首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
罗汉果查尔酮合成酶基因的生物信息学分析   总被引:1,自引:0,他引:1  
查尔酮合成酶(chalcone synthase,CHS)是类黄酮生物合成的关键酶,在植物发育、防止UV损伤、抗病和逆境反应中起着重要作用。本研究通过EST测序,获得了罗汉果查尔酮合成酶基因序列(登录号:GU980155)。为了进一步了解罗汉果查尔酮合成酶基因的特征,我们将其与46种植物的查尔酮合成酶基因的核酸序列和氨基酸序列进行比对和进化分析。结果表明,罗汉果查尔酮合成酶基因的核酸序列和氨基酸序列与其它物种的查尔酮合成酶基因均具较高同源性,编码区相似性约为94%。使用PHYLIP和MEGA4分别构建了邻接树、最大似然树和最大简约树,但经bootstrap检验,最优树未能明确罗汉果查尔酮合成酶基因的系统发育地位。以紫花苜蓿查尔酮合成酶的三维结构为参考,利用同源建模的方法预测了罗汉果查尔酮合成酶的三维结构,发现罗汉果查尔酮合成酶具有保守的活性位点和空间结构。  相似文献   

2.
查尔酮合成酶基因   总被引:8,自引:0,他引:8  
查尔酮合成酶基因是苯丙氨酸代谢途径中的关键基因,在类黄酮类物质合成中扮演着重要的角色,调控着色素合成、防御反应、植物育性等生理生化过程,对植物的生长发育起着至关重要的作用。现对查尔酮合成酶在苯丙氨酸代谢途径中的地位、基因表达特性、基因功能以及基因进化等方面的进展做一介绍。  相似文献   

3.
化州柚查尔酮合成酶基因克隆与序列分析   总被引:2,自引:0,他引:2  
利用CTAB-LiCl法提取高质量的化州柚总RNA,采用RT-PCR技术克隆查尔酮合成酶基因,获得广东道地药材化橘红资源化州柚的查尔酮合成酶基因。该基因编码区全长1176bp,编码391个氨基酸残基,与同样来源于柑橘属的查尔酮合成酶基因同源性高达98%。CTAB-LiCl法能提取高质量的化州柚总RNA,可以用于后续基因克隆和分析;克隆获得的查尔酮合成酶具有编码区,与同属植物相同基因具有高度序列同源性。  相似文献   

4.
查尔酮合成酶(chalcone synthase,CHS)是植物中类黄酮生物合成途径的关键酶,其催化对-香豆酰辅酶A和丙二酸单酰辅酶A发生缩合反应.本研究以苜蓿CHS的晶体为模板,利用同源建模构建决明CHS的三维模型.经过动力学优化后,决明CHS的三维模型与苜蓿CHS的结构极为相似,主要由α-螺旋和β-折叠构成,其中有13个α螺旋,占32.82%,15个β折叠,占19.23%,无规则卷曲占47.95%.模型验证结果表明决明CHS的三维模型具有合理的立体化学性质与氨基酸相容性.决明CHS含有两个重要的结构域:对-香豆酰辅酶A结合域与丙二酸单酰辅酶A结合域.决明CHS与对-香豆酰辅酶A、丙二酸单酰辅酶A的结合主要通过氢键与范德华力.决明CHS中Cys164、His303与活性中心的H2O能够形成电子传递体系,参与对-香豆酰辅酶A形成CHS-对-香豆酰基中间产物.本研究结果为利用此类CHS三维模型研究其催化机理和分子工程改造奠定基础.  相似文献   

5.
利用RT-PCR和RACE方法,从我国珍稀植物金花茶(Camellia nitidissima)花瓣中获得了查尔酮合成酶(chalcone synthase,CHS)基因的cDNA全长,命名为Cn-CHS,GenBank登录号HQ269804.碱基序列分析表明,Cn-CHS全长1 454bp,包含77 bp的5'非翻译区、207 bp的3'非翻译区和一个长为1 170 bp编码389个氨基酸的开放阅读框.氨基酸序列分析显示该基因编码的蛋白具有CHS家族保守存在的所有功能活性位点和特征性多肽序列.氨基酸序列比对分析表明,CnCHS与蔷薇科、杜鹃花科、茄科等植物的CHS相似性都在92%以上;与山茶科山茶属物种山茶(C.japonica)CHS完全一致;与茶(C.sinensis)CHS相似性达99%,有5个氨基酸位点存在差异,其中包括一个功能性位点.  相似文献   

6.
查尔酮合成酶是银杏叶黄酮合成途径中的第一个关键酶。利用RACE技术克隆到银杏的一个查尔酮合成酶基因,命名为GbCHS2,其cDNA全长1608bp,包括长1173bp的读码框,编码391个氨基酸。GbCHS2蛋白与已从银杏克隆到的GbCHS1蛋白具有很高的同源性,并包含其所有相同的活性位点。用半定量RT-PCR方法研究了银杏叶生长过程中chs基因的转录水平的变化,并对CHS活性变化和黄酮含量的变化曲线进行了线性回归分析。结果显示,在整个银杏叶生长过程中,CHS活性与黄酮含量呈极显著线性相关,表明CHS是银杏叶黄酮合成途径中的一个关键限速酶;chs基因的转录水平的变化与黄酮的积累是同步的,chs基因的这种表达模式表明chs基因的转录水平可能决定了银杏叶黄酮的积累。  相似文献   

7.
决明查尔酮合成酶基因的克隆及序列分析   总被引:1,自引:2,他引:1  
以决明(Cassia tora)为实验材料,利用RT-PCR和RACE技术,从决明嫩叶中克隆出查尔酮合成酶(Chal-one synthase,CHS)基因,其cDNA全长为1 459 bp,编码一个由390个氨基酸残基组成的多肽.氨基酸序列分析表明,决明CHS基因的氨基酸序列中含有44.61%的中性疏水氨基酸,29.74%的中性亲水氨基酸,12.56%的酸性氨基酸和13.O8%的碱性氨基酸.决明CHS基因的氨基酸序列中具有CHS家族酶系的氨基酸保守残基,包括结合底物CoA的结合残基及催化聚酮合成的催化残基,表明其可能参与聚酮化合物的合成.决明与其它植物CHS的氨基酸序列的进化分析表明,其与同为豆科决明属的翼叶决明(Cassia alata)的同源性较近,并且CHS家族可以分为CHS亚家族与非CHS亚家族.将得到的序列提交GenBank,登录号为EU430077.  相似文献   

8.
查尔酮合成酶(Chalcone synthase,CHS)广泛存在于植物体内,是花色素形成过程中一种重要的酶,可以进一步催化生成黄酮类化合物。本研究采用Codon W和EMBOSS在线软件对红松查尔酮合成酶基因CHS的密码子使用偏好性进行分析,并与北美乔松等其他24种植物的CHS基因以及模式植物基因组进行比较,对认识红松CHS基因的密码子使用偏好性,为选择适宜的表达系统奠定了一定的基础。研究结果表明:红松CHS基因编码区的有效密码子数(ENC)和GC含量分别为48.92和0.548,C+G含量高于A+T含量,密码子偏好以A/T结尾;多数植物CHS基因的G+C含量高于A+T含量,且密码子更偏好C/G结尾;聚类分析表明,红松与马尾松和赤松的密码子使用偏好性的相似性较高;密码子使用频率研究发现,红松CHS遗传转化与异源表达较优的受体可能是大肠杆菌和拟南芥。  相似文献   

9.
采用同源序列克隆和RT-PCR技术,首次克隆得到黄秋葵查尔酮合成酶基因(CHS)cDNA全长序列。序列分析表明,该序列全长1175 bp,包括一个1170 bp的完整ORF,编码389个氨基酸,命名为AeCHS。生物信息学分析表明,本研究所获得的AeCHS氨基酸序列与同科植物黄蜀葵和陆地棉的同源性较高,分别达99.23%和97.44%,AeCHS推断的氨基酸序列含有CHS蛋白的标签序列GFGPG以及4个保守活性位点Cys164、Phe215、His303、Asn336。实时荧光定量PCR分析黄秋葵果实、花、叶片不同发育时期AeCHS基因的表达量,结果表明AeCHS基因在上述植物材料中表现出不同的表达模式:花>果实>叶片,具体到不同植物组织,AeCHS基因在生长6 d的果实、盛开的花朵以及植株顶端第4片叶子中的表达量较高。  相似文献   

10.
百合查尔酮合成酶基因的克隆与分析   总被引:1,自引:0,他引:1  
以西伯利亚百合为试材,通过半巢式PCR和RT-PCR技术分别克隆了查尔酮合成酶基因(CHS)的DNA和cDNA.生物信息学分析显示,CHS的DNA序列全长1 397 bp(登录号HM622754),包含2个外显子和1个内含子;cDNA序列编码区全长1 182 bp(登录号HQ161731),编码393个氨基酸,具有3个典型的CHS蛋白结构域:N-末端结构域(Lys3-Pro229)、C-末端结构域(Gln239-Pro389)和聚合酶Ⅲ结构域(Met1-Thr391);不同百合品种的CHS基因编码的氨基酸序列相似性高达98%,表明百合CHS基因在进化上呈现出十分保守的趋势;不同植物CHS基因序列的系统进化邻接树结果表明:百合与单子叶植物鸢尾及禾本科的水稻、大麦、玉米等亲缘关系更为接近.  相似文献   

11.
The aldo-keto reductase enzymes comprise a functionally diverse gene family which catalyze the NADPH-dependant reduction of a variety of carbonyl compounds. The protein sequences of 45 members of this family were aligned and phylogenetic trees were deduced from this alignment using the neighbor-joining and Fitch algorithms. The branching order of these trees indicates that the vertebrate enzymes cluster in three groups, which have a monophyletic origin distinct from the bacterial, plant, and invertebrate enzymes. A high level of conservation was observed between the vertebrate hydroxysteroid dehydrogenase enzymes, prostaglandin F synthase, and ρ-crystallin of Xenopus laevis. We infer from the phylogenetic analysis that prostaglandin F synthase may represent a recent recruit to the eicosanoid biosynthetic pathway from the hydroxysteroid dehydrogenase pathway and furthermore that, in the context of gene recruitment, Xenopus laevisρ-crystallin may represent a shared gene. Received: 26 August 1996 / Accepted: 5 June 1997  相似文献   

12.
类黄酮是植物中的一种重要的次级代谢产物,它与植物的花色形成有关。查尔酮合酶是类黄酮合成途径中的一个关键酶,在植物体内,CHS表达量的增加或减少都可能改变花的。从矮牵牛花瓣的cDNA中克隆到了CHS-A基因,进行了全序列分析,并与国外已报道的CHS-A-序列进行了同源性比较。  相似文献   

13.
山茶属CHS基因家族的组成和分子进化初探   总被引:8,自引:0,他引:8  
用PCR方法从4种山茶属(Camellia)(山茶科)(Tlaeaceae)植物的总DNA中分别扩增到CHS基因外显子2的部分序列,经克隆、测序得到16个该基因的序列,这些序列与来自GenBank的该属另一种植物的3个序列及作为外类群的大豆(Glycine max (L)Merr)的2个序列一起进行分析。研究表明,山茶属CHS基因家族在进化过程中已分化为A、B、c三个亚家族,包括A1、A2、A3、B1、B2、C等6类不同的基因成员;其中只有A2类成员为全部被研究的5种植物所共有,而其他5类成员只在部分被研究的植物中发现;所有这些CHS成员具有很高的同源性:在核苷酸水平上同一亚家族内基本上高于90%,不同亚家族间也在78%以上。从推测的氨基酸组成看,山茶属内CHS基因的功能已发生了分化,各类成员的碱基替代率有较大差异;从分子系统发育树和可能的氨基酸组成分析,山茶属具有新功能的基因成员是在经过基因重复后,或是由少数几个位点的突变而成,或是由逐渐积累的突变而形成的。进一步分析认为,该属CHS基因的分化直到近期还在活跃地进行,并且不同种的进化式样有一定的差别,这种不同的进化式样可能是物种形成后受不同环境因素影响而形成的。  相似文献   

14.
用PCR方法从4种山茶属(Camellia)(山茶科)(Theaceae)植物的总DNA中分别扩增到CHS基因外显子2的部分序列,经克隆、测序得到16个该基因的序列,这些序列与来自GenBank的该属另一种植物的3个序列及作为外类群的大豆(Glycine max (L.) Merr.)的2个序列一起进行分析.研究表明,山茶属CHS基因家族在进化过程中已分化为A、B、C三个亚家族,包括A1、A2、A3、B1、B2、C 等6类不同的基因成员;其中只有A2类成员为全部被研究的5种植物所共有,而其他5类成员只在部分被研究的植物中发现;所有这些CHS成员具有很高的同源性:在核苷酸水平上同一亚家族内基本上高于90%,不同亚家族间也在78%以上.从推测的氨基酸组成看,山茶属内CHS基因的功能已发生了分化,各类成员的碱基替代率有较大差异; 从分子系统发育树和可能的氨基酸组成分析,山茶属具有新功能的基因成员是在经过基因重复后,或是由少数几个位点的突变而成,或是由逐渐积累的突变而形成的.进一步分析认为,该属CHS基因的分化直到近期还在活跃地进行,并且不同种的进化式样有一定的差别,这种不同的进化式样可能是物种形成后受不同环境因素影响而形成的.  相似文献   

15.
The induction of anthocyanin synthesis and anthocyanin biosynthetic gene expression in detached petunia (Petunia hybrida) corollas by gibberellic acid (GA3) requires sucrose. Neither sucrose nor GA3 alone can induce these processes. We found that GA3 enhances sucrose uptake by 20 to 30%, and we tested whether this is the mechanism by which the hormone induces gene expression. Changing the intracellular level of sucrose with the inhibitors p-chloromercuribenzenesulfonic acid and vanadate did not inhibit the induction of chalcone synthase gene (chs) expression by GA3. Growing detached corollas in various sucrose concentrations did not affect the induction of the gene but did affect its level of expression and the level of anthocyanin accumulated. Only metabolic sugars promoted GA3-induced anthocyanin accumulation. Mannitol and sorbitol had no effect and 3-O-methylglucose only slightly promoted chs expression and anthocyanin accumulation. Our results do not support the suggestion that sugars act as specific signals in the activation of anthocyanin biosynthetic gene expression during petunia corolla development. We suggest that sugars are essential as general sources of carbohydrates for carbon metabolism, upon which the induction of pigmentation is dependent.  相似文献   

16.
Phylogenetic analyses of cellulose synthase (CesA) and cellulose synthase-like (Csl) families from the cellulose synthase gene superfamily were used to reconstruct their evolutionary origins and selection histories. Counterintuitively, genes encoding primary cell wall CesAs have undergone extensive expansion and diversification following an ancestral duplication from a secondary cell wall-associated CesA. Selection pressure across entire CesA and Csl clades appears to be low, but this conceals considerable variation within individual clades. Genes in the CslF clade are of particular interest because some mediate the synthesis of (1,3;1,4)-β-glucan, a polysaccharide characteristic of the evolutionarily successful grasses that is not widely distributed elsewhere in the plant kingdom. The phylogeny suggests that duplication of either CslF6 and/or CslF7 produced the ancestor of a highly conserved cluster of CslF genes that remain located in syntenic regions of all the grass genomes examined. A CslF6-specific insert encoding approximately 55 amino acid residues has subsequently been incorporated into the gene, or possibly lost from other CslFs, and the CslF7 clade has undergone a significant long-term shift in selection pressure. Homology modeling and molecular dynamics of the CslF6 protein were used to define the three-dimensional dispositions of individual amino acids that are subject to strong ongoing selection, together with the position of the conserved 55-amino acid insert that is known to influence the amounts and fine structures of (1,3;1,4)-β-glucans synthesized. These wall polysaccharides are attracting renewed interest because of their central roles as sources of dietary fiber in human health and for the generation of renewable liquid biofuels.Recent attempts to better understand the chemistry and biology of plant cell walls have been driven by the importance of these walls as biomass sources for biofuel production systems, as sources of dietary fiber that is increasingly recognized as being highly beneficial for human health, and as key components of livestock forage and fodder. Plant cell walls consist predominantly of polysaccharides and lignin. In addition to cellulose, walls contain a wide array of complex noncellulosic polysaccharides that vary across the plant kingdom (Carpita, 1996; Popper and Fry, 2003; Niklas, 2004; Popper and Tuohy, 2010). In the dicotyledons, pectic polysaccharides and xyloglucans predominate, although smaller amounts of heteroxylans and heteromannans are also found. In evolutionary terms, a major change in noncellulosic wall composition is observed with the emergence of the Poaceae family, which contains the grasses and important cereal species. In contrast to dicots, walls of the Poaceae have relatively low levels of pectic polysaccharides and xyloglucans and correspondingly higher levels of heteroxylans, which appear to constitute the core noncellulosic wall polysaccharides in this family. In addition, walls of the Poaceae often contain (1,3;1,4)-β-glucans, which are not widely distributed in dicotyledons or other monocotyledons (Carpita, 1996; Fincher, 2009).Following the identification of the genes that encode cellulose synthases, which were designated CesA genes (Pear et al., 1996; Arioli et al., 1998), analyses of EST databases quickly revealed that the CesA group of cellulose synthase genes was in fact just one clade of a much larger superfamily that contained up to about 50 genes in most land plants (Richmond and Somerville, 2000; Hazen et al., 2002). The other members of the large gene family were designated cellulose synthase-like genes (Csl), which represent several clades in the overall phylogeny of the superfamily (Supplemental Fig. S1). The plant CesA genes were shown to have both conserved and hypervariable regions (Delmer, 1999; Doblin et al., 2002) and, together with the related Csl genes, were predicted to be integral membrane proteins and to have conserved, active-site D,D,D,QxxRW amino acid sequences. The CesA and Csl genes are members of the GT2 family of glycosyltransferases (Cantarel et al., 2009; http://www.cazy.org/).Several of the Csl genes have now been implicated in the biosynthesis of noncellulosic wall polysaccharides. Certain CslA genes mediate mannan and glucomannan synthesis (Dhugga et al., 2004; Liepman et al., 2005). Genes in the CslC clade are believed to be involved in xyloglucan biosynthesis (Cocuron et al., 2007), while genes from both the CslF and CslH clades mediate (1,3;1,4)-β-glucan synthesis in the Poaceae (Burton et al., 2006; Doblin et al., 2009). The CslJ group of enzymes is also believed to be involved in (1,3;1,4)-β-glucan synthesis (Farrokhi et al., 2006; Fincher, 2009), but the phylogeny of this group of genes remains unresolved (Yin et al., 2009). The fact that the CslF group does not form a clade with the CslH and CslJ groups on the phylogenetic tree (Supplemental Fig. S1) led to the suggestion that the genes mediating (1,3;1,4)-β-glucan synthesis have evolved independently on more than one occasion (Doblin et al., 2009; Fincher, 2009).Against this background and considering the sequence similarities between genes in the cellulose synthase gene superfamily, we have used Bayesian phylogenetic analyses of these genes from seven fully sequenced taxa to reconstruct the evolutionary origins of the CesA and Csl families in the grasses and, in particular, to investigate the evolution of the CslF, CslH, and CslJ genes. The distributions of the genes across genomes were compared, CslF gene clusters were analyzed, and the rates of synonymous and nonsynonymous nucleotide substitution were estimated to assess and compare selection histories of individual members of clades within the gene superfamily. Finally, we have constructed a refined model of the barley CslF6 enzyme to observe how selection on specific residues and regions of the enzyme has operated in a structural and functional context.  相似文献   

17.
利用PCR与TAlL-PCR方法,从半月苔(Lunularia cructata(L.)Dum.ex Lindb)中获得了一段长约l 000 bp的基因片段,它与已知的CHS基因在核苷酸水平上的相似性大于56%,在氨基酸水平上的相似性大于60%,所推断的氨基酸序列中酶反应的4个催化位点与已知晶体结构的紫花苜蓿MCHS2A上的催化位点相同,首次证明了苔类植物中可能存在类CHS基因,将CHS基因的起源时间推到苔藓类植物出现之前.以该序列和两种蕨类植物(Psilotumnudum(L.)Griseb.和Equisetum arvense L.)的CHS序列作为外类群,应用邻接法、最大简约法和最大似然法分别构建了被子植物的CHS的分子系统树.结果表明,大部分科中的CHS分布在不同的分支上,而十字花科、可科和禾本科各自聚成一个单系类群.以邻接树为依据,对茄科、旋花科和菊科的CHS基因进行了相对碱基替换速率的检测,发现这三个科内或科间序列的替换速率不一致.被子植物的CHS基因在基因拷贝数目、碱基替换速率以及重复/丢失事件的发生上都存在较大的差异,这种差异可能与被子植物的生活史、生活环境、花的特性以及对外界的防御系统等的多样性相关.  相似文献   

18.
CHS基因起源初探及其在被子植物中的进化分析   总被引:6,自引:0,他引:6  
利用PCR与TAIL-PCR方法,从半月苔(Lunulariacruciata(L.)Dum.exLindb.)中获得了一段长约1000bp的基因片段,它与已知的CHS基因在核苷酸水平上的相似性大于56%,在氨基酸水平上的相似性大于60%,所推断的氨基酸序列中酶反应的4个催化位点与已知晶体结构的紫花苜蓿MCHS2A上的催化位点相同,首次证明了苔类植物中可能存在类CHS基因,将CHS基因的起源时间推到苔藓类植物出现之前。以该序列和两种蕨类植物(Psilotumnudum(L.)Griseb.和EquisetumarvenseL.)的CHS序列作为外类群,应用邻接法、最大简约法和最大似然法分别构建了被子植物的CHS的分子系统树。结果表明,大部分科中的CHS分布在不同的分支上,而十字花科、豆科和禾本科各自聚成一个单系类群。以邻接树为依据,对茄科、旋花科和菊科的CHS基因进行了相对碱基替换速率的检测,发现这三个科内或科间序列的替换速率不一致。被子植物的CHS基因在基因拷贝数目、碱基替换速率以及重复/丢失事件的发生上都存在较大的差异,这种差异可能与被子植物的生活史、生活环境、花的特性以及对外界的防御系统等的多样性相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号