首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular chaperone Hsp90 is essential for the correct folding, maturation and activation of a diverse array of client proteins, including several key constituents of oncogenic processes. Hsp90 has become a focus of cancer research, since it represents a target for direct prophylaxis against multistep malignancy. Hydrogen-exchange mass spectrometry was used to study the structural and conformational changes undergone by full-length human Hsp90beta in solution upon binding of the kinase-specific co-chaperone Cdc37 and two Hsp90 ATPase inhibitors: Radicicol and the first-generation anticancer drug DMAG. Changes in hydrogen exchange pattern in the complexes in regions of Hsp90 remote to the ligand-binding site were observed indicating long-range effects. In particular, the interface between the N-terminal domain and middle domains exhibited significant differences between the apo and complexed forms. For the inhibitors, differences in the interface between the middle domain and the C-terminal domain were also observed. These data provide important insight into the structure of the biologically active form of the protein.  相似文献   

2.
The glucocorticoid receptor (GR) is phosphorylated at three major sites on its N terminus (S203, S211, and S226), and phosphorylation modulates GR-regulatory functions in vivo. We examined the phosphorylation site interdependence, the contribution of the receptor C-terminal ligand-binding domain, and the participation of protein phosphatases in GR N-terminal phosphorylation and gene expression. We found that GR phosphorylation at S203 was greater when S226 was not phosphorylated and vice versa, indicative of intersite dependency. We also observed that a GR derivative lacking the ligand-binding domain, which no longer binds the heat shock protein 90 (Hsp90) complex, exhibits increased GR phosphorylation at all three sites as compared with the full-length receptor. A GR mutation (F602S) that produces a receptor less dependent on Hsp90 for function as well as treatment with the Hsp90 inhibitor geldanamycin also increased basal GR phosphorylation at a subset of sites. Pharmacological inhibition of serine/threonine protein phosphatases increased GR basal phosphorylation. Likewise, a reduction in protein phosphatase 5 protein levels enhanced GR phosphorylation at a subset of sites and selectively reduced the induction of endogenous GR target genes. Together, our findings suggest that GR undergoes a phosphorylation/dephosphorylation cycle that maintains steady-state receptor phosphorylation at a low basal level in the absence of ligand. Our findings also suggest that the ligand-dependent increase in GR phosphorylation results, in part, from the dissociation of a ligand-binding domain-linked protein phosphatase(s), and that changes in the intracellular concentration of protein phosphatase 5 differentially affect GR target gene expression.  相似文献   

3.
The Cdc37 protein in Saccharomyces cerevisiae is thought to be a kinase-targeting subunit of the chaperone Hsp90. In a genetic screen, four protein kinases were identified as interacting with Cdc37 - Cdc5, Cdc7, Cdc15 and Cak1. This result underlines the importance of Cdc37 for the folding of protein kinases. In addition, we showed that Ydj1, a yeast DnaJ homolog belonging to the Hsp40 family of chaperones, genetically interacts with Cdc37. No physical interaction has so far been detected between Cdc37 and Cdc28, although genetic interactions (synthetic lethality and mutation suppression), and biochemical studies have suggested that these two proteins functionally interact. We found that, when separately expressed, the N-terminal lobe of Cdc28 interacted strongly with the C-terminal moiety of Cdc37 in a two-hybrid system. This was not the case for the full-length Cdc28 protein. We present models to explain these results.  相似文献   

4.
The Hsp90 chaperone cycle involves sequential assembly of different Hsp90-containing multiprotein complexes, the accessory proteins ("cochaperones") that are associated with these complexes being exchanged as the cycle proceeds from its early to its late stages. To gain insight as to whether the 2-hybrid system could be used to probe the interactions of this Hsp90 system, yeast transformants were constructed that express the Gal4p deoxyribonucleic acid-binding domain (BD) fused to the 2 Hsp90 isoforms and the various Hsp90 system cochaperones of yeast. These "bait" fusions were then introduced by mating into other transformants expressing nearly all the 6000 proteins of yeast expressed as fusions to the Gal4p activation domain (AD). High throughput 2-hybrid screening revealed the ability of Hsp90 and Hsp90 system cochaperones to engage in stable interactions in vivo, both with each other and with the various other proteins of the yeast proteome. Consistent with the transience of most chaperone associations, interactions to Hsp90 itself were invariably weak and generally influenced by stress. Mutations within a Hsp90-BD bait fusion and an AD-Cdc37 "prey" fusion were used to provide in vivo confirmation of the in vitro data that shows that Cdc37p is interacting with the "relaxed" conformation of Hsp90 and also to provide indications that Cdc37p needs to be phosphorylated at its N-terminus for any appreciable interaction with Hsp90. A number of potentially novel cochaperone interactions were also identified, providing a framework for these to be analyzed further using other techniques.  相似文献   

5.
Genetic studies have previously revealed that Cdc37p is required for the catalytic competence of v-Src in yeast. We have reasoned that temperature-sensitive mutants of Src family kinases might be more sensitive to the cellular level of p50(Cdc37), the mammalian homolog of Cdc37p, than their wild-type counterpart, thus potentially providing a unique opportunity to elucidate the involvement of p50(Cdc37) in the folding and stabilization of Src family kinases. A temperature-sensitive mutant of a constitutively active form of Hck (i.e., tsHck499F) was created by mutating two amino acids within the kinase domain of Hck499F. Significantly, overexpression of p50(Cdc37) rescues the catalytic activity of tsHck499F at 33 degrees C, while partially buffering it against inactivation at higher temperatures (e.g., 37 and 39 degrees C). Hsp90 function is required for tsHck499F activity and its stabilization by p50(Cdc37), but overexpression of Hsp90 is not sufficient to stabilize tsHck499F. Overexpression of p50(Cdc37) promotes the association of tsHck499F with Hsp90, suggesting that the cellular level of p50(Cdc37) might be the rate-limiting step in the association of tsHck499F with Hsp90. A truncation mutant of p50(Cdc37) that cannot bind Hsp90 still has a limited capacity to rescue the catalytic activity of tsHck499F and promote its association with Hsp90. This is a particularly important observation, since it argues that rather than solely acting as a passive adapter protein to tether tsHck499F to Hsp90, p50(Cdc37) may also act allosterically to enhance the association of tsHck499F with Hsp90. The findings presented here might also have implications for our understanding of the evolution of protein kinases and tumor development.  相似文献   

6.
7.
8.
Cdc37 is a molecular chaperone that interacts with a range of clients and co-chaperones, forming various high molecular mass complexes. Cdc37 sequence homology among species is low. High homology between yeast and metazoan proteins is restricted to the extreme N-terminal region, which is known to bind clients that are predominantly protein kinases. We show that despite the low homology, both Saccharomyces cerevisiae and human Cdc37 are able to substitute for the Schizosaccharomyces pombe protein in a strain deleted for the endogenous cdc37 gene. Expression of a construct consisting of only the N-terminal domain of S. pombe Cdc37, lacking the postulated heat-shock protein (Hsp) 90-binding and homodimerization domains, can also sustain cellular viability, indicating that Cdc37 dimerization and interactions with the cochaperone Hsp90 may not be essential for Cdc37 function in S. pombe. Biochemical investigations showed that a small proportion of total cellular Cdc37 occurs in a high molecular mass complex that also contains Hsp90. These data indicate that the N-terminal domain of Cdc37 carries out essential functions independently of the Hsp90-binding domain and dimerization of the chaperone itself.  相似文献   

9.
The heat shock protein Hsp90 plays a key, but poorly understood role in the folding, assembly and activation of a large number of signal transduction molecules, in particular kinases and steroid hormone receptors. In carrying out these functions Hsp90 hydrolyses ATP as it cycles between ADP- and ATP-bound forms, and this ATPase activity is regulated by the transient association with a variety of co-chaperones. Cdc37 is one such co-chaperone protein that also has a role in client protein recognition, in that it is required for Hsp90-dependent folding and activation of a particular group of protein kinases. These include the cyclin-dependent kinases (Cdk) 4/6 and Cdk9, Raf-1, Akt and many others. Here, the biochemical details of the interaction of human Hsp90 beta and Cdc37 have been characterised. Small angle X-ray scattering (SAXS) was then used to study the solution structure of Hsp90 and its complexes with Cdc37. The results suggest a model for the interaction of Cdc37 with Hsp90, whereby a Cdc37 dimer binds the two N-terminal domain/linker regions in an Hsp90 dimer, fixing them in a single conformation that is presumably suitable for client protein recognition.  相似文献   

10.
11.
Shao J  Irwin A  Hartson SD  Matts RL 《Biochemistry》2003,42(43):12577-12588
Hsp90 and its co-chaperone Cdc37 facilitate the folding and activation of numerous protein kinases. In this report, we examine the structure-function relationships that regulate the interaction of Cdc37 with Hsp90 and with an Hsp90-dependent kinase, the heme-regulated eIF2alpha kinase (HRI). Limited proteolysis of native and recombinant Cdc37, in conjunction with MALDI-TOF mass spectrometry analysis of peptide fragments and peptide microsequencing, indicates that Cdc37 is comprised of three discrete domains. The N-terminal domain (residues 1-126) interacts with client HRI molecules. Cdc37's middle domain (residues 128-282) interacts with Hsp90, but does not bind to HRI. The C-terminal domain of Cdc37 (residues 283-378) does not bind Hsp90 or kinase, and no functions were ascribable to this domain. Functional assays did, however, suggest that residues S127-G163 of Cdc37 serve as an interdomain switch that modulates the ability of Cdc37 to sense Hsp90's conformation and thereby mediate Hsp90's regulation of Cdc37's kinase-binding activity. Additionally, scanning alanine mutagenesis identified four amino acid residues at the N-terminus of Cdc37 that are critical for high-affinity binding of Cdc37 to client HRI molecules. One mutation, Cdc37/W7A, also implicated this region as an interpreter of Hsp90's conformation. Results illuminate the specific Cdc37 motifs underlying the allosteric interactions that regulate binding of Hsp90-Cdc37 to immature kinase molecules.  相似文献   

12.
Activation of protein kinase clients by the Hsp90 system is mediated by the cochaperone protein Cdc37. Cdc37 requires phosphorylation at Ser13, but little is known about the regulation of this essential posttranslational modification. We show that Ser13 of uncomplexed Cdc37 is phosphorylated in vivo, as well as in binary complex with a kinase (C-K), or in ternary complex with Hsp90 and kinase (H-C-K). Whereas pSer13-Cdc37 in the H-C-K complex is resistant to nonspecific phosphatases, it is efficiently dephosphorylated by the chaperone-targeted protein phosphatase 5 (PP5/Ppt1), which does not affect isolated Cdc37. We show that Cdc37 and PP5/Ppt1 associate in Hsp90 complexes in yeast and in human tumor cells, and that PP5/Ppt1 regulates phosphorylation of Ser13-Cdc37 in vivo, directly affecting activation of protein kinase clients by Hsp90-Cdc37. These data reveal a cyclic regulatory mechanism for Cdc37, in which its constitutive phosphorylation is reversed by targeted dephosphorylation in Hsp90 complexes.  相似文献   

13.
Hsp90 requires cochaperone Cdc37 to load its clients to the Hsp90 superchaperone complex. The purpose of this study was to utilize split Renilla luciferase protein fragment-assisted complementation (SRL-PFAC) bioluminescence to study the full-length human Hsp90-Cdc37 complex and to identity critical residues and their contributions for Hsp90/Cdc37 interaction in living cells. SRL-PFAC showed that full-length human Hsp90/Cdc37 interaction restored dramatically high luciferase activity through Hsp90-Cdc37-assisted complementation of the N and C termini of luciferase (compared with the set of controls). Immunoprecipitation confirmed that the expressed fusion proteins (NRL-Hsp90 and Cdc37-CRL) preserved their ability to interact with each other and also with native Hsp90 or Cdc37. Molecular dynamic simulation revealed several critical residues in the two interaction patches (hydrophobic and polar) at the interface of Hsp90/Cdc37. Mutagenesis confirmed the critical residues for Hsp90-Cdc37 complex formation. SRL-PFAC bioluminescence evaluated the contributions of these critical residues in Hsp90/Cdc37 interaction. The results showed that mutations in Hsp90 (Q133A, F134A, and A121N) and mutations in Cdc37 (M164A, R167A, L205A, and Q208A) reduced the Hsp90/Cdc37 interaction by 70–95% as measured by the resorted luciferase activity through Hsp90-Cdc37-assisted complementation. In comparison, mutations in Hsp90 (E47A and S113A) and a mutation in Cdc37 (A204E) decreased the Hsp90/Cdc37 interaction by 50%. In contrast, mutations of Hsp90 (R46A, S50A, C481A, and C598A) and mutations in Cdc37 (C54S, C57S, and C64S) did not change Hsp90/Cdc37 interactions. The data suggest that single amino acid mutation in the interface of Hsp90/Cdc37 is sufficient to disrupt its interaction, although Hsp90/Cdc37 interactions are through large regions of hydrophobic and polar interactions. These findings provides a rationale to develop inhibitors for disruption of the Hsp90/Cdc37 interaction.  相似文献   

14.
Hsp90 (heat shock protein of 90 kDa) is often found associated with functional domains of client proteins, including those for ligand binding, dimerization, DNA binding, and enzymatic activity. Although Hsp90 can maintain the conformation of functionally important domains prior to activation of the client protein, its specific binding site and the mechanism(s) of Hsp90 dissociation during activation are unknown. Here, we have identified and characterized residues involved in Hsp90 binding within the aryl hydrocarbon receptor (AhR) ligand-binding domain and demonstrate that they overlap with those involved in ligand binding. In agreement with this spatial model, ligand binding results in Hsp90 dissociation from the AhR Per-ARNT-Sim B fragment. Interestingly, whereas Hsp90-binding residues within the ligand-binding domain were not involved in Hsp90-dependent AhR protein stability, several of these residues are important for ligand-dependent AhR activation, and their mutation resulted in conversion of two AhR antagonists/partial agonists into full AhR agonists. These studies reveal co-localization of a tentative Hsp90-binding site with that for AhR ligand binding and provide the first molecular mechanism for Hsp90 dissociation in the activation of a client protein.  相似文献   

15.
The ATPase-driven dimeric molecular Hsp90 (heat shock protein 90) and its cofactor Cdc37 (cell division cycle 37 protein) are crucial to prevent the cellular depletion of many protein kinases. In complex with Hsp90, Cdc37 is thought to bind an important lid structure in the ATPase domain of Hsp90 and inhibit ATP turnover by Hsp90. As different interaction modes have been reported, we were interested in the interaction mechanism of Hsp90 and Cdc37. We find that Cdc37 can bind to one subunit of the Hsp90 dimer. The inhibition of the ATPase activity is caused by a reduction in the closing rate of Hsp90 without obviously bridging the two subunits or affecting nucleotide accessibility to the binding site. Although human Cdc37 binds to the N-terminal domain of Hsp90, nematodal Cdc37 preferentially interacts with the middle domain of CeHsp90 and hHsp90, exposing two Cdc37 interaction sites. A previously unreported site in CeCdc37 is utilized for the middle domain interaction. Dephosphorylation of CeCdc37 by the Hsp90-associated phosphatase PPH-5, a step required during the kinase activation process, proceeds normally, even if only the new interaction site is used. This shows that the second interaction site is also functionally relevant and highlights that Cdc37, similar to the Hsp90 cofactors Sti1 and Aha1, may utilize two different attachment sites to restrict the conformational freedom and the ATP turnover of Hsp90.  相似文献   

16.
Cdc37 is a molecular chaperone required for folding of protein kinases. It functions in association with Hsp90, although little is known of its mechanism of action or where it fits into a folding pathway involving other Hsp90 cochaperones. Using a genetic approach with Saccharomyces cerevisiae, we show that CDC37 overexpression suppressed a defect in v-Src folding in yeast deleted for STI1, which recruits Hsp90 to misfolded clients. Expression of CDC37 truncation mutants that were deleted for the Hsp90-binding site stabilized v-Src and led to some folding in both sti1Delta and hsc82Delta strains. The protein kinase-binding domain of Cdc37 was sufficient for yeast cell viability and permitted efficient signaling through the yeast MAP kinase-signaling pathway. We propose a model in which Cdc37 can function independently of Hsp90, although its ability to do so is restricted by its normally low expression levels. This may be a form of regulation by which cells restrict access to Cdc37 until it has passed through a triage involving other chaperones such as Hsp70 and Hsp90.  相似文献   

17.
Protein kinases are the most prominent group of heat shock protein 90 (Hsp90) clients and are recruited to the molecular chaperone by the kinase-specific cochaperone cell division cycle 37 (Cdc37). The interaction between Hsp90 and nematode Cdc37 is mediated by binding of the Hsp90 middle domain to an N-terminal region of Caenorhabditis elegans Cdc37 (CeCdc37). Here we map the binding site by NMR spectroscopy and define amino acids relevant for the interaction between CeCdc37 and the middle domain of Hsp90. Apart from these distinct Cdc37/Hsp90 interfaces, binding of the B-Raf protein kinase to the cochaperone is conserved between mammals and nematodes. In both cases, the C-terminal part of Cdc37 is relevant for kinase binding, whereas the N-terminal domain displaces the nucleotide from the kinase. This interaction leads to a cooperative formation of the ternary complex of Cdc37 and kinase with Hsp90. For the mitogen-activated protein kinase extracellular signal-regulated kinase 2 (Erk2), we observe that certain features of the interaction with Cdc37·Hsp90 are conserved, but the contribution of Cdc37 domains varies slightly, implying that different kinases may utilize distinct variations of this binding mode to interact with the Hsp90 chaperone machinery.  相似文献   

18.
Cdc37 associates with the heat-shock protein 90 (Hsp90) molecular chaperone as one of several auxiliary proteins that are collectively referred to as Hsp90 co-chaperones. Cdc37 has been proposed to be a specificity factor for Hsp90, directing it notably towards kinases. It is not known whether Cdc37 is essential for viability in the budding yeast Saccharomyces cerevisiae because of Hsp90-dependent or -independent functions or both. Sti1 and Cpr7 are non-essential Hsp90 co-chaperones that bind to a common surface on Hsp90 through tetratricopeptide repeats (TPR). We have found that Sti1 is specifically retained from yeast extracts by immobilized Cdc37. Similarly, the endogenous proteins are also found in a complex. Moreover, purified recombinant Sti1 and Cdc37 interact in the complete absence of Hsp90. Complexes between Cdc37 and Sti1 are not unique to this TPR protein since endogenous Cdc37 can be co-purified with exogenously expressed Cpr7 fused to glutathione-S-transferase. The heterogeneity of Cdc37 complexes, both with and without Hsp90, may expand the functional diversity of Cdc37. Here we show that the combination of cdc37 and sti1 mutations is synthetically lethal, suggesting that direct contacts between Cdc37 and Sti1 may at least contribute to vital functions in yeast.  相似文献   

19.
Chen G  Cao P  Goeddel DV 《Molecular cell》2002,9(2):401-410
The IKK complex, containing two catalytic subunits IKKalpha and IKKbeta and a regulatory subunit NEMO, plays central roles in signal-dependent activation of NF-kappaB. We identify Cdc37 and Hsp90 as two additional components of the IKK complex. IKKalpha/IKKbeta/NEMO and Cdc37/Hsp90 form an approximately 900 kDa heterocomplex, which is assembled via direct interactions of Cdc37 with Hsp90 and with the kinase domain of IKKalpha/IKKbeta. Geldanamycin (GA), an antitumor agent that disrupts the formation of this heterocomplex, prevents TNF-induced activation of IKK and NF-kappaB. GA treatment reduces the size of the IKK complex and abolishes TNF-dependent recruitment of the IKK complex to TNF receptor 1 (TNF-R1). Therefore, heterocomplex formation with Cdc37/Hsp90 is a prerequisite for TNF-induced activation and trafficking of IKK from the cytoplasm to the membrane.  相似文献   

20.
Cdc37 is a relatively poorly conserved and yet essential molecular chaperone. It has long been thought to function primarily as an accessory factor for Hsp90, notably directing Hsp90 to kinases as substrates. More recent discoveries challenge this simplistic view. Cdc37 client proteins other than kinases have now been found, and Cdc37 displays a variety of Hsp90-independent activities both in vitro and in vivo. It can function as a molecular chaperone by itself, interact with other Hsp90 cochaperones in the absence of Hsp90, and even support yeast growth and protein folding without its Hsp90-binding domain. Thus, for many substrates, there may be many alternative chaperone pathways involving Cdc37, Hsp90, or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号