首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiovascular disease is recognized as an important clinical problem in radiotherapy and radiation protection. However, only few radiobiological models relevant for assessment of cardiotoxic effects of ionizing radiation are available. Here we describe the isolation of mouse primary cardiac endothelial cells, a possible target for cardiotoxic effects of radiation. Cells isolated from hearts of juvenile mice were cultured and irradiated in vitro. In addition, cells isolated from hearts of locally irradiated adult animals (up to 6 days after irradiation) were tested. A dose-dependent formation of histone γH2A.X foci was observed after in vitro irradiation of cultured cells. However, such cells were resistant to radiation-induced apoptosis. Increased levels of actin stress fibres were observed in the cytoplasm of cardiac endothelial cells irradiated in vitro or isolated from irradiated animals. A high dose of 16 Gy did not increase permeability to Dextran in monolayers formed by endothelial cells. Up-regulated expression of Vcam1, Sele and Hsp70i genes was detected after irradiation in vitro and in cells isolated few days after irradiation in vivo. The increased level of actin stress fibres and enhanced expression of stress-response genes in irradiated endothelial cells are potentially involved in cardiotoxic effects of ionizing radiation.  相似文献   

2.
3.
The effects of ionizing radiation (IR) on tumor angiogenesis still remain largely unknown. In this study, we found that IR (8 Gy) induces a high-frequency (80-90%) senescence-like phenotype in vascular endothelial cells (ECs) undergoing exponential growth. This finding allowed us to characterize the IR-induced senescence-like (IRSL) phenotype by examining the gene expression profiles and in vitro angiogenic activities of these ECs. The expression levels of genes associated with cell cycle progression and DNA replication were remarkably reduced in the IRSL ECs. Additionally, the in vitro invasion and migration activities of these cells through Matrigel were significantly suppressed. We also found that confluent ECs exhibited a high-frequency IRSL phenotype when they were replated immediately after irradiation, whereas incubation in plateau-phase conditions reduced the induction of this phenotype and enhanced colony formation. The kinetics of DNA double-strand break repair, which showed a faster time course in confluent ECs than in growing ECs, may contribute to the protective mechanism associated with the IRSL phenotype. These results imply that the IRSL phenotype may be important for determining the angiogenic activity of ECs following irradiation. The present study should contribute to the understanding of the effects of IR on tumor angiogenesis.  相似文献   

4.
Senescent cells do not proliferate in response to exogenous growth factors, yet the number and affinity of growth factor receptors on the cell surface appear to be similar to presenescent cell populations. To determine whether a defect in receptor signaling exists, we analyzed human umbilical vein endothelial cells (HUVEC) since HUVEC growth is absolutely dependent upon the presence of FGF. We report that in both presenescent and senescent HUVEC populations, FGF-1 induces the expression of cell cycle-specific genes, suggesting that functional FGF receptor (FGFR) may exist on the surface of these cells. However, the tyrosine phosphorylation of FGFR-1 substrates, Src and cortactin, is impaired in senescent HUVEC, and only the presenescent cell populations exhibit a FGF-1-dependent Src tyrosine kinase activity. Moreover, we demonstrate that senescent HUVEC are unable to migrate in response to FGF-1, and these data correlate with an altered organization of focal adhesion sites. These data suggest that the induction of gene expression is insufficient to promote a proliferative or migratory phenotype in senescent HUVEC and that the attenuation of the FGFR-1 signal transduction pathway may be involved in the inability of senescent HUVEC to proliferate and/or migrate.  相似文献   

5.
Senescent phenotype can be attained by diverse agents, thus suggesting that there might be molecular differences between the senescence achieved in vivo and the senescence-like state attained in vitro under culture conditions. In this study we compare the senescent phenotype reached by cells derived from young animals when cultured in vitro with the one associated with the in vivo aging process. Several in vitro senescence parameters, including MTT reduction, proliferation rate, DNA synthesis, SA-beta-gal staining, and both in vivo and in vitro Bcl-2 content, were determined. Alterations in DNA electrophoretic mobility were evaluated to test differences in bulk chromatin structure. Our results indicate that although it is possible to achieve a senescent phenotype with cells derived from young animals aged in culture, this phenotype differs from the one observed in older animals, due to lack of in vivo damage inducers to which cells are being exposed during natural aging.  相似文献   

6.
Senescent cells accumulate in various peripheral tissues during aging and have been shown to exacerbate age-related inflammatory responses. We recently showed that exposure to neurotoxic amyloid β (Aβ1–42) oligomers can readily induce a senescence phenotype in human brain microvascular endothelial cells (HBMECs). In the present work, we used atomic force microscopy (AFM) to further characterize the morphological properties such as cell membrane roughness and cell height and nanomechanical properties such as Young's modulus of the membrane (membrane stiffness) and adhesion resulting from the interaction between AFM tip and cell membrane in Aβ1–42 oligomer-induced senescent human brain microvascular endothelial cells. Morphological imaging studies showed a flatter and spread-out nucleus in the senescent HBMECs, both characteristic features of a senescent phenotype. Furthermore, the mean cell body roughness and mean cell height were lower in senescent HBMECs compared to untreated normal HBMECs. We also observed increased stiffness and alterations in the adhesion properties in Aβ1–42 oligomer-induced senescent endothelial cells compared to the untreated normal HBMECs suggesting dynamic reorganization of cell membrane. We then show that vascular endothelial growth factor receptor 1 (VEGFR-1) knockdown or overexpression of Rho GTPase Rac 1 in the endothelial cells inhibited senescence and reversed these nanomechanical alterations, confirming a direct role of these pathways in the senescent brain endothelial cells. These results illustrate that nanoindentation and topographic analysis of live senescent brain endothelial cells can provide insights into cerebrovascular dysfunction in neurodegenerative diseases such as Alzheimer's disease.  相似文献   

7.
Confluent monolayers of bovine aortic endothelial cells were examined 2-72 h after exposure to 0.5-5.0 Gy of 60Co gamma-rays. Accumulation of prostacyclin [PGI2, measured as 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha)] in the culture media and PGI2 production stimulated by exogenous arachidonate were correlated with cell detachment and release of lactate dehydrogenase (LDH) activity. Platelet adherence to irradiated and control monolayers also was studied. There were simultaneous time- and dose-dependent increases in cell detachment and in the titers of 6-keto-PGF1 alpha and LDH activity in the culture medium. These changes were evident between 4 and 8 h after 5 Gy or at 24 h after 0.5 Gy. Four hours after 5 Gy, both adherent and detached endothelial cells showed a twofold increase in PGI2 production during a 15-min incubation with arachidonate (10 microM). However, by 72 h this increase was less significant. The accumulation of 6-keto-PGF1 alpha appeared to be related to cell destruction, but radiation also stimulated PGI2 synthesis independent of cell detachment. There was an increased platelet interaction with irradiated monolayers, as a result of platelet adherence to subendothelial matrix exposed after cell detachment. However, irradiation did not alter the nonadherent property of the endothelial cell surface toward platelets.  相似文献   

8.
The hic-5 gene encodes a novel protein with Zn finger-like (LIM) motifs, the expression of which increases during cellular senescence. The ectopic expression of hic-5 in nontumorigenic immortalized human fibroblasts, whose expression levels of hic-5 were significantly reduced in comparison with those of mortal cells, decreased colony-forming efficiency. Stable clones expressing high levels of hic-5 mRNA showed higher levels of mRNAs for several extracellular matrix-related proteins, along with the alteration of an alternative splicing as seen in senescent cells and decreased c-fos inducibility. Furthermore, these clones acquired a senescence-like phenotype, such as growth retardation; senescence-like morphology; and increased expression of Cip1/WAF1/sdi1 after 20 to 40 population doublings. On the other hand, antisense RNA expression of hic-5 in human normal diploid fibroblasts delayed the senescence process. HIC-5 was localized in nuclei and had affinity for DNA. Based on these observations, we speculated that HIC-5 affected the expression of senescence-related genes through interacting with DNA and thereby induced the senescence-like phenotypes. To our knowledge, hic-5 is the first single gene that could induce senescence-like phenotypes in a certain type of immortalized human cell and mediate the normal process of senescence.  相似文献   

9.
Communication between irradiated and unirradiated (bystander) cells can result in responses in unirradiated cells that are similar to responses in their irradiated counterparts. The purpose of the current experiment was to test the hypothesis that bystander responses will be similarly induced in primary murine stem cells under different cell culture conditions. The experimental systems used here, co-culture and media transfer, are similar in that they both restrict communication between irradiated and bystander cells to media borne factors, but are distinct in that with the media transfer technique, cells can only communicate after irradiation, and with co-culture, cells can communication before, during and after irradiation. In this set of parallel experiments, cell type, biological endpoint, and radiation quality and dose, were kept constant. In both experimental systems, clonogenic survival was significantly decreased in all groups, whether irradiated or bystander, suggesting a substantial contribution of bystander effects (BE) to cell killing. Genomic instability (GI) was induced under all radiation and bystander conditions in both experiments, including a situation where unirradiated cells were incubated with media that had been conditioned for 24h with irradiated cells. The appearance of delayed aberrations (genomic instability) 10-13 population doublings after irradiation was similar to the level of initial chromosomal damage, suggesting that the bystander factor is able to induce chromosomal alterations soon after irradiation. Whether these early alterations are related to those observed at later timepoints remains unknown. These results suggest that genomic instability may be significantly induced in a bystander cell population whether or not cells communicate during irradiation.  相似文献   

10.
11.
The effects of ionizing irradiation (0, 600, 1,500, or 3,000 rads) on the permeability of pulmonary endothelial monolayers to albumin were studied. Pulmonary endothelial cells were grown to confluence on gelatin-coated polycarbonate filters, placed in serum-free medium, and exposed to a 60Co source. The monolayers were placed in modified flux chambers 24 hours after irradiation; 125I-albumin was added to the upper well, and both the upper and lower wells were serially sampled over 4 hours. The amount of albumin transferred from the upper well/hour over the period of steady-state clearance (90-240 min after addition of 125I-albumin) was 2.8 +/- 0.2% in control monolayers and was increased in monolayers exposed to 1,500 or 3,000 rads (increase of 63 +/- 10% and 61 +/- 10%, respectively, P less than 0.01). No increase was found in monolayers exposed to 600 rads. The increases in endothelial albumin transfer rates were associated with morphologic evidence of monolayer disruption and endothelial injury which paralleled the changes in albumin permeability. Dose-dependent alterations in endothelial actin filament organization were also found. Incubation of the monolayers exposed to 3,000 rads with medium supplemented with 10% fetal calf serum for 24 hours resulted in normalization of albumin permeability, improvement in morphologic appearance of the monolayers, and reorganization of the actin filament structure. These studies demonstrate that ionizing radiation is an active principle in the reversible disorganization of cultured pulmonary endothelial cell monolayers without the need of other cell types or serum components.  相似文献   

12.
C Ts'ao  W F Ward 《Radiation research》1985,101(2):394-401
Confluent monolayers from three lines of bovine aortic endothelial cells were exposed to a single dose of 10 Gy of 60Co gamma rays. Seventy-two hours later, the morphology of the irradiated and sham-irradiated monolayers was examined, and cellular DNA and protein contents were determined. In addition, the release of plasminogen activator (PA) activity into the culture media and PA activity in the cell lysates were assayed. Irradiated monolayers maintained their cobblestone appearance, but individual endothelial cells were enlarged considerably compared to sham-irradiated cells. DNA and protein contents in the irradiated monolayers were reduced to 43-50% and 72-95% of the control levels, respectively. These data indicate that radiation induced cell loss (detachment and/or lysis) from the monolayer, with hypertrophy of surviving (attached) cells to preserve the continuity of the monolayer surface. Total PA activity (lysate plus medium) in the irradiated dishes was reduced to 50-75% of the control level. However, when endothelial PA activity was expressed on the basis of DNA content, the irradiated monolayers from two of the three cell lines contained significantly more PA activity than did sham-irradiated monolayers. Most importantly, the percentage of the total PA activity released into the culture medium by irradiated cells (5-22%) was significantly (P less than 0.001) lower than that released by sham-irradiated cells (23-68%). These data suggest that fibrinolytic defects observed in irradiated tissues in situ may be attributable at least in part to a radiation-induced inhibition of PA release by vascular endothelial cells.  相似文献   

13.
Expression of the catalytic subunit of human telomerase (hTERT), in normal human fibroblasts allows them to escape replicative senescence. However, we have observed that populations of hTERT-immortalized human fibroblasts contain 3-20% cells with a senescent morphology. To determine what causes the appearance of these senescent-like cells, we used flow cytometry to select them from the population and analyzed them for various senescence markers, telomere length, and telomerase activity. This subpopulation of cells had elevated levels of p21 and hypophosphorylated Rb, but telomere length was similar to that of the immortal cells in the culture that was sorted. Surprisingly, telomerase activity in the senescent-like cells was significantly elevated compared with immortal cells from the same population, suggesting that high telomerase activity may induce the senescent phenotype. Furthermore, transfection of normal fibroblasts with a hTERT-expressing plasmid that confers high telomerase activity led to the induction of p21, a higher percentage of SA-beta-galactosidase-positive cells, and a greater number of cells entering growth arrest compared with controls. These results suggest that excessive telomerase activity may act as a hyperproliferative signal in cells and induce a senescent phenotype in a manner similar to that seen following overexpression of oncogenic Ras, Raf, and E2F1. Thus, there must be a critical threshold of telomerase activity that permits cell proliferation.  相似文献   

14.
Normal cells in a culture enter a nondividing state after a finite number of population doubling, which is termed replicative senescence, whereas cancer cells have unlimited proliferative potential and are thought to exhibit an immmortal phenotype by escaping from senescence. The p21 gene (also known as sdi1), which encodes the cyclin-dependent kinase inhibitor, is expressed at high levels in senescent cells and contributes to the growth arrest. To examine if the p21sdi1 gene transfer could induce senescence in human cancer cells, we utilized an adenoviral vector-based expression system and four human cancer cell lines differing in their p53 status. Transient overexpression of p21sdi1 on cancer cells induced quiescence by arresting the cell cycle at the G1 phase and exhibited morphological changes, such as enlarged nuclei as well as a flattened cellular shape, specific to the senescence phenotype. We also showed that p21sdi1-transduced cancer cells expressed beta-galactosidase activity at pH 6.0, which is known to be a marker of senescence. Moreover, the polymerase chain reaction-based assay demonstrated that levels of telomerase activity were significantly lower in p21sdi1-expressing cells compared to parental cancer cells. These observations provide the evidence that p21sdi1 overexpression could induce a senescence-like state and reduce telomerase activity in human cancer cells, suggesting that these novel p21sdi1 functions may have important implications for anticancer therapy.  相似文献   

15.
In experiments utilizing the alkaline filter elution assay for radiation-induced DNA damage we observed an unexpected dependence of hypoxic dose-response curves on the length of time V79 cells were in exponential growth between subculturing and irradiation. Dose-response curves for DNA from cells irradiated in air were identical regardless of whether the exponential-phase cells had been subcultured 24 or 48 h prior to irradiation, but cells irradiated in hypoxia 24 h after subculture displayed a dose-response curve for DNA damage which was two times steeper than that obtained for cells irradiated in hypoxia 48 h after subculture. Possible mechanisms for this effect are discussed.  相似文献   

16.
Studies in this laboratory have shown enhancement of the mammary tumorigenic effects of neutron irradiation after low-dose-rate neutron exposures. To investigate possible reasons, a mammary cell system was used which allows quantitation of initiated mammary epithelial cells and examination of the progression of these radiation-altered cells toward the neoplastic phenotype. Female BALB/c mice were irradiated with fission-spectrum neutrons at dose rates of 1 rad/min or 1 rad/day. Twenty-four hours or 16 weeks after irradiation, mammary cells were obtained by enzymatic dissociation. Mammary outgrowths were derived by injection of 10(4) cells into gland-free fat pads of 3-week-old female BALB/c mice. The frequency of ductal dysplasias in outgrowths from cells irradiated at high or low dose rates was similar. Persistence of dysplasias differed markedly. Few of the dysplasias in outgrowths derived from cells irradiated at the high dose rate persisted, while a large fraction of the dysplasias in outgrowths derived from cells irradiated at low dose rate persisted. When cells remained in situ for 16 weeks prior to dissociation a higher frequency of persistent altered cells was also observed in outgrowths derived from cells irradiated at low neutron dose rates. These data suggest that low-dose-rate neutron exposures enhance the probability of progression of carcinogen-altered cells rather than increase the numbers of initiated cells.  相似文献   

17.
The goal of this study was to establish planar multilayers from human tumor cells (WiDr and SiHa) as a model for irradiation of solid tumors. In addition to using conventional X rays (250 kV) as a reference standard, multilayers were tested for their suitability in cell survival studies with heavy-ion irradiation ((12)C(6+)) in the plateau and the extended Bragg peak with a scanned ion beam. Multilayers of both cell lines showed decreased survival compared to the corresponding monolayers after both X and heavy-ion irradiation. This multicellular sensitization effect is in contrast to the multicellular resistance or contact effect commonly described in the literature. Flow cytometry measurements showed an arrest of irradiated SiHa cells in G(2)/M phase. In contrast to the transient arrest of the monolayers, the multilayers stayed in a prolonged arrest. After Bragg-peak irradiation of monolayers, the arrest time was increased by 12-24 h, and more cells were arrested than with X rays. For multilayers, there were no differences between G(2) arrest after X rays and heavy ions for the entire observation period.  相似文献   

18.
Migration of endothelial cells is one of the first cellular responses in the cascade of events that leads to re-endothelialization of an injured vessel and neovascularization of growing tissues and tumors. To examine the hypothesis that endothelial cells express a specific migration-associated phenotype, we analyzed the cell surface glycoprotein expression of migrating bovine aortic endothelial cell (BAECs). Light microscopic analysis revealed an upregulation of binding sites for the lectins Concanavalin A (Con A), wheat germ agglutinin (WGA), and peanut agglutinin after neuraminidase treatment (N-PNA) on migrating endothelial cells relative to contact-inhibited cells. These findings were confirmed and quantitated with an enzyme-linked lectin assay (ELLA) of circularly scraped BAEC monolayers. The expression of migration-associated cell surface glycoproteins was also analyzed by SDS-PAGE. The overall expression of cell surface glycoproteins was upregulated on migrating BAECs. Migrating BAECs expressed Con A- and WGA-binding glycoproteins with apparent molecular masses of 25 and 48 kD that were not expressed by contact-inhibited BAEC monolayers and, accordingly, disappeared as circularly scraped monolayers reached confluence. Subconfluent BAEC monolayers expressed the same cell surface glycoconjugate pattern as migrating endothelial cells. FACS analysis of circularly scraped BAEC monolayers showed that the phenotypic changes of cell surface glycoprotein expression after release from growth arrest occurred before the recruitment of the cells into the cell cycle (3 vs. 12 h). Suramin, which inhibits endothelial cell migration, abrogated the expression of the migration-associated phenotype and induced the expression of a prominent 28-kD Con A- and WGA-binding cell surface glycoprotein. These results indicate that endothelial cells express a specific migration-associated phenotype, which is characterized by the upregulation of distinct cellular glycoconjugates and the expression of specific migration-associated cell surface glycoproteins.  相似文献   

19.
Although bystander effects have been shown for some high-LET radiations, few studies have been done on bystander effects induced by heavy-ion radiation. In this study, using a Transwell insert co-culture system, we have demonstrated that irradiation with 1 GeV/nucleon iron ions can induce medium-mediated bystander effects in normal AG01522 human fibroblasts. When irradiated and unirradiated bystander cells were combined in shared medium immediately after irradiation, a two- to threefold increase in the percentage of bystander cells with gamma-H2AX foci occurred as early as 1 h after irradiation and lasted at least 24 h. There was a twofold increase in the formation of micronuclei in bystander cells when they were co-cultured with irradiated cells immediately or 1 or 3 h after irradiation, but there was no bystander effect when the cells were co-cultured 6 h or later after irradiation. In addition, bystander micronucleus formation was observed even when the bystander cells were co-cultured with irradiated cells for only 1 h. This indicates that the crucial signaling to bystander cells from irradiated cells occurs shortly after irradiation. Moreover, both gamma-H2AX focus formation and micronucleus formation in bystander cells were inhibited by the ROS scavengers SOD or catalase or the NO scavenger PTIO. This suggests that ROS and NO play important roles in the initiation of bystander effects. The results with iron ions were similar to those with X rays, suggesting that the bystander responses in this system are independent of LET.  相似文献   

20.
The capacity of monolayers of both normal human and xeroderma pigmentosum (XP) filbroblasts to support plaque formation by herpes simplex virus was decreased when the monolayers were ultraviolet (UV) irradiated and infected with virus. Fibroblasts of XP complementation groups A, B, and D were sensitive to UV, being 4-6 fold more sensitive than either fibroblasts of XP complementation group C or fibroblasts from a normal individual. When the monolayers were irradiated 4 days prior to infection, the capacity of normal fibroblasts to support herpes virus growth recovered, whereas the capacity of the XP strains decreased further compared to that measured when infection immediately followed irradiation. Concurrent experiments with UV-irradiated herpes virus showed that the survival of this virus did not increase when infection by irradiated virus immediately followed irradiation of the monolayers. However, if the monolayers were irradiated 4 days prior to infection, the survival of this virus increased by a factor of nearly 2. Such Weigle reactivation (WR) occurred at lower fluences to the XP fibroblasts than to normal fibroblasts, suggesting that WR results from residual cellular DNA damage left after excision repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号