permeability is independent of NO. 相似文献
12.
Protein tyrosine phosphatase 1B attenuates growth hormone-mediated JAK2-STAT signaling 总被引:6,自引:0,他引:6
下载免费PDF全文

Gu F Dubé N Kim JW Cheng A Ibarra-Sanchez Mde J Tremblay ML Boisclair YR 《Molecular and cellular biology》2003,23(11):3753-3762
Protein tyrosine phosphatase-1B (PTP-1B) attenuates insulin, PDGF, EGF, and IGF-I signaling by dephosphorylating tyrosine residues located in the tyrosine kinase domain of the corresponding receptors. More recently, PTP-1B was shown to modulate the action of cytokine signaling via the nonreceptor tyrosine kinase JAK2. Transmission of the growth hormone (GH) signal also depends on JAK2, raising the possibility that PTP-1B modulates GH action. Consistent with this hypothesis, GH increased the abundance of tyrosine-phosphorylated JAK2 associated with a catalytically inactive mutant of PTP-1B. GH-induced JAK2 phosphorylation was greater in knockout (KO) than in wild-type (WT) PTP-1B embryonic fibroblasts and resulted in increased tyrosine phosphorylation of STAT3 and STAT5, while overexpression of PTP-1B reduced the GH-mediated activation of the acid-labile subunit gene. To evaluate the in vivo relevance of these observations, mice were injected with GH under fed and fasted conditions. As expected, tyrosine phosphorylation of JAK2 and STAT5 occurred readily in the livers of fed WT mice and was almost completely abolished during fasting. In contrast, resistance to the action of GH was severely impaired in the livers of fasted KO mice. These results indicate that PTP-1B regulates GH signaling by reducing the extent of JAK2 phosphorylation and suggest that PTP-1B is essential for limiting the action of GH during metabolic stress such as fasting. 相似文献
13.
Young BA Sui X Kiser TD Hyun SW Wang P Sakarya S Angelini DJ Schaphorst KL Hasday JD Cross AS Romer LH Passaniti A Goldblum SE 《American journal of physiology. Lung cellular and molecular physiology》2003,285(1):L63-L75
Protein tyrosine phosphorylation is tightly regulated through the actions of both protein tyrosine kinases and protein tyrosine phosphatases. In this study, we demonstrate that protein tyrosine phosphatase inhibition promotes tyrosine phosphorylation of endothelial cell-cell adherens junction proteins, opens an endothelial paracellular pathway, and increases both transendothelial albumin flux and neutrophil migration. Tyrosine phosphatase inhibition with sodium orthovanadate or phenylarsine oxide induced dose- and time-dependent increases in [14C]bovine serum albumin flux across postconfluent bovine pulmonary artery endothelial cell monolayers. These increases in albumin flux were coincident with actin reorganization and intercellular gap formation in both postconfluent monolayers and preformed endothelial cell capillary tubes. Vanadate (25 microM) increased tyrosine phosphorylation of endothelial cell proteins 12-fold within 1 h. Tyrosine phosphorylated proteins were immunolocalized to the intercellular boundaries, and several were identified as the endothelial cell-cell adherens junction proteins, vascular-endothelial cadherin, and beta-, gamma-, and p120-catenin as well as platelet endothelial cell adhesion molecule-1. Of note, these tyrosine phosphorylation events were not associated with disassembly of the adherens junction complex or its uncoupling from the actin cytoskeleton. The dose and time requirements for vanadate-induced increases in phosphorylation were comparable with those defined for increments in transendothelial [14C]albumin flux and neutrophil migration, and pretreatment with the tyrosine kinase inhibitor herbimycin A protected against these effects. These data suggest that protein tyrosine phosphatases and their substrates, which localize to the endothelial cell-cell boundaries, regulate adherens junctional integrity, the movement of macromolecules and cells through the endothelial paracellular pathway, and capillary tube stability. 相似文献
14.
During myofibrillogenesis, myosin light-chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin II,
enabling patterned assembly of myosin thick filaments. A protein phosphatase (PP) has been shown to mediate RLC dephosphorylation
in adult smooth and striated muscle. A role for PP activity in regulating myofibrillogenesis during embryonic development,
however, has not been investigated. Tautomycin (TM) was used to inhibit both PP1 and PP2A activities, whereas okadaic acid
(OA) and fostriecin (FOS) were used to inhibit PP2A. TM affected both actin and myosin assembly at 5nM; the IC50 value was 20 and 8.5nM, respectively. In contrast, OA applied at 10 times above its reported Ki for PP2A caused no significant disruption. There
was also no disruption when FOS was applied at a concentration 30 times above its reported Ki for PP2A. Thus, our results
suggest a primary role for PP1 isoforms during myofibrillogenesis. Although rho kinase (RK) regulates PP activity in embryonic
smooth and cardiac muscle, application of the RK inhibitor Y27632 did not affect actin or myosin assembly in skeletal myocytes.
Collectively, our pharmacological results suggest that PP1 is involved in dynamic regulation of RLC phosphorylation. To specifically
test involvement of the myosin-targeted isoform (PP1M), we used a morpholino antisense approach to knock down the myosin targeting
(M) subunit of PP1. Embryos injected with morpholino targeted to the 110-kDa M targeting subunit had fewer somites, and myosin
organization was significantly perturbed. The combined pharmacological and molecular results suggest a dynamic equilibrium
between MLCK and PP1M activities is required for proper myofibrillogenesis. 相似文献
15.
Protein-tyrosine phosphatase 1B potentiates IRE1 signaling during endoplasmic reticulum stress 总被引:5,自引:0,他引:5
Gu F Nguyên DT Stuible M Dubé N Tremblay ML Chevet E 《The Journal of biological chemistry》2004,279(48):49689-49693
Protein-tyrosine phosphatase 1B (PTP-1B) is the prototypic tyrosine phosphatase whose function in insulin signaling and metabolism is well established. Although the role of PTP-1B in dephosphorylating various cell surface receptor tyrosine kinases is clear, the mechanisms by which it modulates receptor function from the endoplasmic reticulum (ER) remains an enigma. Here, we provide evidence that PTP-1B has an essential function in regulating the unfolded protein response in the ER compartment. The absence of PTP-1B caused impaired ER stress-induced IRE1 signaling. More specifically, JNK activation, XBP-1 splicing, and EDEM (ER degradation-enhancing alpha-mannosidase-like protein) gene induction, as well as ER stress-induced apoptosis, were attenuated in PTP-1B knock-out mouse embryonic fibroblasts in response to two ER stressors, tunicamycin and azetidine-2 carboxylic acid. We demonstrate that PTP-1B is not just a passive resident of the ER but on the contrary has an essential role in potentiating IRE1-mediated ER stress signaling pathways. 相似文献
16.
Beno DW Uhing MR Goto M Chen Y Jiyamapa-Serna VA Kimura RE 《American journal of physiology. Gastrointestinal and liver physiology》2001,280(5):G866-G872
Most models of liver dysfunction in sepsis use endotoxin (lipopolysaccharide; LPS) to induce a pathophysiological response. In our study published in this issue (Beno DWA, Uhing MR, Goto M, Chen Y, Jiyamapa-Serna VA, and Kimura RE. Am J Physiol Gastrointest Liver Physiol 280: G858-G865, 2001), the adverse effect of LPS on hepatic function in vivo was only significant at relatively high LPS doses despite high tumor necrosis factor-alpha concentrations. However, many patients with sepsis are exposed to multiple bacterial toxins that may augment the immune response, resulting in increased hepatic dysfunction. We have developed a model of polymicrobial sepsis by parentally administering a combination of staphylococcal enterotoxin B (SEB) and LPS. Using this model, we demonstrate that SEB (50 microg/kg) potentiates the effect of LPS-induced hepatic dysfunction as measured by decreased rates of biliary indocyanine green clearance and bile flow. These increases were most pronounced with doses of 10 and 100 microg/kg LPS, doses that by themselves do not induce hepatic dysfunction. This may explain the seemingly increased incidence and severity of liver dysfunction in sepsis, and it suggests that the exclusive use of LPS for replicating septic shock may not be relevant for studies of hepatic dysfunction. 相似文献
17.
Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis 总被引:21,自引:0,他引:21
VEGF is unique among angiogenic growth factors because it disrupts endothelial barrier function. Therefore, we considered whether this property of VEGF might contribute to tumor cell extravasation and metastasis. To test this, mice lacking the Src family kinases Src or Yes, which maintain endothelial barrier function in the presence of VEGF, were injected intravenously with VEGF-expressing tumor cells. We found a dramatic reduction in tumor cell extravasation in lungs or livers of mice lacking Src or Yes. At the molecular level, VEGF compromises the endothelial barrier by disrupting a VE-cadherin-beta-catenin complex in lung endothelium from wild-type, but not Yes-deficient, mice. Disrupting the endothelial barrier directly with anti-VE-cadherin both amplifies metastasis in normal mice and overcomes the genetic resistance in Yes-deficient mice. Pharmacological blockade of VEGF, VEGFR-2, or Src stabilizes endothelial barrier function and suppresses tumor cell extravasation in vivo. Therefore, disrupting Src signaling preserves host endothelial barrier function providing a novel host-targeted approach to control metastatic disease. 相似文献
18.
Fleegal MA Hom S Borg LK Davis TP 《American journal of physiology. Heart and circulatory physiology》2005,289(5):H2012-H2019
The blood-brain barrier (BBB) is a metabolic and physiological barrier important for maintaining brain homeostasis. The aim of this study was to determine the role of PKC activation in BBB paracellular permeability changes induced by hypoxia and posthypoxic reoxygenation using in vitro and in vivo BBB models. In rat brain microvessel endothelial cells (RMECs) exposed to hypoxia (1% O2-99% N2; 24 h), a significant increase in total PKC activity was observed, and this was reduced by posthypoxic reoxygenation (95% room air-5% CO2) for 2 h. The expression of PKC-betaII, PKC-gamma, PKC-eta, PKC-mu, and PKC-lambda also increased following hypoxia (1% O2-99% N2; 24 h), and these protein levels remained elevated following posthypoxic reoxygenation (95% room air-5% CO2; 2 h). Increases in the expression of PKC-epsilon and PKC-zeta were also observed following posthypoxic reoxygenation (95% room air-5% CO2; 2 h). Moreover, inhibition of PKC with chelerythrine chloride (10 microM) attenuated the hypoxia-induced increases in [14C]sucrose permeability. Similar to what was observed in RMECs, total PKC activity was also stimulated in cerebral microvessels isolated from rats exposed to hypoxia (6% O2-94% N2; 1 h) and posthypoxic reoxygenation (room air; 10 min). In contrast, hypoxia (6% O2-94% N2; 1 h) and posthypoxic reoxygenation (room air; 10 min) significantly increased the expression levels of only PKC-gamma and PKC-theta in the in vivo hypoxia model. These data demonstrate that hypoxia-induced BBB paracellular permeability changes occur via a PKC-dependent mechanism, possibly by differentially regulating the protein expression of the 11 PKC isozymes. 相似文献
19.
John P. Williams Hanjoong Jo Ruthann E. Hunnicutt David L. Brautigan Jay M. McDonald Dr. 《Journal of cellular biochemistry》1995,57(3):415-422
Inhibitor 2 is a heat-stable protein that complexes with the catalytic subunit of type-1 protein phosphatase. The reversible phosphorylation of Thr 72 of the inhibitor in this complex has been shown to regulate phosphatase activity. Here we show that inhibitor 2 can also be phosphorylated on tyrosine residues. Inhibitor 2 was 32P-labeled by the insulin receptor kinase in vitro, in the presence of polylysine. Phosphorylation of inhibitor 2 was accompanied by decreased electrophoretic mobility. Dephosphorylation of inhibitor 2 by tyrosine phosphatase 1B, restored normal electrophoretic mobility. Phosphotyrosine in inhibitor 2 was detected by immunoblotting with antiphosphotyrosine antibodies and phosphoamino acid analysis. In addition, following tryptic digestion, one predominant phosphopeptide was recovered at the anode. The ability of inhibitor 2 to inhibit type-1 phosphatase activity was diminished with increasing phosphorylation up to a stoichiometry of 1 mole phosphate incorporated/mole of inhibitor 2, where inhibitory activity was completely lost. These data demonstrate that inhibitor 2 can be phosphorylated on tyrosine residues by the insulin receptor kinase, resulting in a molecule with decreased ability to inhibit type-1 phosphatase activity. 相似文献
20.
Scott LM Chen L Daniel KG Brooks WH Guida WC Lawrence HR Sebti SM Lawrence NJ Wu J 《Bioorganic & medicinal chemistry letters》2011,21(2):730-733
Shp2 protein tyrosine phosphate (PTP) is a novel target for anticancer drug discovery. We identified estramustine phosphate as a Shp2 PTP inhibitor from the National Cancer Institute Approved Oncology Drug set. A focused structure-activity relationship study indicated that the 17-phosphate group is required for the Shp2 PTP inhibitor activity of estramustine phosphate. A search for estramustine phosphate analogs led to identification of two triterpenoids, enoxolone, and celastrol, having Shp2 PTP inhibitor activity. With the previously reported PTP1B inhibitor trodusquemine, our study reveals steroids and triterpenoids with negatively charged phosphate, carboxylate, or sulfonate groups as novel pharmacophores of selective PTP inhibitors. 相似文献