首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exhaled nitric oxide (NO) is elevated in asthma, but the underlying mechanisms remain poorly understood. Recent results in subjects with asthma have reported a decrease in exhaled breath pH and ammonia, as well as altered expression and activity of glutaminase in both alveolar and airway epithelial cells. This suggests that pH-dependent nitrite conversion to NO may be a source of exhaled NO in the asthmatic airway epithelium. However, the anatomic location (i.e., airway or alveolar region) of this pH-dependent NO release has not been investigated and could impact potential therapeutic strategies. We quantified airway (proximal) and alveolar (peripheral) contributions to exhaled NO at baseline and then after PBS inhalation in stable (mild-intermittent to severe) asthmatic subjects (20-44 yr old; n = 9) and healthy controls (22-41 yr old; n = 6). The mean (SD) maximum airway wall flux (pl/s) and alveolar concentration (ppb) at baseline in asthma subjects and healthy controls was 2,530 (2,572) and 5.42 (7.31) and 1,703 (1,567) and 1.88 (1.29), respectively. Compared with baseline, there is a significant decrease in the airway wall flux of NO in asthma as early as 15 min and continuing for up to 60 min (maximum -28% at 45 min) after PBS inhalation without alteration of alveolar concentration. Healthy control subjects did not display any changes in exhaled NO. We conclude that elevated airway NO at baseline in asthma is reduced by inhaled PBS. Thus airway NO may be, in part, due to nitrite conversion to NO and is consistent with airway pH dysregulation in asthma.  相似文献   

2.
Exhaled nitric oxide (NO) levels are high in asthmatic subjects and increase with exacerbations. We hypothesized that higher levels of NO observed during asthma exacerbations are due to increased synthesis of NO. Exhaled NO and peak flows were measured in 11 asthmatic and 9 healthy control subjects before and after experimental asthmatic response induced by whole lung allergen challenge. Baseline peak flows of asthmatics were significantly lower than controls and decreased significantly immediately after challenge (P = 0.004). NO was measured by collecting exhaled breaths without breath hold (NO0) and after a 15-s breath hold (NO15). The rate of NO accumulation over time [parts/billion per second (ppb/s)] was calculated by DeltaNO/Deltat = (NO15 - NO0)/15, where Delta denotes a change and t is time. The NO accumulation rates in asthmatic and control subjects were similar at baseline; however, NO accumulation at 24 h increased threefold from baseline in asthmatic compared with control subjects (asthmatic subjects, 0.6 +/- 0.2 ppb/s; control subjects, 0.2 +/- 0.1 ppb/s; P = 0.01). Our study suggests that increased NO during an asthma exacerbation is due to increased synthesis, perhaps by increased expression of NO synthases.  相似文献   

3.
Exhaled nitric oxide (NO) is altered in asthmatic subjects with exercise-induced bronchoconstriction (EIB). However, the physiological interpretation of exhaled NO is limited because of its dependence on exhalation flow and the inability to distinguish completely proximal (large airway) from peripheral (small airway and alveolar) contributions. We estimated flow-independent NO exchange parameters that partition exhaled NO into proximal and peripheral contributions at baseline, postexercise challenge, and postbronchodilator administration in steroid-naive mild-intermittent asthmatic subjects with EIB (24-43 yr old, n = 9) and healthy controls (20-31 yr old, n = 9). The mean +/- SD maximum airway wall flux and airway diffusing capacity were elevated and forced expiratory flow, midexpiratory phase (FEF(25-75)), forced expiratory volume in 1 s (FEV(1)), and FEV(1)/forced vital capacity (FVC) were reduced at baseline in subjects with EIB compared with healthy controls, whereas the steady-state alveolar concentration of NO and FVC were not different. Compared with the response of healthy controls, exercise challenge significantly reduced FEV(1) (-23 +/- 15%), FEF(25-75) (-37 +/- 18%), FVC (-12 +/- 12%), FEV(1)/FVC (-13 +/- 8%), and maximum airway wall flux (-35 +/- 11%) relative to baseline in subjects with EIB, whereas bronchodilator administration only increased FEV(1) (+20 +/- 21%), FEF(25-75) (+56 +/- 41%), and FEV(1)/FVC (+13 +/- 9%). We conclude that mild-intermittent steroid-naive asthmatic subjects with EIB have altered airway NO exchange dynamics at baseline and after exercise challenge but that these changes occur by distinct mechanisms and are not correlated with alterations in spirometry.  相似文献   

4.
While airway constriction has been shown to affect exhaled nitric oxide (NO), the mechanisms and location of constricted airways most likely to affect exhaled NO remain obscure. We studied the effects of histamine-induced airway constriction and ventilation heterogeneity on exhaled NO at 50 ml/s (Fe(NO,50)) and combined this with model simulations of Fe(NO,50) changes due to constriction of airways at various depths of the lung model. In 20 normal subjects, histamine induced a 26 +/- 15(SD)% Fe(NO,50) decrease, a 9 +/- 6% forced expiratory volume in 1 s (FEV(1)) decrease, a 19 +/- 9% mean forced midexpiratory flow between 25% and 75% forced vital capacity (FEF(25-75)) decrease, and a 94 +/- 119% increase in conductive ventilation heterogeneity. There was a significant correlation of Fe(NO,50) decrease with FEF(25-75) decrease (P = 0.006) but not with FEV(1) decrease or with increased ventilation heterogeneity. Simulations confirmed the negligible effect of ventilation heterogeneity on Fe(NO,50) and showed that the histamine-induced Fe(NO,50) decrease was due to constriction, with associated reduction in NO flux, of airways located proximal to generation 15. The model also indicated that the most marked effect of airways constriction on Fe(NO,50) is situated in generations 10-15 and that airway constriction beyond generation 15 markedly increases Fe(NO,50) due to interference with the NO backdiffusion effect. These mechanical factors should be considered when interpreting exhaled NO in lung disease.  相似文献   

5.
Exhaled nitric oxide (NO) is a potential noninvasive index of lung inflammation and is thought to arise from the alveolar and airway regions of the lungs. A two-compartment model has been used to describe NO exchange; however, the model neglects axial diffusion of NO in the gas phase, and recent theoretical studies suggest that this may introduce significant error. We used heliox (80% helium, 20% oxygen) as the insufflating gas to probe the impact of axial diffusion (molecular diffusivity of NO is increased 2.3-fold relative to air) in healthy adults (21-38 yr old, n = 9). Heliox decreased the plateau concentration of exhaled NO by 45% (exhalation flow rate of 50 ml/s). In addition, the total mass of NO exhaled in phase I and II after a 20-s breath hold was reduced by 36%. A single-path trumpet model that considers axial diffusion predicts a 50% increase in the maximum airway flux of NO and a near-zero alveolar concentration (Ca(NO)) and source. Furthermore, when NO elimination is plotted vs. constant exhalation flow rate (range 50-500 ml/s), the slope has been previously interpreted as a nonzero Ca(NO) (range 1-5 ppb); however, the trumpet model predicts a positive slope of 0.4-2.1 ppb despite a zero Ca(NO) because of a diminishing impact of axial diffusion as flow rate increases. We conclude that axial diffusion leads to a significant backdiffusion of NO from the airways to the alveolar region that significantly impacts the partitioning of airway and alveolar contributions to exhaled NO.  相似文献   

6.
Inhibition of nitric oxide synthesis attenuates thermally induced asthma.   总被引:1,自引:0,他引:1  
To determine whether the inhibition of nitric oxide (NO) synthesis attenuates thermally induced obstruction, we had 10 asthmatic volunteers perform isocapnic hyperventilation with frigid air after inhaling 1 mg of N(G)-monomethyl-L-arginine (L-NMMA) or isotonic saline in a blinded fashion. The challenges were identical in all respects, and there were no differences in baseline lung function [1-s forced expiratory volume (FEV(1)); saline 2.8 +/- 0.3 liters, L-NMMA 2.9 +/- 0.3 liters; P = 0.41] or prechallenge fractional concentration of nitric oxide in the exhaled air (FENO) [saline 23 +/- 6 parts/billion (ppb), L-NMMA 18 +/- 4 ppb; P = 0.51]. Neither treatment had any impact on the FEV(1), pulse, or blood pressure. After L-NMMA, FENO fell significantly (P < 0.0001), the stimulus-response curves shifted to the right, and the minute ventilation required to reduce the FEV(1) 20% rose 53.5% over control (P = 0.02). The results of this study demonstrate that NO generated from the airways of asthmatic individuals may play an important role in the pathogenesis of thermally induced asthma.  相似文献   

7.

Background

The role of leukotriene (LT) B4, a potent inflammatory mediator, in atopic asthmatic and atopic nonasthmatic children is largely unknown. The lack of a gold standard technique for measuring LTB4 in exhaled breath condensate (EBC) has hampered its quantitative assessment in this biological fluid. We sought to measure LTB4 in EBC in atopic asthmatic children and atopic nonasthmatic children. Exhaled nitric oxide (NO) was measured as an independent marker of airway inflammation.

Methods

Fifteen healthy children, 20 atopic nonasthmatic children, 25 steroid-naïve atopic asthmatic children, and 22 atopic asthmatic children receiving inhaled corticosteroids were studied. The study design was of cross-sectional type. Exhaled LTB4 concentrations were measured using liquid chromatography/mass spectrometry-mass spectrometry (LC/MS/MS) with a triple quadrupole mass spectrometer. Exhaled NO was measured by chemiluminescence with a single breath on-line method. LTB4 values were expressed as the total amount (in pg) of eicosanoid expired in the 15-minute breath test. Kruskal-Wallis test was used to compare groups.

Results

Compared with healthy children [87.5 (82.5–102.5) pg, median and interquartile range], exhaled LTB4 was increased in steroid-naïve atopic asthmatic [255.1 (175.0–314.7) pg, p < 0.001], but not in atopic nonasthmatic children [96.5 (87.3–102.5) pg, p = 0.59)]. Asthmatic children who were receiving inhaled corticosteroids had lower concentrations of exhaled LTB4 than steroid-naïve asthmatics [125.0 (25.0–245.0) pg vs 255.1 (175.0–314.7) pg, p < 0.01, respectively]. Exhaled NO was higher in atopic nonasthmatic children [16.2 (13.5–22.4) ppb, p < 0.05] and, to a greater extent, in atopic steroid-naïve asthmatic children [37.0 (31.7–57.6) ppb, p < 0.001] than in healthy children [8.3 (6.1–9.9) ppb]. Compared with steroid-naïve asthmatic children, exhaled NO levels were reduced in asthmatic children who were receiving inhaled corticosteroids [15.9 (11.5–31.7) ppb, p < 0.01].

Conclusion

In contrast to exhaled NO concentrations, exhaled LTB4 values are selectively elevated in steroid-naïve atopic asthmatic children, but not in atopic nonasthmatic children. Although placebo control studies are warranted, inhaled corticosteroids seem to reduce exhaled LTB4 in asthmatic children. LC/MS/MS analysis of exhaled LTB4 might provide a non-invasive, sensitive, and quantitative method for airway inflammation assessment in asthmatic children.  相似文献   

8.
This study examined energy expenditure and physiologic determinants for marathon performance in recreational runners. Twenty recreational marathon runners participated (10 males aged 41 +/- 11.3 years, 10 females aged 42.7 +/- 11.7 years). Each subject completed a V(.-)O2max and a 1-hour treadmill run at recent marathon pace, and body composition was indirectly determined via dual energy X-ray absorptiometry. The male runners exhibited higher V(.-)O2max (ml x kg(-1) x min(-1)) values (52.6 +/- 5.5) than their female counterparts (41.9 +/- 6.6), although ventilatory threshold (T-vent) values were similar between groups (males: 76.2 +/- 6.1 % of V(.-)O2max, females: 75.1 +/- 5.1%). The male runners expended more energy (2,792 +/- 235 kcal) for their most recent marathon as calculated from the 1-hour treadmill run at marathon pace than the female runners (2,436 +/- 297 kcal). Body composition parameters correlated moderately to highly (r ranging from 0.50 to 0.87) with marathon run time. Also, V(.-)O2max (r = -0.73) and ventilatory threshold (r = -0.73) moderately correlated with marathon run time. As a group, the participants ran near their ventilatory threshold for their most recent marathon (r = 0.74). These results indicate the influence of body size on marathon run performance. In general, the larger male and female runners ran slower and expended more kilocalories than smaller runners. Regardless of marathon finishing time, the runners maintained a pace near their T-vent, and as T-vent or V(.-)O2max increased, marathon performance time decreased.  相似文献   

9.
Erythrocyte 2,3-diphosphoglycerate (2,3-DPG) concentration was studied in 23 runners before and after a marathon race. Blood samples were drawn from an antecubital vein the morning before the race (baseline), at 3 p.m. 2 h before the start, on finishing, and 12 and 36 h later. Compared to the baseline values, erythrocyte 2,3-DPG concentration was increased (p less than 0.001) immediately after the marathon from 4.62 +/- 0.14 to 5.56 +/- 0.13 mumol.ml-1 RBC and remained elevated 12 h later (5.45 +/- 0.14 mumol.ml-1 RBC): it returned to prerace values 36 h after completion of the marathon.  相似文献   

10.
Nitric oxide (NO) regulates neutrophil migration and alveolar macrophage functions such as cytokine synthesis and bacterial killing, both of which are impaired in immune paralysis associated with critical illness. The aim of this study was to determine whether NO is involved in immune paralysis and whether exhaled NO measurement could help to monitor pulmonary defenses. NO production (protein expression, enzyme activity, end products, and exhaled NO measurements) was assessed in rats after cecal ligation and puncture to induce a mild peritonitis (leading to approximately 20% mortality rate). An early and sustained decrease in exhaled NO was found after peritonitis (from 1 to 72 h) compared with healthy rats [median (25th-75th percentile), 1.5 parts per billion (ppb) (1.2-1.7) vs. 4.0 ppb (3.6-4.3), P < 0.05], despite increased NO synthase-2 and unchanged NO synthase-3 protein expression in lung tissue. NO synthase-2 activity was decreased in lung tissue. Nitrites and nitrates in supernatants of isolated alveolar macrophages decreased after peritonitis compared with healthy rats, and an inhibitory experiment suggested arginase overactivity in alveolar macrophages bypassing the NO substrate. Administration of the NO synthase-2 inhibitor aminoguanidine to healthy animals reproduced the decreased neutrophil migration toward alveolar spaces that was observed after peritonitis, but L-arginine administration after peritonitis failed to correct the defect of neutrophil emigration despite increasing exhaled NO compared with D-arginine administration [4.8 (3.9-5.7) vs. 1.6 (1.3-1.7) ppb, respectively, P < 0.05]. In conclusion, the decrease in exhaled NO observed after mild peritonitis could serve as a marker for lung immunodepression.  相似文献   

11.
Exhaled nitric oxide (NO) concentration is a noninvasive index for monitoring lung inflammation in diseases such as asthma. The plateau concentration at constant flow is highly dependent on the exhalation flow rate and the use of corticosteroids and cannot distinguish airway and alveolar sources. In subjects with steroid-naive asthma (n = 8) or steroid-treated asthma (n = 12) and in healthy controls (n = 24), we measured flow-independent NO exchange parameters that partition exhaled NO into airway and alveolar regions and correlated these with symptoms and lung function. The mean (+/-SD) maximum airway flux (pl/s) and airway tissue concentration [parts/billion (ppb)] of NO were lower in steroid-treated asthmatic subjects compared with steroid-naive asthmatic subjects (1,195 +/- 836 pl/s and 143 +/- 66 ppb compared with 2,693 +/- 1,687 pl/s and 438 +/- 312 ppb, respectively). In contrast, the airway diffusing capacity for NO (pl.s-1.ppb-1) was elevated in both asthmatic groups compared with healthy controls, independent of steroid therapy (11.8 +/- 11.7, 8.71 +/- 5.74, and 3.13 +/- 1.57 pl.s-1.ppb-1 for steroid treated, steroid naive, and healthy controls, respectively). In addition, the airway diffusing capacity was inversely correlated with both forced expired volume in 1 s and forced vital capacity (%predicted), whereas the airway tissue concentration was positively correlated with forced vital capacity. Consistent with previously reported results from Silkoff et al. (Silkoff PE, Sylvester JT, Zamel N, and Permutt S, Am J Respir Crit Med 161: 1218-1228, 2000) that used an alternate technique, we conclude that the airway diffusing capacity for NO is elevated in asthma independent of steroid therapy and may reflect clinically relevant changes in airways.  相似文献   

12.
A number of blood biochemical parameters, including the activities of the plasma enzymes creatine kinase (CK), aspartate aminotransferase (ASAT), lactate dehydrogenase and alkaline phosphatase, were measured in 23 athletes before, and immediately after a 56-km running race. Of the 23 athletes, 18 had previously completed standard 42-km marathon or longer (up to 90-km) ultra-marathon races, whereas not one of the other five athletes had previously run in a long-distance race. After the race, plasma CK and ASAT activities had both risen at least 280% more in the novice runners despite their much slower mean running speed (9.8 +/- 0.4 vs. 13.8 +/- 0.3 hm/h). There were no other inter-group differences in the absolute levels of the other measured biochemical parameters, although the rise in plasma calcium during the race was significantly greater in the experienced marathon runners. This study shows that either higher levels of training, or previous ultra-marathon racing experience, or both, is associated with lower immediate post-exercise levels of plasma enzyme activity. This is compatible with the finding that physical training reduces post-exercise plasma enzyme levels.  相似文献   

13.
Exhaled nitric oxide (NO) is highly dependent on exhalation flow; thus exchange dynamics of NO have been described by multicompartment models and a series of flow-independent parameters that describe airway and alveolar exchange. Because the flow-independent NO airway parameters characterize features of the airway tissue (e.g., wall concentration), they should also be independent of the physical properties of the insufflating gas. We measured the total mass of NO exhaled (A(I,II)) from the airways after five different breath-hold times (5-30 s) in healthy adults (21-38 yr, n = 9) using air and heliox as the insufflating gas, and then modeled A(I,II) as a function of breath-hold time to determine airway NO exchange parameters. Increasing breath-hold time results in an increase in A(I,II) for both air and heliox, but A(I,II) is reduced by a mean (SD) of 31% (SD 6) (P < 0.04) in the presence of heliox, independent of breath-hold time. However, mean (SD) values (air, heliox) for the airway wall diffusing capacity [3.70 (SD 4.18), 3.56 pl.s(-1).ppb(-1) (SD 3.20)], the airway wall concentration [1,439 (SD 487), 1,503 ppb (SD 644>)], and the maximum airway wall flux [4,156 (SD 2,502), 4,412 pl/s (SD 2,906)] using a single-path trumpet-shaped airway model that considers axial diffusion were independent of the insufflating gas (P > 0.55). We conclude that a single-path trumpet model that considers axial diffusion captures the essential features of airway wall NO exchange and confirm earlier reports that the airway wall concentration in healthy adults exceeds 1 ppm and thus approaches physiological concentrations capable of modulating smooth muscle tone.  相似文献   

14.
Circulating hematopoietic progenitor cells in runners.   总被引:1,自引:0,他引:1  
Because endurance exercise causes release of mediators and growth factors active on the bone marrow, we asked whether it might affect circulating hematopoietic progenitor cells (HPCs) in amateur runners [n = 16, age: 41.8 +/- 13.5 (SD) yr, training: 93.8 +/- 31.8 km/wk] compared with sedentary controls (n = 9, age: 39.4 +/- 10.2 yr). HPCs, plasma cortisol, interleukin (IL)-6, granulocyte colony-stimulating factor (G-CSF), and the growth factor fms-like tyrosine kinase-3 (flt3)-ligand were measured at rest and after a marathon (M; n = 8) or half-marathon (HM; n = 8). Circulating HPC counts (i.e., CD34(+) cells and their subpopulations) were three- to fourfold higher in runners than in controls at baseline. They were unaffected by HM or M acutely but decreased the morning postrace. Baseline cortisol, flt3-ligand, IL-6, and G-CSF levels were similar in runners and controls. IL-6 and G-CSF increased to higher levels after M compared with HM, whereas cortisol and flt3-ligand increased similarly postrace. Our data suggest that increased HPCs reflect an adaptation response to recurrent, exercise-associated release of neutrophils and stress and inflammatory mediators, indicating modulation of bone marrow activity by habitual running.  相似文献   

15.
Exercise training reverses endothelial dysfunction, but the effect in young, healthy subjects is less clear. We determined the influence of maximal oxygen uptake (VO2max) and a single bout of high-intensity exercise on flow-mediated dilatation (FMD), brachial artery diameter, peak blood flow, nitric oxide (NO) bioavailability, and antioxidant status in highly endurance-trained men and their sedentary counterparts. Ten men athletes (mean +/- SEM age 23.5 +/- 0.9 years, height 182.6 +/- 2.4 cm, weight 72.5 +/- 2.4 kg, VO2max 75.9 +/- 0.8 mL.kg.min) and seven healthy controls (age 25.4 +/- 1.2 years, height 183.9 +/- 3.74 cm, weight 92.8 +/- 3.9 kg, VO2max 47.7 +/- 1.7 mL.kg.min) took part in the study. FMD, brachial artery diameter, and peak blood flow were measured using echo-Doppler before, 1 hour, 24 hours, and 48 hours after a single bout of interval running for 5 x 5 minutes at 90% of maximal heart rate. NO bioavailability and antioxidant status in blood were measured at all time points. Maximal arterial diameter and peak flow were 10-15% (P < 0.02) and 28-35% (P < 0.02) larger, respectively, in athletes vs. controls at all time points, and similar FMD were observed, apart from a transient decay of FMD in athletes 1 hour post exercise. NO bioavailability increased significantly after exercise in both groups and decreased to baseline levels after 24 hours in controls but remained increased 80% and 93% above baseline 24 and 48 hours post exercise in athletes. Antioxidant status was equal in the two groups at baseline and increased by approximately 10% 1 hour post exercise, an effect that lasted for 24 hours. Athletes had larger arterial diameter but similar FMD as untrained subjects, i.e., athletes had larger capacity for blood transport compared with their untrained counterparts. The observed FMD, bioavailability of NO, and antioxidant status in blood were highly dependent on the time elapsed after the exercise session.  相似文献   

16.
Exhaled nitric oxide (NO) arises from both airway and alveolar regions of the lungs, which provides an opportunity to characterize region-specific inflammation. Current methodologies rely on vital capacity breathing maneuvers and controlled exhalation flow rates, which can be difficult to perform, especially for young children and individuals with compromised lung function. In addition, recent theoretical and experimental studies demonstrate that gas-phase axial diffusion of NO has a significant impact on the exhaled NO signal. We have developed a new technique to characterize airway NO, which requires a series of progressively increasing breath-hold times followed by exhalation of only the airway compartment. Using our new technique, we determined values (means +/- SE) in healthy adults (20-38 yr, n = 8) for the airway diffusing capacity [4.5 +/- 1.6 pl.s(-1).parts per billion (ppb)(-1)], the airway wall concentration (1,340 +/- 213 ppb), and the maximum airway wall flux (4,350 +/- 811 pl/s). The new technique is simple to perform, and application of this data to simpler models with cylindrical airways and no axial diffusion yields parameters consistent with previous methods. Inclusion of axial diffusion as well as an anatomically correct trumpet-shaped airway geometry results in significant loss of NO from the airways to the alveolar region, profoundly impacting airway NO characterization. In particular, the airway wall concentration is more than an order of magnitude larger than previous estimates in healthy adults and may approach concentrations (approximately 5 nM) that can influence physiological processes such as smooth muscle tone in disease states such as asthma.  相似文献   

17.
Erythropoietic adaptations involving the oxygen dissociation curve (ODC) and erythropoietin production have been implicated in the etiology of reduced blood haemoglobin concentrations in sportspersons (known as sports anaemia). A significant increase in the half-saturation pressure indicating a right-shift in the ODC was measured in 34 male [25.8-27.4 mmHg (3.44-3.65 kPa)] and 16 female (25.8-27.7 mmHg (3.44-3.69 kPa)] trained distance runners (P less than 0.01 for both genders) after completing a standard 42-km marathon. Erythrocyte 2,3-diphosphoglycerate concentrations measured concurrently were unaltered by exercise, although consistently higher in the female compared to the male athletes (P less than 0.05). The serum erythropoietin (EPO) concentrations of 15 male triathletes (26.3 U.ml-1) were significantly lower than those of 45 male distance runners (31.6 U.ml-1; P less than 0.05). However, the mean serum EPO concentrations of male and female athletes engaged in a variety of sports were not different from those of sedentary control subjects of both sexes (26.5-35.3 U.ml-1). Furthermore, the serum EPO concentrations were unaltered after prolonged strenuous exercise in 20 male marathon runners. These data suggest that the haematological status of these endurance athletes is in fact normal and that the observed shift in the ODC, while providing a physiological advantage during exercise, has no measurable effect on the erythropoietic drive.  相似文献   

18.
Plasma nitrite (NO2-) and nitrate (NO3-) are the stable end-products of endogenous nitric oxide (NO) metabolism. NO is present in the exhaled air of humans, but it is not clear if exhaled NO may be an indicator of the systemic endogenous NO production. The aims of the study were to determine the levels of exhaled NO and plasma NO2-/NO3- in healthy term and preterm newborns, and to assess if exhaled NO correlates with plasma NO2-/NO3- at birth. After the stabilization of the newborn, we measured by chemiluminescence the concentration of NO in the mixed expired breath of 133 healthy newborns. Measurement of exhaled NO was repeated after 24 and 48 hours. Plasma NO2-/NO3- levels at birth were measured by the Griess reaction. NO concentrations were 8.9 (CI 8.1-9.8) parts per billion (ppb), 7.7 (CI 7.2-8.3) ppb and 9.0 (CI 8.4-9.6) ppb at birth, 24 and 48 hours, respectively. At birth, exhaled NO was inversely correlated with gestational age (p=0.008) and birth weight (p<0.001). Plasma NO2-/NO3- level was 27.30 (CI 24.26-30.34) micromol/L. There was no correlation between exhaled NO and plasma NO2-/NO3- levels at birth (p=0.88). We speculate that the inverse correlation between exhaled NO and gestational age and birth weight may reflect a role of NO in the postnatal adaptation of pulmonary circulation. At birth, exhaled NO does not correlate with plasma NO2-/NO3- and does not seem to be an index of the systemic endogenous NO production.  相似文献   

19.

Introduction

Physical activity is beneficial for individual health, but endurance sport is associated with the development of arrhythmias like atrial fibrillation. The underlying mechanisms leading to this increased risk are still not fully understood. MicroRNAs are important mediators of proarrhythmogenic remodeling and have potential value as biomarkers in cardiovascular diseases. Therefore, the objective of our study was to determine the value of circulating microRNAs as potential biomarkers for atrial remodeling in marathon runners (miRathon study).

Methods

30 marathon runners were recruited into our study and were divided into two age-matched groups depending on the training status: elite (ER, ≥55 km/week, n = 15) and non-elite runners (NER, ≤40 km/week, n = 15). All runners participated in a 10 week training program before the marathon. MiRNA plasma levels were measured at 4 time points: at baseline (V1), after a 10 week training period (V2), immediately after the marathon (V3) and 24h later (V4). Additionally, we obtained clinical data including serum chemistry and echocardiography at each time point.

Results

MiRNA plasma levels were similar in both groups over time with more pronounced changes in ER. After the marathon miR-30a plasma levels increased significantly in both groups. MiR-1 and miR-133a plasma levels also increased but showed significant changes in ER only. 24h after the marathon plasma levels returned to baseline. MiR-26a decreased significantly after the marathon in elite runners only and miR-29b showed a non-significant decrease over time in both groups. In ER miRNA plasma levels showed a significant correlation with LA diameter, in NER miRNA plasma levels did not correlate with echocardiographic parameters.

Conclusion

MiRNAs were differentially expressed in the plasma of marathon runners with more pronounced changes in ER. Plasma levels in ER correlate with left atrial diameter suggesting that circulating miRNAs could potentially serve as biomarkers of atrial remodeling in athletes.  相似文献   

20.
Many well-trained elite older runners have performances comparable to those of much younger nonelite runners. We sought to determine whether the physiological determinants of endurance performance in two groups of such athletes were the same. Eight master athletes (age 56 +/- 5 yr) were matched on the basis of 10-km performance and training to younger runners (age 25 +/- 3 yr). The master athletes had a 9% lower maximum O2 uptake (VO2max) (P less than 0.05) than the matched young runners, despite the similarity in their performance. Running economy was not different between these groups. However, the master athletes attained a 2.5-mM blood lactate level during steady-state exercise at a higher percentage of their VO2max (P less than 0.05), although both groups attained this lactate level at the same running speed and VO2. Thus, despite having significantly lower VO2max values, the older athletes were able to perform as well as the younger runners because they were able to work closer to their VO2max for the duration of the race.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号