首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have previously reported that chimpanzees chronically infected with hepatitis C virus (HCV) could be reinfected, even with the original infecting strain. In this study we tested the hypothesis that this might reflect the presence of minor quasispecies to which there was little or no immunity. To evaluate this hypothesis, we sequenced multiple clones taken at intervals after primary infection and rechallenge from four chronically infected chimpanzees. The inoculum used in these studies (HCV-H, genotype 1a) revealed 17 separate variants among 46 clones sequenced. Following challenge, each of the four challenged animals showed marked alterations of their quasispecies distribution. The new variants, which appeared 1 to 6 weeks after challenge, were either identical to or closely resembled variants present in the challenge inoculum. These results, paralleled by an increase in viremia in some of the challenged animals, suggest that quasispecies in the challenge inoculum were responsible for signs of reinfection and that there was little immunity. However, the newly emerged quasispecies completely took over infection in only one animal. In the remaining three chimpanzees the prechallenge quasispecies were able to persist. The natural evolution of infection within chimpanzees resulted in variants able to compete with the inoculum variants. Whether through reexposure or the natural progression of infection, newly emerged quasispecies are likely to play a role in the pathogenesis of chronic HCV infection.Hepatitis C virus (HCV) is estimated to chronically infect about 400 million people worldwide. More than half of these develop chronic active hepatitis, cirrhosis, or hepatocellular carcinoma. The HCV genome consists of a single-stranded RNA molecule approximately 10 kb long which contains a single open reading frame encoding approximately 3,000 amino acids (1, 5). There are at least six genotypes of HCV, and within a given patient the genomes are distributed among quasispecies which show sequence variation, particularly in the variable regions of the genome (4, 9). Hypervariable region 1 (HVR1) is a 27-amino-acid segment in the amino terminus of the second envelope protein which has been identified as the most variable region of the viral genome (11, 20). Sequential changes have been observed during the course of chronic HCV infections in chimpanzees and in humans (4, 11, 12). It has been postulated that these reflect immune system selection of neutralizing epitopes encoded by HVR1 (18, 19) and that persistent infection depends on the ability of the virus to continually evade the effects of neutralizing antibody (7, 10, 15, 17, 20). Due to its variability, HVR1 has been used extensively as an indicator of viral evolution.We have previously reported that chronically infected chimpanzees could seemingly be reinfected, even with the original infecting strain (13). In a recent report a similar phenomenon was observed in patients with posttransfusion hepatitis (6). We postulated that this might reflect the presence of minor quasispecies in the inoculum to which there was little or no immunity (13). Here we test this hypothesis by sequencing multiple clones of HVR1 derived at intervals after initial infection and after rechallenge.  相似文献   

3.
4.
5.
Cyclosporine A and nonimmunosuppressive cyclophilin (Cyp) inhibitors such as Debio 025, NIM811, and SCY-635 block hepatitis C virus (HCV) replication in vitro. This effect was recently confirmed in HCV-infected patients where Debio 025 treatment dramatically decreased HCV viral load, suggesting that Cyps inhibitors represent a novel class of anti-HCV agents. However, it remains unclear how these compounds control HCV replication. Recent studies suggest that Cyps are important for HCV replication. However, a profound disagreement currently exists as to the respective roles of Cyp members in HCV replication. In this study, we analyzed the respective contribution of Cyp members to HCV replication by specifically knocking down their expression by both transient and stable small RNA interference. Only the CypA knockdown drastically decreased HCV replication. The re-expression of an exogenous CypA escape protein, which contains escape mutations at the small RNA interference recognition site, restored HCV replication, demonstrating the specificity for the CypA requirement. We then mutated residues that reside in the hydrophobic pocket of CypA where proline-containing peptide substrates and cyclosporine A bind and that are vital for the enzymatic or the hydrophobic pocket binding activity of CypA. Remarkably, these CypA mutants fail to restore HCV replication, suggesting for the first time that HCV exploits either the isomerase or the chaperone activity of CypA to replicate in hepatocytes and that CypA is the principal mediator of the Cyp inhibitor anti-HCV activity. Moreover, we demonstrated that the HCV NS5B polymerase associates with CypA via its enzymatic pocket. The study of the roles of Cyps in HCV replication should lead to the identification of new targets for the development of alternate anti-HCV therapies.Hepatitis C virus (HCV)2 is the main contributing agent of acute and chronic liver diseases worldwide (1). Primary infection is often asymptomatic or associated with mild symptoms. However, persistently infected individuals develop high risks for chronic liver diseases such as hepatocellular carcinoma and liver cirrhosis (1). The combination of IFNα and ribavirin that serves as current therapy for chronically HCV-infected patients not only has a low success rate (about 50%) (2) but is often associated with serious side effects (2). There is thus an urgent need for the development of novel anti-HCV treatments (2).The immunosuppressive drug cyclosporine A (CsA) was reported to be clinically effective against HCV (3). Controlled trials showed that a combination of CsA with IFNα is more effective than IFNα alone, especially in patients with a high viral load (4, 5). Moreover, recent in vitro studies provided evidence that CsA prevents both HCV RNA replication and HCV protein production in an IFNα-independent manner (610). CsA exerts this anti-HCV activity independently of its immunosuppressive activity because the nonimmunosuppressive Cyp inhibitors such as Debio 025, NIM811, and SCY-635 also block HCV RNA and protein production (9, 1114). Unlike CsA, these molecules do not display calcineurin affinity and specifically inhibit the peptidyl-prolyl cis-trans-isomerase (PPIase) Cyps. Most importantly, recent clinical data demonstrated that Debio 025 dramatically decreased HCV viral load (3.6 log decrease) in patients coinfected with HCV and HIV (15). This 14-day Debio 025 treatment (1200 mg orally administered twice daily) was effective against the three genotypes (genotypes 1, 3, and 4) represented in the study. More recently, the anti HCV effect of Debio 025 in combination with peginterferon α 2a (peg-IFNα2a) was investigated in treatment-inexperienced patients with chronic hepatitis C. Debio 025 (600 mg administered once daily) in combination with peg-IFNα2a (180 μg/week) for 4 weeks induced a continuous decay in viral load that reached −4.61 ± 1.88 IU/ml in patients with genotypes 1 and 4 and −5.91 ± 1.11 IU/ml in patients with genotypes 2 and 3 at week 4 (16). The Debio 025 findings are critical because they suggest that Cyp inhibitors represent a novel class of anti-HCV agents. However, it remains unclear how these compounds control HCV replication. The fact that several recent studies using small RNA interference knockdown approaches suggest that Cyps are critical for the HCV life cycle (9, 17, 18) strongly implies that there is a direct or indirect link between the CsA- and CsA derivative-mediated inhibitory effect on HCV replication and host Cyps.The discovery 20 years ago of the first cellular protein showing PPIase activity (19) was entirely unrelated to the discovery of CypA as an intracellular protein possessing a high affinity for CsA (20). It is only a few years later that Fischer et al. (21) demonstrated that the 18-kDa protein with PPIase activity and CypA represent a single unique protein. All Cyps contain a common domain of 109 amino acids, called the Cyp-like domain, which is surrounded by domains specific to each Cyp members and which dictates their cellular compartmentalization and function (22). Bacteria, fungi, insects, plants, and mammals contain Cyps, which all have PPIase activity and are structurally conserved (22). To date, 16 Cyp members have been identified, and 7 of them are found in humans: CypA, CypB, CypC, CypD, CypE, Cyp40, and CypNK (22).Although there is a growing body of evidence that Cyps control HCV replication in human hepatocytes, a major disagreement currently exists on the respective roles of Cyp members in HCV replication. One study suggests that CypB, but not CypA, is critical for HCV replication (17), another suggests that CypA, but not CypB and CypC, is critical for HCV replication (18), and a third study suggests that three Cyps, CypA, B, and C, are all required for HCV replication (9). Thus, although it becomes evident that Cyps serve as HCV co-factors, their respective contributions and roles in the HCV life cycle remain to be determined. An understanding of the mechanisms that control the Cyp inhibitor-mediated anti-HCV effect is imperative because it will provide new alternate anti-HCV therapies and shed light on the still poorly understood early and late steps of the HCV life cycle.  相似文献   

6.
7.
The induction of an efficient CD4+ T-cell response against hepatitis C virus (HCV) is critical for control of the chronicity of HCV infection. The ability of HCV structural protein endogenously expressed in an antigen-presenting cell (APC) to be presented by class II major histocompatibility complex molecules to CD4+ T cells was investigated by in vitro culture analyses using HCV core-specific T-cell lines and autologous Epstein-Barr virus-transformed B-lymphoblastoid cell lines (B-LCLs) expressing structural HCV antigens. The T- and B-cell lines were generated from peripheral blood mononuclear cells derived from HCV-infected patients. Expression and intracellular localization of core protein in transfected cells were determined by immunoblotting and immunofluorescence. By stimulation with autologous B-LCLs expressing viral antigens, strong T-cell proliferative responses were induced in two of three patients, while no substantial stimulatory effects were produced by B-LCLs expressing a control protein (chloramphenicol acetyltransferase) or by B-LCLs alone. The results showed that transfected B cells presented mainly endogenously synthesized core peptides. Presentation of secreted antigens from adjacent antigen-expressing cells was not enough to stimulate a core-specific T-cell response. Only weak T-cell proliferative responses were generated by stimulation with B-LCLs that had been pulsed beforehand with at least a 10-fold-higher amount of transfected COS cells in the form of cell lysate, suggesting that presentation of antigens released from dead cells in the B-LCL cultures had a minimal role. Titrating numbers of APCs, we showed that as few as 104 transfected B-LCL APCs were sufficient to stimulate T cells. This presentation pathway was found to be leupeptin sensitive, and it can be blocked by antibody to HLA class II (DR). In addition, expression of a costimulatory signal by B7/BB1 on B cells was essential for T-cell activation.Hepatitis C virus (HCV) has been known as a major etiologic agent of posttransfusion and sporadic community-acquired non-A, non-B hepatitis. Like the other members in the family Flaviviridae, HCV contains a single, positive-strand RNA genome with a single long open reading frame (ORF) coding for a polyprotein precursor of about 3,000 amino acids (aa) (12). HCV infection is frequently persistent in the majority of patients and is closely associated with the later development of liver cirrhosis and hepatocellular carcinoma (3, 12, 16, 32). The effective control of HCV infection has been limited by the high frequency of viral genetic heterogeneity (7), the low rate of response to alpha interferon (46), and inadequate production of protective immunity (44, 45). These features strongly suggest that there is a great need to establish a new, highly effective therapy.CD4+ T cells are considered to play a central role in the generation of protective immunity against infections, because they can provide help to B cells for antibody production (42) and to cytotoxic precursor T cells for their maturation to effectors (21). Some CD4+ T cells may also act as cytotoxic effectors (30). It has been recognized that CD4+ T-cell response to HCV antigens is important for determining the clinical course of HCV infection (17, 37). Generally, T-cell proliferation is more frequent and stronger in patients with a benign course (6, 17, 20, 33, 37) that is accompanied by the normalization of serum alanine aminotransferase and, in some cases, the clearance of viral RNA (17, 37). In contrast, patients who have a poor T-cell response tend to develop persistent infection (17, 37). These findings support the hypothesis that a sufficient CD4+ T-lymphocyte response is critical for limiting HCV infection.Activation of T lymphocytes depends on the recognition of processed viral peptides, but not native antigens, in the context of major histocompatibility complex (MHC) molecules that are presented by antigen-presenting cells (APCs) (56). The B cell is an important professional APC, and its role in mediating antigen-specific immune response has been described extensively (11). Epstein-Barr virus (EBV)-transformed B-lymphoblastoid cells are frequently used as APCs in in vitro analyses for antigen processing and presentation to T cells. These cells are characterized by high-level expression of class I and class II MHC molecules, along with accessory molecules such as ICAM-1, B7/BB1, and LFA-3, known to be important costimulatory molecules for T-cell activation (9, 15, 24). Importantly, transfected EBV-immortalized B cells expressing a tumor antigen have been shown to be capable of eliciting both T-helper and cytotoxic-T-lymphocyte (CTL) responses following in vivo inoculation (40). Nevertheless, dendritic cells have been shown to be critical for initiating responses by naive T cells (53), and in some situations presentation by B cells has been suggested to be toleragenic (35). To date, the role of B cells in processing and presenting HCV antigens has not been studied in detail and the mechanisms underlying T-cell–B-cell interaction are still being worked out.In the present study, EBV-transformed B-lymphoblastoid cell lines (B-LCLs) established from HCV-infected patients were transfected with an expression vector coding for the whole structural region and part of the NS2 region of the HCV genome. The capacity of transfected B-LCL APCs for presenting intracellularly synthesized peptides was assessed by in vitro induction of the HCV-specific lymphoproliferative response of autologous T-cell lines. Our results indicated that core protein was properly expressed and efficiently presented by B-LCL APCs to CD4+ T cells. We demonstrated that the endogenous core peptides were presented through the class II MHC pathway and that they need B7/BB1 for providing costimulatory signals.  相似文献   

8.
9.
10.
11.
12.
13.
Heterogeneous ribonucleoprotein K (hnRNP K) binds to the 5′ untranslated region of the hepatitis C virus (HCV) and is required for HCV RNA replication. The hnRNP K binding site on HCV RNA overlaps with the sequence recognized by the liver-specific microRNA, miR-122. A proteome chip containing ∼17,000 unique human proteins probed with miR-122 identified hnRNP K as one of the strong binding proteins. In vitro kinetic study showed hnRNP K binds miR-122 with a nanomolar dissociation constant, in which the short pyrimidine-rich residues in the central and 3′ portion of the miR-122 were required for hnRNP K binding. In liver hepatocytes, miR-122 formed a coprecipitable complex with hnRNP K. High throughput Illumina DNA sequencing of the RNAs precipitated with hnRNP K was enriched for mature miR-122. SiRNA knockdown of hnRNP K in human hepatocytes reduced the levels of miR-122. These results show that hnRNP K is a cellular protein that binds and affects the accumulation of miR-122. Its ability to also bind HCV RNA near the miR-122 binding site suggests a role for miR-122 recognition of HCV RNA.MicroRNAs (miRNAs) are a class of noncoding RNA of ∼22-nucleotides in length that can regulate gene expression by either targeting RNA for degradation or suppressing their translation through base pairing to the RNAs (1). Since their discovery in 1993 in Caenorhabditis elegans, miRNAs have been found in many species and are involved in the regulation of proliferation, differentiation, apoptosis, and development (1, 2). Moreover, miRNAs are also critical factors in the development of cancers, neurodegenerative diseases, and infectious diseases (3).MiR-122 is a highly abundant RNA in hepatocytes that regulates lipid metabolism, regeneration, and neoplastic transformation (46). In addition, miR-122 is required for the replication of the hepatitis C virus (HCV), a positive-strand RNA virus that infects over 170 million people worldwide (79). MiR-122 binds to a conserved sequence in the 5′ untranslated region (UTR) of the HCV RNA to increase the stability of the HCV RNA (10). Silencing of miR-122 can abolish HCV RNA accumulation in non-human primates (11). The expression of human miR-122 in non-hepatic cells can confer the ability to replicate HCV RNA (12). MiR-122 is one of the most critical host factors for HCV replication.We previously reported that the HCV RNA sequence that anneals to miR-122 is recognized by the heterogeneous ribonucleoprotein K (hnRNP K), a multifunctional RNA-binding protein known to be involved in RNA processing, translation, and the replication of several RNA viruses (1315). In an unbiased screen for proteins from human proteome chips containing over 17,000 proteins, we identified 40 proteins that bind mature miR-122, including hnRNP K. Recombinant hnRNP K recognizes short pyrimidine sequences in miR-122 in vitro and a similar sequence in the HCV 5′ UTR. In hepatocytes endogenous hnRNP K can form a coprecipitable complex with miR-122, whether or not the cells contain replicating HCV. HnRNP K is thus a protein that binds a mature microRNA.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号