首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single base pair mutation analysis by PNA directed PCR clamping.   总被引:14,自引:5,他引:9       下载免费PDF全文
A novel method that allows direct analysis of single base mutation by the polymerase chain reaction (PCR) is described. The method utilizes the finding that PNAs (peptide nucleic acids) recognize and bind to their complementary nucleic acid sequences with higher thermal stability and specificity than the corresponding deoxyribooligonucleotides and that they cannot function as primers for DNA polymerases. We show that a PNA/DNA complex can effectively block the formation of a PCR product when the PNA is targeted against one of the PCR primer sites. Furthermore, we demonstrate that this blockage allows selective amplification/suppression of target sequences that differ by only one base pair. Finally we show that PNAs can be designed in such a way that blockage can be accomplished when the PNA target sequence is located between the PCR primers.  相似文献   

2.
《Biochemical education》1998,26(4):277-280
This tutorial briefly describes a new class of synthetic biopolymer, which is referred to as peptide nucleic acid (PNA). In PNA, individual nucleobases are linked to an achiral neutral peptide backbone. PNA exhibits the hybridization characteristic (e.g., Watson—Crick duplex formation) of DNA. The achiral peptide backbone provides similar interbase distances as natural DNA, and adequate flexibility to permit base pair interactions with complementary RNA or DNA strands. Several potential applications of PNA oligomers in biotechnology are suggested. These include the use of PNAs as a probe for specific recognition of a DNA or RNA sequence selective, purification of nucleic acids via designed high affinity binding to PNA, screening for DNA mutations, and as possible therapeutic agents.  相似文献   

3.
4.
Antisense properties of duplex- and triplex-forming PNAs.   总被引:9,自引:3,他引:9       下载免费PDF全文
The potential of peptide nucleic acids (PNAs) as specific inhibitors of translation has been studied. PNAs with a mixed purine/pyrimidine sequence form duplexes, while homopyrimidine PNAs form (PNA)2/RNA triplexes with complementary sequences on RNA. We show here that neither of these PNA/RNA structures are substrates for RNase H. Translation experiments in cell-free extracts showed that a 15mer duplex-forming PNA blocked translation in a dose-dependent manner when the target was 5'-proximal to the AUG start codon on the RNA, whereas similar 10-, 15- or 20mer PNAs had no effect when targeted towards sequences in the coding region. Triplex-forming 10mer PNAs were efficient and specific antisense agents with a target overlapping the AUG start codon and caused arrest of ribosome elongation with a target positioned in the coding region of the mRNA. Furthermore, translation could be blocked with a 6mer bisPNA or with a clamp PNA, forming partly a triplex, partly a duplex, with its target sequence in the coding region of the mRNA.  相似文献   

5.
Classical strategies for gene microarrays require labeling of probes or target nucleic acids with signaling molecules, a process that is expensive, time consuming and not always reliable. Bazan and colleagues showed that a nucleic acid-binding cationic conjugated polyelectrolyte can be used in label-free DNA microarrays based on surfaces modified with neutral peptide nucleic acid (PNA) probes. This technique provides a simple and sensitive method for DNA detection without the need for covalent labeling of target DNA.  相似文献   

6.
Targeting regulatory RNA regions to interfere with the biosynthesis of a protein is an intriguing alternative to targeting a protein itself. Regulatory regions are often unique in sequence and/or structure and, thus, ideally suited for specific recognition with a low risk of undesired side effects. Targeting regulatory RNA elements, however, is complicated by their complex three-dimensional structure, which poses kinetic and thermodynamic constraints to the recognition by a complementary oligonucleotide. Oligonucleotide mimics, which shift the thermodynamic equilibrium towards complex formation and yield stable complexes with a target RNA, can overcome this problem. Peptide nucleic acids (PNA) represent such a promising class of molecules. PNA are very stable, non-ionic compounds and they are not sensitive to enzymatic degradation. Yet, PNA form specific base pairs with a target sequence. We have designed, synthesised and characterised PNA able to enter infected cells and to bind specifically to a control region of the genomic RNA of coxsackievirus B3 (CVB3), which is an important human pathogen. The results obtained by studying the interaction of such PNA with their RNA target, the entrance into the cell and the viral inhibition are herein presented.  相似文献   

7.
We have constructed light-up probes for nucleic acid detection. The light-up probe is a peptide nucleic acid (PNA) oligonucleotide to which the asymmetric cyanine dye thiazole orange (TO) is tethered. It combines the excellent hybridization properties of PNA and the large fluorescence enhancement of TO upon binding to DNA. When the PNA hybridizes to target DNA, the dye binds and becomes fluorescent. Free probes have low fluorescence, which may increase almost 50-fold upon hybridization to complementary nucleic acid. This makes the light-up probes particularly suitable for homogeneous hybridization assays, where separation of the bound and free probe is not necessary. We find that the fluorescence enhancement upon hybridization varies among different probes, which is mainly due to variations in free probe fluorescence. For eight probes studied the fluorescence quantum yield at 25 degrees C in the unbound state ranged from 0.0015 to 0.08 and seemed to depend mainly on the PNA sequence. The binding of the light-up probes to target DNA is highly sequence specific and a single mismatch in a 10-mer target sequence was readily identified.  相似文献   

8.
An efficient and highly versatile method for the synthesis of amino acid-modified peptide nucleic acid (PNA) monomers is described. By using solid-phase Fmoc techniques, such monomers can be assembled readily in a stepwise manner and obtained in high yield with minimal purification. Protected neutral hydrophilic, acidic, and basic amino acids were coupled to 2-chlorotrityl chloride resin. Following Fmoc removal, innovative conditions for the key step, reductive alkylation with N-Fmoc-aminoacetaldehyde, were developed to circumvent problems encountered with previously reported methods. Activation and coupling of pyrimidine and purine nucleobases to the resulting secondary amines afforded amino acid-modified PNA monomers. The mild reaction conditions utilized were compatible with sensitive and labile functional groups, such as tert-butyl ethers and tert-butyl esters. PNA monomers were obtained in 36-42% overall yield and very high purity, after cleavage and purification. Using standard solid-phase Fmoc chemistry, two of these monomers were incorporated with high coupling efficiency into a variety of modified PNA oligomers, including four tetradecamers designed to target bcl-2 mRNA. Such modified oligomers have the potential to enhance water solubility and cell portability, while maintaining hybridization affinity and promoting favorable biodistribution properties.  相似文献   

9.
DNA-RNA hybridization.   总被引:5,自引:0,他引:5  
Interest in nucleic acid hybridization stems mainly from its great power as a tool in biological research. It is used in several quite distinct ways. Because of the high degree of specificity that they show, hybridization techniques can be used to measure the amount of one specific sequence within a very heterogeneous mixture of sequences. Measurements of 1/10(6)-10(7) have been recorded. In extension of this, various properties of a specific sequence can often be studied. Secondly, because the kinetics of nucleic acid hybridization are quite well understood, it can be used to characterize both a pure sequence and a very complex mixture of sequences, like the genome of a vertebrate. Thirdly, again because of its specificity, it can be used to measure homologies between different populations of nucleic acids. Lastly, in conjunction with other techniques, it can be used as a basis for the fractionation of nucleic acid populations and the purification of specific sequences. Specific examples of these applications are given, with special reference to the organization of the genome in higher eukaryotes.  相似文献   

10.
Bispeptide nucleic acids (bis-PNAs; PNA clamps), PNA oligomers, and DNA oligonucleotides were evaluated as affinity purification reagents for subfemtomolar 16S ribosomal DNA (rDNA) and rRNA targets in soil, sediment, and industrial air filter nucleic acid extracts. Under low-salt hybridization conditions (10 mM NaPO(4), 5 mM disodium EDTA, and 0.025% sodium dodecyl sulfate [SDS]) a PNA clamp recovered significantly more target DNA than either PNA or DNA oligomers. The efficacy of PNA clamps and oligomers was generally enhanced in the presence of excess nontarget DNA and in a low-salt extraction-hybridization buffer. Under high-salt conditions (200 mM NaPO(4), 100 mM disodium EDTA, and 0.5% SDS), however, capture efficiencies with the DNA oligomer were significantly greater than with the PNA clamp and PNA oligomer. Recovery and detection efficiencies for target DNA concentrations of > or =100 pg were generally >20% but depended upon the specific probe, solution background, and salt condition. The DNA probe had a lower absolute detection limit of 100 fg of target (830 zM [1 zM = 10(-21) M]) in high-salt buffer. In the absence of exogenous DNA (e.g., soil background), neither the bis-PNA nor the PNA oligomer achieved the same absolute detection limit even under a more favorable low-salt hybridization condition. In the presence of a soil background, however, both PNA probes provided more sensitive absolute purification and detection (830 zM) than the DNA oligomer. In varied environmental samples, the rank order for capture probe performance in high-salt buffer was DNA > PNA > clamp. Recovery of 16S rRNA from environmental samples mirrored quantitative results for DNA target recovery, with the DNA oligomer generating more positive results than either the bis-PNA or PNA oligomer, but PNA probes provided a greater incidence of detection from environmental samples that also contained a higher concentration of nontarget DNA and RNA. Significant interactions between probe type and environmental sample indicate that the most efficacious capture system depends upon the particular sample type (and background nucleic acid concentration), target (DNA or RNA), and detection objective.  相似文献   

11.
In the search of facile and efficient methods for cellular delivery of peptide nucleic acids (PNA), we have synthesized PNAs conjugated to oligophosphonates via phosphonate glutamine and bis-phosphonate lysine amino acid derivatives thereby introducing up to twelve phosphonate moieties into a PNA oligomer. This modification of the PNA does not interfere with the nucleic acid target binding affinity based on thermal stability of the PNA/RNA duplexes. When delivered to cultured HeLa pLuc705 cells by Lipofectamine, the PNAs showed dose-dependent nuclear antisense activity in the nanomolar range as inferred from induced luciferase activity as a consequence of pre-mRNA splicing correction by the antisense-PNA. Antisense activity depended on the number of phosphonate moieties and the most potent hexa-bis-phosphonate-PNA showed at least 20-fold higher activity than that of an optimized PNA/DNA hetero-duplex. These results indicate that conjugation of phosphonate moieties to the PNA can dramatically improve cellular delivery mediated by cationic lipids without affecting on the binding affinity and sequence discrimination ability, exhibiting EC(50) values down to one nanomolar. Thus the intracellular efficacy of PNA oligomers rival that of siRNA and the results therefore emphasize that provided sufficient in vivo bioavailability of PNA can be achieved these molecules may be developed into potent gene therapeutic drugs.  相似文献   

12.
Bispeptide nucleic acids (bis-PNAs; PNA clamps), PNA oligomers, and DNA oligonucleotides were evaluated as affinity purification reagents for subfemtomolar 16S ribosomal DNA (rDNA) and rRNA targets in soil, sediment, and industrial air filter nucleic acid extracts. Under low-salt hybridization conditions (10 mM NaPO4, 5 mM disodium EDTA, and 0.025% sodium dodecyl sulfate [SDS]) a PNA clamp recovered significantly more target DNA than either PNA or DNA oligomers. The efficacy of PNA clamps and oligomers was generally enhanced in the presence of excess nontarget DNA and in a low-salt extraction-hybridization buffer. Under high-salt conditions (200 mM NaPO4, 100 mM disodium EDTA, and 0.5% SDS), however, capture efficiencies with the DNA oligomer were significantly greater than with the PNA clamp and PNA oligomer. Recovery and detection efficiencies for target DNA concentrations of ≥100 pg were generally >20% but depended upon the specific probe, solution background, and salt condition. The DNA probe had a lower absolute detection limit of 100 fg of target (830 zM [1 zM = 10−21 M]) in high-salt buffer. In the absence of exogenous DNA (e.g., soil background), neither the bis-PNA nor the PNA oligomer achieved the same absolute detection limit even under a more favorable low-salt hybridization condition. In the presence of a soil background, however, both PNA probes provided more sensitive absolute purification and detection (830 zM) than the DNA oligomer. In varied environmental samples, the rank order for capture probe performance in high-salt buffer was DNA > PNA > clamp. Recovery of 16S rRNA from environmental samples mirrored quantitative results for DNA target recovery, with the DNA oligomer generating more positive results than either the bis-PNA or PNA oligomer, but PNA probes provided a greater incidence of detection from environmental samples that also contained a higher concentration of nontarget DNA and RNA. Significant interactions between probe type and environmental sample indicate that the most efficacious capture system depends upon the particular sample type (and background nucleic acid concentration), target (DNA or RNA), and detection objective.  相似文献   

13.
When delivering peptide nucleic acids (PNA) into cells in the TiO2 · PL · DNA/PNA nanocomposites consisting of titanium dioxide nanoparticles coated with polylysine (PL) and immobilized DNA/PNA duplexes, it is important to control the rate of the release of PNA from the carrier due to dissociation of the immobilized DNA/PNA duplex, followed by the desorption of PNA to solution while the DNA remains on the carrier. It was found that the rate constant of dissociation of the DNA/PNA duplex in the TiO2 · PL · DNA/PNA nanocomposites depended on the number of complementary bases in the duplex. The half-retention time values for PNA in the studied nanocomposites containing the duplexes with 10, 12, 14, and 16 overlapping complementary base pairs were 10, 14, 22, and 70 min, respectively. Thus, it was shown that the rate of the release of PNA from the proposed nanocomposites can be controlled by varying the number of overlapping complementary base pairs in the immobilized DNA/PNA duplex. The method of the PNA immobilization may be used for designing nanocomposites having the optimum time value of the PNA release. The proposed TiO2 · PL · DNA/PNA nanocomposites can be used to efficiently deliver therapeutically significant PNA drugs for their selective effect on pathogenic nucleic acids in cells.  相似文献   

14.
We report the replication technology of DNA chip using by sequence specific localization of nucleic acids via hybridization and electric transfer of the nucleic acids onto a new substrate without losing their array information. The denatured DNA fragments are first spotted and UV-cross-linked on a nylon membrane. The membrane is then immersed and hybridized in a DNA mixture solution that contains all complementary sequences of the nucleic acids to be hybridized with the DNA fragments on the membrane. The hybridized DNA fragments are transferred to another membrane at the denatured condition. After separating two membranes, the transferred membrane contains a complementary array of DNA fragments. This method can be used for the replication of the same copy of DNA chip repeatedly and moreover could be applied for a personalized DNA chip fabrication, where specific information of each spot of DNA chip is originated from the genetic information of a personal sample.  相似文献   

15.
The preparation of peptide nucleic acids (PNA)carrying a c-myc tag-peptide sequence isdescribed. These PNA-peptide chimeras have higheraffinity to complementary DNA than unmodifiedoligonucleotides. Moreover, they can be used asnonradioactive probes with sensitivity similar toother nonradioactive methods.  相似文献   

16.
Peptide nucleic acids (PNAs) are neutral DNA analogues, which bind single-stranded DNA (ssDNA) strongly and with high sequence specificity. However, binding efficiency is dependent on the purine content of the PNA strand. This property make more difficult application of PNA as hybridization probes in, e.g., PNA chips, since at a set temperature the hybridization of a fraction of the DNA targets to the PNA probes does not obey Watson-Crick binding rules. The polypurine PNAs, for example, bind the mismatch containing DNA targets stronger, than the pyrimidine rich PNAs their fully complementary targets. Herein we show that PNA-DNA binding efficiency can be finely tuned by the conjugation of derivatives of naphthalene diimide (NADI) to the N-terminus of PNA using polyamide linkers of different lengths. This approach can potentially be used for the design of PNA probes, which bind their DNA targets with similar affinity independently of the PNA sequence.  相似文献   

17.
The efficacy of PNA vs DNA oligomers for the recovery of femtomolar concentrations of 16S rDNA targets was determined with solution- and mixed-phase hybridization formats and limiting dilution quantitative PCR. Several results contradict existing perceptions of expected PNA behavior deduced from hybridization studies with oligonucleotide targets at high concentration. For example, DNA probes in the solution hybridization format performed as well as or better than PNA probes under high- or low-salt conditions, regardless of hybridization time or target size. In the mixed-phase hybridization format, however, PNA probes showed certain advantages, with more rapid and efficient binding/recovery of target nucleic acids regardless of target size. Recovery of target DNA with PNA probes was always more efficient in low-salt (20 mM in Na(+)) than high-salt (400 mM in Na(+-)) phosphate buffer. Recovery of target DNA by PNA probes was enhanced in the presence of excess, nontarget DNA, and differences in PNA efficacy under low- or high-salt conditions vanquished. In contrast, DNA probe performance was unaffected by the presence or absence of exogenous DNA in both solution- and mixed-phase hybridization formats. The absolute recovery and detection limit of the affinity purification method with either DNA or PNA probes was approximately 10(2) input target molecules at zeptamolar concentrations.  相似文献   

18.
Innovative tools for detection of plant pathogenic viruses and bacteria   总被引:8,自引:0,他引:8  
Detection of harmful viruses and bacteria in plant material, vectors or natural reservoirs is essential to ensure safe and sustainable agriculture. The techniques available have evolved significantly in the last few years to achieve rapid and reliable detection of pathogens, extraction of the target from the sample being important for optimising detection. For viruses, sample preparation has been simplified by imprinting or squashing plant material or insect vectors onto membranes. To improve the sensitivity of techniques for bacterial detection, a prior enrichment step in liquid or solid medium is advised. Serological and molecular techniques are currently the most appropriate when high numbers of samples need to be analysed. Specific monoclonal and/or recombinant antibodies are available for many plant pathogens and have contributed to the specificity of serological detection. Molecular detection can be optimised through the automatic purification of nucleic acids from pathogens by columns or robotics. New variants of PCR, such as simple or multiplex nested PCR in a single closed tube, co-operative-PCR and real-time monitoring of amplicons or quantitative PCR, allow high sensitivity in the detection of one or several pathogens in a single assay. The latest development in the analysis of nucleic acids is micro-array technology, but it requires generic DNA/RNA extraction and pre-amplification methods to increase detection sensitivity. The advances in research that will result from the sequencing of many plant pathogen genomes, especially now in the era of proteomics, represent a new source of information for the future development of sensitive and specific detection techniques for these microorganisms.  相似文献   

19.
A novel method for sequence specific double strand DNA cleavage using PNA (peptide nucleic acid) targeting is described. Nuclease S1 digestion of double stranded DNA gives rise to double strand cleavage at an occupied PNA strand displacement binding site, and under optimized conditions complete cleavage can be obtained. The efficiency of this cleavage is more than 10 fold enhanced when a tandem PNA site is targeted, and additionally enhanced if this site is in trans rather than in cis orientation. Thus in effect, the PNA targeting makes the single strand specific nuclease S1 behave like a pseudo restriction endonuclease.  相似文献   

20.
A novel chemiluminescent in situ hybridization technique using peptide nucleic acids (PNA) was adapted for the detection of bacteria in beach sand and recreational waters in South Florida. The simultaneous detection and enumeration of eubacteria and the novel indicators, Staphylococcus aureus and Pseudomonas aeruginosa, was achieved within 6-8 h of processing. Following 5 h of incubation on TSA, soybean peroxidase-labeled peptide nucleic acid probes (Boston Probes, Boston, MA) targeting species-specific 16S rRNA sequences of P. aeruginosa and S. aureus were used to hybridize microcolonies of the target species in-situ. In addition, a universal probe for 16S rRNA sequences was used to target the eubacteria. Probes were detected after a light generating reaction with a chemiluminescent substrate and their presence recorded on Polaroid film. The probes showed limited cross-reactivity with mixed indigenous bacteria extracted from seawater and sand by shaking with phosphate-buffered saline (PBS). Specificity and cross-reactivity was tested on the reference bacterial genera Pseudomonas, Staphylococcus, Vibrio, Shigella, Salmonella, Acinetobacter, Enterobacter, Escherichia and Citrobacter. These tests confirmed that the probes were specific for the microorganisms of interest and were unaffected by high salt levels. The results of the PNA chemiluminescent in situ hybridization were compared with traditional plate count methods (PCM) for total 'freshwater' eubacteria, S. aureus and P. aeruginosa. Counts of eubacteria and S. aureus were comparable with numbers obtained from traditional plate counts but levels of P. aeruginosa were higher with PNA than with PCM. It is possible that PNA is more sensitive than PCM because it can detect microcolonies on the agar surface that never fully develop with the plate count method. We conclude that the in situ hybridization technique used here represents an important potential tool for the rapid monitoring of novel indicator organisms in beaches and recreational waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号