首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulmonary collectins in innate immunity of the lung   总被引:1,自引:0,他引:1  
Pulmonary collectins, hydrophilic surfactant proteins A and D (SP-A and SP-D), have been implicated in the regulation of pulmonary host defence and inflammation. SP-A and SP-D directly interact with a variety of microorganisms including bacteria and viruses, and attenuate the growth of Gram-negative bacteria, Histoplasma capsulatum and Mycoplasma pneumoniae. The collectins are thought to contribute to bacterial clearance. These lectins augment the phagocytosis of the bacteria by macrophages. SP-A serves as an opsonin and stimulates the uptake of bacteria and bacillus Calmette-Guérin through a C1q receptor- and an SP-R210-mediated processes. The collectin also stimulates FcR- and CR1-mediated phagocytosis by activating the macrophages. In addition, SP-A and SP-D directly interact with macrophages and enhance the phagocytosis of Streptococcus pneumoniae and Mycobacterium by increasing cell surface localization of the phagocytic receptors, scavenger receptor A and mannose receptor. The collectins also modulate pulmonary inflammation. SP-A and SP-D bind to cell surface receptors including Toll-like receptors, SIRPalpha and calreticulin/CD91, and attenuate or enhance inflammation in a microbial ligand-specific manner. In this article we review the immunomodulatory functions of SP-A and SP-D and their possible mechanisms in direct actions on microbes, macrophage phagocytosis and modulation of inflammation.  相似文献   

2.
Surfactant-associated protein A (SP-A) is involved in surfactant homeostasis and host defense in the lung. We have previously demonstrated that SP-A specifically binds to and enhances the ingestion of bacillus Calmette-Guerin (BCG) organisms by macrophages. In the current study, we investigated the effect of SP-A on the generation of inflammatory mediators induced by BCG and the subsequent fate of ingested BCG organisms. Rat macrophages were incubated with BCG in the presence and absence of SP-A. Noningested BCG organisms were removed, and the release of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide were measured at varying times. TNF-alpha and nitric oxide production induced by BCG were enhanced by SP-A. In addition, SP-A enhanced the BCG-induced increase in the level of inducible nitric oxide synthase protein. Addition of antibodies directed against SPR210, a specific macrophage SP-A receptor, inhibited the SP-A-enhanced mediator production. BCG in the absence of SP-A showed increased growth over a 5-day period, whereas inclusion of SP-A dramatically inhibited BCG growth. Inhibition of nitric oxide production blocked BCG killing in the presence and absence of SP-A. These results demonstrate that ingestion of SP-A-BCG complexes by rat macrophages leads to production of inflammatory mediators and increased mycobacterial killing.  相似文献   

3.
Surfactant proteins (SPs), designated SP-A, SP-B, SP-C, and SP-D, play an important role in surfactant metabolism and host defense mechanisms in the lung. This study investigates expression of the different SP types in human nasal mucosa and cultured normal human nasal epithelial (NHNE) cells and whether the expression of SP mRNA is influenced by the degree of mucociliary differentiation. RT-PCR was performed with mRNA from cultured NHNE cells and nasal mucosa. Immunohistochemical staining for SPs was performed on nasal mucosa specimens. Western blot analysis was performed on cell lysates from cultured NHNE cells. SP-A2, SP-B, and SP-D mRNAs were expressed in normal NHNE cells and human nasal mucosa. SPs were localized in ciliated cells of the surface epithelium and serous acini of the submucosal glands. SP-A, SP-B, and SP-D proteins were expressed in cultured NHNE cells. The degree of mucociliary differentiation influenced expression of the SP gene. We demonstrate that SP-A, SP-B, and SP-D are expressed in human nasal mucosa and cultured NHNE cells. Further study of the functional role of SPs in the upper airway is required.  相似文献   

4.
Surfactant protein A (SP-A) and alveolar macrophages are essential components of lung innate immunity. Alveolar macrophages phagocytose and kill pathogens by the production of reactive oxygen and nitrogen species. In particular, peroxynitrite, the reaction product of superoxide and nitric oxide, appears to have potent antimicrobial effects. SP-A stimulates alveolar macrophages to phagocytose and kill pathogens and is important in host defense. However, SP-A has diverse effects on both innate and adaptive immunity, and may stimulate or inhibit immune function. SP-A appears to mediate toxic or protective effects depending on the immune status of the lung. In contrast to mouse or rat cells, it has been difficult to demonstrate nitric oxide production by human macrophages. We have recently demonstrated that human macrophages produce nitric oxide and use it to kill Klebsiella pneumoniae. SP-A either stimulates or inhibits this process, depending on the activation state of the macrophage. Given its diverse effects on immune function, SP-A may prove to be an effective therapy for both infectious and inflammatory diseases of the lung.  相似文献   

5.
Surfactant protein A (SP-A) and alveolar macrophages are essential components of lung innate immunity. Alveolar macrophages phagocytose and kill pathogens by the production of reactive oxygen and nitrogen species. In particular, peroxynitrite, the reaction product of superoxide and nitric oxide, appears to have potent antimicrobial effects. SP-A stimulates alveolar macrophages to phagocytose and kill pathogens and is important in host defense. However, SP-A has diverse effects on both innate and adaptive immunity, and may stimulate or inhibit immune function. SP-A appears to mediate toxic or protective effects depending on the immune status of the lung. In contrast to mouse or rat cells, it has been difficult to demonstrate nitric oxide production by human macrophages. We have recently demonstrated that human macrophages produce nitric oxide and use it to kill Klebsiella pneumoniae. SP-A either stimulates or inhibits this process, depending on the activation state of the macrophage. Given its diverse effects on immune function, SP-A may prove to be an effective therapy for both infectious and inflammatory diseases of the lung.  相似文献   

6.
Pulmonary collectins, surfactant protein A (SP-A) and surfactant protein D (SP-D), play important roles in the innate immunity of the lung. Mycobacterium avium is one of the well-known opportunistic pathogens that can replicate within macrophages. We examined the effects of pulmonary collectins in host defense against M. avium infection achieved via direct interaction between bacteria and collectins. Although both pulmonary collectins bound to M. avium in a Ca(2+)-dependent manner, these collectins revealed distinct ligand-binding specificity and biological activities. SP-A and SP-D bound to a methoxy group containing lipid and lipoarabinomannan, respectively. Binding of SP-D but not SP-A resulted in agglutination of M. avium. A chimeric protein with the carbohydrate recognition domain of SP-D, which chimera revealed a bouquet-like arrangement similar to SP-A, also agglutinated M. avium. The ligand specificity of the carbohydrate recognition domain of SP-D seems to be necessary for agglutination activity. The binding of SP-A strongly inhibited the growth of M. avium in culture media. Although pulmonary collectins did not increase membrane permeability of M. avium, they attenuated the metabolic rate of the bacteria. Observations under a scanning electron microscope revealed that SP-A almost completely covers bacterial surfaces, whereas SP-D binds to certain areas like scattered dots. These observations suggest that a distinct binding pattern of collectins correlates with the difference of their biological activities. Furthermore, the number of bacteria phagocytosed by macrophages was significantly increased in the presence of SP-D. These data indicate that pulmonary collectins play critical roles in host defense against M. avium.  相似文献   

7.
Mice lacking surfactant protein (SP)-A (SP-A-/-) or SP-D (SP-D-/-) and wild-type mice were infected with group B streptococcus or Haemophilus influenzae by intratracheal instillation. Although decreased killing of group B streptococcus and H. influenzae was observed in SP-A-/- mice but not in SP-D-/- mice, deficiency of either SP-A or SP-D was associated with increased inflammation and inflammatory cell recruitment in the lung after infection. Deficient uptake of bacteria by alveolar macrophages was observed in both SP-A- and SP-D-deficient mice. Isolated alveolar macrophages from SP-A-/- mice generated significantly less, whereas those from SP-D-/- mice generated significantly greater superoxide and hydrogen peroxide compared with wild-type alveolar macrophages. In SP-D-/- mice, bacterial killing was associated with increased lung inflammation, increased oxidant production, and decreased macrophage phagocytosis. In contrast, in the absence of SP-A, bacterial killing was decreased and associated with increased lung inflammation, decreased oxidant production, and decreased macrophage phagocytosis. Increased oxidant production likely contributes to effective bacterial killing in the lungs of SP-D-/- mice. The collectins, SP-A and SP-D, play distinct roles during bacterial infection of the lung.  相似文献   

8.
Pulmonary collectins and innate host defense of the lung   总被引:17,自引:0,他引:17  
Surfactant proteins A and D (SP-A and SP-D) are members of the collectin family of polypeptides expressed in the respiratory tract that bind bacterial, fungal and viral pathogens, enhancing their opsonization and killing by phagocytic cells. Clearance of bacterial pathogens including group B streptococci, Haemophilus influenza, Pseudomonas aeruginosa and viral pathogens, respiratory syncytial virus, adenovirus and influenza A virus, was deficient in SP-A(-/-) mice. SP-A deficiency was associated with enhanced inflammation and synthesis of proinflammatory cytokines. SP-D(-/-) mice cleared these bacteria as efficiently as wild-type mice; however, clearance of viral pathogens was deficient in SP-D(-/-) mice and associated with increased inflammation. SP-A and SP-D play critical and distinct roles in the regulation of alveolar macrophage function and inflammation, contributing to innate defense of the lung.  相似文献   

9.
We investigated putative mechanisms by which human surfactant protein A (SP-A) effects killing of Klebsiella pneumoniae by human alveolar macrophages (AMs) isolated from bronchoalveolar lavagates of patients with transplanted lungs. Coincubation of AMs with human SP-A (25 microg/ml) and Klebsiella resulted in a 68% decrease in total colony forming units by 120 min compared with AMs infected with Klebsiella in the absence of SP-A, and this SP-A-mediated effect was abolished by preincubation with N(G)-monomethyl-L-arginine. Incubation of transplant AMs with SP-A increased intracellular Ca(2+) concentration ([Ca(2+)](i)) by 70% and nitrite and nitrate (NO(x)) production by 45% (from 0.24 +/- 0.02 to 1.3 +/- 0.21 nmol small middle dot 10(6) AMs(-1).h(-1)). Preincubation with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester inhibited the increase in [Ca(2+)](i) and abrogated the SP-A-mediated Klebsiella phagocytosis and killing. In contrast, incubation of AMs from normal volunteers with SP-A decreased both [Ca(2+)](i) and NO(x) production and did not result in killing of Klebsiella. Significant killing of Klebsiella was also seen in a cell-free system by sustained production of peroxynitrite (>1 microM/min) at pH 5 but not at pH 7.4. These findings indicate that SP-A mediates pathogen killing by AMs from transplant lungs by stimulating phagocytosis and production of reactive oxygen-nitrogen intermediates.  相似文献   

10.
The pulmonary collectins, surfactant proteins A and D (SP-A and SP-D) have been implicated in the regulation of the innate immune system within the lung. In particular, SP-D appears to have both pro- and anti-inflammatory signaling functions. At present, the molecular mechanisms involved in switching between these functions remain unclear. SP-D differs in its quaternary structure from SP-A and the other members of the collectin family, such as C1q, in that it forms large multimers held together by the N-terminal domain, rather than aligning the triple helix domains in the traditional “bunch of flowers” arrangement. There are two cysteine residues within the hydrophobic N terminus of SP-D that are critical for multimer assembly and have been proposed to be involved in stabilizing disulfide bonds. Here we show that these cysteines exist within the reduced state in dodecameric SP-D and form a specific target for S-nitrosylation both in vitro and by endogenous, pulmonary derived nitric oxide (NO) within a rodent acute lung injury model. S-nitrosylation is becoming increasingly recognized as an important post-translational modification with signaling consequences. The formation of S-nitrosothiol (SNO)-SP-D both in vivo and in vitro results in a disruption of SP-D multimers such that trimers become evident. SNO-SP-D but not SP-D, either dodecameric or trimeric, is chemoattractive for macrophages and induces p38 MAPK phosphorylation. The signaling capacity of SNO-SP-D appears to be mediated by binding to calreticulin/CD91. We propose that NO controls the dichotomous nature of this pulmonary collectin and that posttranslational modification by S-nitrosylation causes quaternary structural alterations in SP-D, causing it to switch its inflammatory signaling role. This represents new insight into both the regulation of protein function by S-nitrosylation and NO's role in innate immunity.  相似文献   

11.
Collectins, including surfactant proteins A (SP-A) and D (SP-D) and mannose binding lectin (MBL), are the important constituents of the innate immune system. Mycobacterium avium, a facultative intracellular pathogen, has developed numerous mechanisms for entering mononuclear phagocytes. In this study, we investigated the interactions of collectins with M. avium and the effects of these lectins on phagocytosis of M. avium by macrophages. SP-A, SP-D, and MBL exhibited a concentration-dependent binding to M. avium. The binding of SP-A to M. avium was Ca(2+)-dependent but that of SP-D and MBL was Ca(2+)-independent. SP-A and SP-D but not MBL enhanced the phagocytosis of FITC-labeled M. avium by rat alveolar macrophages and human monocyte-derived macrophages. Excess mannan, zymosan, and lipoarabinomannan derived from the M. avium-intracellular complex, significantly decreased the collectin-stimulated phagocytosis of M. avium. Enhanced phagocytosis was not affected by the presence of cycloheximide or chelation of Ca(2+). The mutated collectin, SP-A(E195Q, R197D) exhibited decreased binding to M. avium but stimulated phagocytosis to a level comparable to wild-type SP-A. Enhanced phagocytosis by cells persisted even after preincubation and removal of SP-A or SP-D. Rat alveolar macrophages that had been incubated with SP-A or SP-D also exhibited enhanced uptake of (125)I-mannosylated BSA. Analysis by confocal microscopy and flow cytometry revealed that the lung collectins up-regulated the cell surface expression of mannose receptor on monocyte-derived macrophages. These results provide compelling evidence that SP-A and SP-D enhance mannose receptor-mediated phagocytosis of M. avium by macrophages.  相似文献   

12.
Euthyroid sick syndrome characterized by reduced levels of thyroid hormones (THs) is observed in patients with meningococcal shock. It has been found that the level of THs reflects disease severity and is predictive for mortality. The present study was conducted to investigate the impact of THs on host defense during meningococcal infection. We found that supplementation of thyroxine to mice infected with Neisseria meningitidis enhanced bacterial clearance, attenuated the inflammatory responses and promoted survival. In vitro studies with macrophages revealed that THs enhanced bacteria-cell interaction and intracellular killing of meningococci by stimulating inducible nitric oxide synthase (iNos)-mediated NO production. TH treatment did not activate expression of TH receptors in macrophages. Instead, the observed TH-directed actions were mediated through nongenomic pathways involving the protein kinases PI3K and ERK1/2 and initiated at the membrane receptor integrin αvβ3. Inhibition of nongenomic TH signaling prevented iNos induction, NO production and subsequent intracellular bacterial killing by macrophages. These data demonstrate a beneficial role of THs in macrophage-mediated N. meningitidis clearance. TH replacement might be a novel option to control meningococcal septicemia.  相似文献   

13.
Surfactant proteins-A and -D (SP-A and SP-D) are members of the collectin protein family. Mice singly deficient in SP-A and SP-D have distinct phenotypes. Both have altered inflammatory responses to microbial challenges. To further investigate the functions of SP-A and SP-D in vivo, we developed mice deficient in both proteins by sequentially targeting the closely linked genes in embryonic stem cells using graded resistance to G-418. There is a progressive increase in bronchoalveolar lavage phospholipid, protein, and macrophage content through 24 wk of age. The macrophages from doubly deficient mice express high levels of the matrix metalloproteinase MMP-12 and develop intense but patchy lung inflammation. Stereological analysis demonstrates significant air space enlargement and reduction in alveolar septal tissue per unit volume, consistent with emphysema. These changes qualitatively resemble the lung pathology seen in SP-D-deficient mice. These doubly deficient mice will be useful in dissecting the potential overlap in function between SP-A and SP-D in host defense.  相似文献   

14.
Pulmonary surfactant proteins A (SP-A) and D (SP-D), members of the collectin family, play important roles in the innate immune system of the lung. Here, we show that SP-A but not SP-D augmented phagocytosis of Streptococcus pneumoniae by alveolar macrophages, independent of its binding to the bacteria. Analysis of the SP-A/SP-D chimeras, in which progressively longer carboxyl-terminal regions of SP-A were replaced with the corresponding SP-D regions, has revealed that the SP-D region Gly(346)-Phe(355) can be substituted for the SP-A region Leu(219)-Phe(228) without altering the SP-A activity of enhancing the phagocytosis and that the SP-A region Cys(204)-Cys(218) is required for the SP-A-mediated phagocytosis. Acetylated low density lipoprotein significantly reduced the SP-A-stimulated uptake of the bacteria. SP-A failed to enhance the phagocytosis of S. pneumoniae by alveolar macrophages derived from scavenger receptor A (SR-A)-deficient mice, demonstrating that SP-A augments SRA-mediated phagocytosis. Preincubation of macrophages with SP-A at 37 degrees C but not at 4 degrees C stimulated the phagocytosis. The SP-A-mediated enhanced phagocytosis was not inhibited by the presence of cycloheximide. SP-A increased cell surface localization of SR-A that was inhibitable by apigenin, a casein kinase 2 (CK2) inhibitor. SP-A-treated macrophages exhibited significantly greater binding of acetylated low density lipoprotein than nontreated cells. The SP-A-stimulated phagocytosis was also abolished by apigenin. In addition, SP-A stimulated CK2 activity. These results demonstrate that SP-A enhances the phagocytosis of S. pneumoniae by alveolar macrophages through a CK2-dependent increase of cell surface SR-A localization. This study reveals a novel mechanism of bacterial clearance by alveolar macrophages.  相似文献   

15.
Nitric oxide (NO) is a signaling and defense molecule of major importance. NO endows macrophages with bactericidal, cytostatic as well as cytotoxic activity against various pathogens. Bacillus spores can produce serious diseases, which might be attenuated if macrophages were able to kill the spores on contact. Present research was carried out to study whether glycoconjugates stimulated NO and nitric oxide synthase (NOS2) production during phagocytosis killing of Bacillus spores. Murine macrophages exposed to glycoconjugate-treated spores induced NOS2 and NO production that was correlated with high viability of macrophages and killing rate of bacterial spores. Increased levels of inducible NOS2 and NO production by macrophages in presence of glycoconjugates suggested that the latter provide an activation signal directed to macrophages. Glycoconjugates were shown to exert a protective influence, sparing macrophages from spore-induced cell death. In presence of glycoconjugates, macrophages efficiently kill the organisms. Without glycoconjugate activation, murine macrophages were ineffective at killing Bacillus spores. These results suggest that glycoconjugates promote killing of Bacillus spores by blocking spore-induced macrophage cell death, while increasing their activation level and NO and NOS2 production. Glycoconjugates suggest novel antimicrobial approaches to prevention and treatment of infection caused by bacterial spores.  相似文献   

16.
Chlamydiae are intracellular bacterial pathogens that infect mucosal surfaces, i.e., the epithelium of the lung, genital tract, and conjunctiva of the eye, as well as alveolar macrophages. In the present study, we show that pulmonary surfactant protein A (SP-A) and surfactant protein D (SP-D), lung collectins involved in innate host defense, enhance the phagocytosis of Chlamydia pneumoniae and Chlamydia trachomatis by THP-1 cells, a human monocyte/macrophage cell line. We also show that SP-A is able to aggregate both C. trachomatis and C. pneumoniae but that SP-D only aggregates C. pneumoniae. In addition, we found that after phagocytosis in the presence of SP-A, the number of viable C. trachomatis pathogens in the THP-1 cells 48 h later was increased approximately 3.5-fold. These findings suggest that SP-A and SP-D interact with chlamydial pathogens and enhance their phagocytosis into macrophages. In addition, the chlamydial pathogens internalized in the presence of collectins are able to grow and replicate in the THP-1 cells after phagocytosis.  相似文献   

17.
Lung surfactant proteins (SP) A and D are calcium-dependent carbohydrate-binding proteins. In addition to playing multiple roles in innate immune defense such as bacterial aggregation and modulation of leukocyte function, SP-A and SP-D have also been implicated in the allergic response. They interact with a wide range of inhaled allergens, competing with their binding to cell-sequestered IgE resulting in inhibition of mast cell degranulation, and exogenous administration of SP-A and SP-D diminishes allergic hypersensitivity in vivo. House dust mite allergens are a major cause of allergic asthma in the western world, and here we confirm the interaction of SP-A and SP-D with two major mite allergens, Dermatophagoides pteronyssinus 1 and Dermatophagoides farinae 1, and show that the cysteine protease activity of these allergens results in the degradation of SP-A and SP-D under physiological conditions, with multiple sites of cleavage. A recombinant fragment of SP-D that is effective in diminishing allergic hypersensitivity in mouse models of dust mite allergy was more susceptible to degradation than the native full-length protein. Degradation was enhanced in the absence of calcium, with different sites of cleavage, indicating that the calcium associated with SP-A and SP-D influences accessibility to the allergens. Degradation of SP-A and SP-D was associated with diminished binding to carbohydrates and to D. pteronyssinus 1 itself and diminished capacity to agglutinate bacteria. Thus, the degradation and consequent inactivation of SP-A and SP-D may be a novel mechanism to account for the potent allergenicity of these common dust mite allergens.  相似文献   

18.
Surfactant proteins A (SP-A) and D (SP-D), both members of the collectin family, play a well established role in apoptotic cell recognition and clearance. Recent in vitro data show that SP-A and SP-D interact with apoptotic neutrophils in a distinct manner. SP-A and SP-D bind in a Ca2+-dependent manner to viable and early apoptotic neutrophils whereas the much greater interaction with late apoptotic neutrophils is Ca2+-independent. Cell surface molecules on the apoptotic target cells responsible for these interactions had not been identified and this study was done to find candidate target molecules. Myeloperoxidase (MPO), a specific intracellular defense molecule of neutrophils that becomes exposed on the outside of the cell upon apoptosis, was identified by affinity purification, mass-spectrometry and western blotting as a novel binding molecule for SP-A and SP-D. To confirm its role in recognition, it was shown that purified immobilised MPO binds SP-A and SP-D, and that MPO is surface-exposed on late apoptotic neutrophils. SP-A and SP-D inhibit binding of an anti-MPO monoclonal Ab to late apoptotic cells. Fluorescence microscopy confirmed that anti-MPO mAb and SP-A/SP-D colocalise on late apoptotic neutrophils. Desmoplakin was identified as a further potential ligand for SP-A, and neutrophil defensin as a target for both proteins.  相似文献   

19.
The presence of surface-active material in the lung alveolus has been known for several decades as being essential for normal lung function. The host defense and controlling inflammatory processes of the lung are the major functions of SP-A and SP-D. SP-A and SP-D were originally demonstrated in alveolar type II cells, but recent studies have shown extrapulmonary expression of SP-A and SP-D indicating systemic roles of these proteins. Present study describes the presence of SP-A and SP-D in the stallion genital tract, prepuce, prostate, testis, and seminal vesicle using Western blotting and immunohistochemistry. This paper presents the first evidence for the existence of SP-A and SP-D glycoproteins in the stallion genital tract. We examined genital system organs and tissues from stallion and were able to show that surfactant protein A and D reactive with surfactant-specific antibodies were present in the stallion genital tract tissues and organs. On the basis of results, it can be postulated that surfactant proteins in the stallion reproductive tract contribute to the immune surveillance and to active barrier defense mechanism.  相似文献   

20.
After internalization into macrophages non-pathogenic mycobacteria are killed within phagosomes. Pathogenic mycobacteria can block phagosome maturation and grow inside phagosomes but under some conditions can also be killed by macrophages. Killing mechanisms are poorly understood, although phago-lysosome fusion and nitric oxide (NO) production are implicated. We initiated a systematic analysis addressing how macrophages kill 'non-pathogenic'Mycobacterium smegmatis. This system was dynamic, involving periods of initial killing, then bacterial multiplication, followed by two additional killing stages. NO synthesis represented the earliest killing factor but its synthesis stopped during the first killing period. Phagosome actin assembly and fusion with late endocytic organelles coincided with the first and last killing phase, while recycling of phagosome content and membrane coincided with bacterial growth. Phagosome acidification and acquisition of the vacuolar (V) ATPase followed a different pattern coincident with later killing phases. Moreover, V-ATPase localized to vesicles distinct from classical late endosomes and lysosomes. Map kinase p38 is a crucial regulator of all processes investigated, except NO synthesis, that facilitated the host for some functions while being usurped by live bacteria for others. A mathematical model argues that periodic high and low cellular killing activity is more effective than is a continuous process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号