首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The genes coding for the photosynthetic reaction center cytochrome c subunit (pufC) and the soluble cytochrome c2 (cycA) from the purple non-sulfur bacterium Rhodopseudomonas viridis were expressed in Escherichia coli. Biosynthesis of the reaction center cytochrome without a signal peptide resulted in the formation of inclusion bodies in the cytoplasm amounting to 14% of the total cellular protein. A series of plasmids coding for the cytochrome subunit with varying N-terminal signal peptides was constructed in attempts to achieve translocation across the E. coli cytoplasmic membrane and heme attachment. However, the two major recombinant proteins with N-termini corresponding to the signal peptide and the cytochrome were synthesized in E. coli as non-specific aggregates without heme incorporation. An increased ratio of precursor as compared to 'processed' apo-cytochrome was obtained when expression was carried out in a proteinase-deficient strain. Cytochrome c2 from R. viridis was synthesized in E. coli as a precursor associated with the cytoplasmic membrane. An expression plasmid was designed encoding the N-terminal part of the 33 kDa precursor protein of the oxygen-evolving complex of Photosystem II from spinach followed by cytochrome c2. Two recombinant proteins without heme were found to aggregate as inclusion bodies with N-termini corresponding to the signal peptide and the mature 33 kDa protein.  相似文献   

3.
Cytochrome c is synthesized in the cytoplasm as apocytochrome c, lacking heme, and then imported into mitochondria. The relationship between attachment of heme to the apoprotein and its import into mitochondria was examined using an in vitro system. Apocytochrome c transcribed and translated in vitro could be imported with high efficiency into mitochondria isolated from normal yeast strains. However, no import of apocytochrome c occurred with mitochondria isolated from cyc3- strains, which lack cytochrome c heme lyase, the enzyme catalyzing covalent attachment of heme to apocytochrome c. In addition, amino acid substitutions in apocytochrome c at either of the 2 cysteine residues that are the sites of the thioether linkages to heme, or at an immediately adjacent histidine that serves as a ligand of the heme iron, resulted in a substantial reduction in the ability of the precursor to be translocated into mitochondria. Replacement of the methionine serving as the other iron ligand, on the other hand, had no detectable effect on import of apocytochrome c in this system. Thus, covalent heme attachment is a required step for import of cytochrome c into mitochondria. Heme attachment, however, can occur in the absence of mitochondrial import since we have detected CYC3-encoded heme lyase activity in solubilized yeast extracts and in an Escherichia coli expression system. These results suggest that protein folding triggered by heme attachment to apocytochrome c is required for import into mitochondria.  相似文献   

4.
5.
6.
OXI mutants in Saccharomyces cerevisiae lack a functional cytochrome c oxidase. Wild type and OXI mutants were grown in the presence of radioactive delta-amino[14C]levulinic acid, a precursor of porphyrin and heme, and [3H]mevalonic acid, a precursor of the alkyl side-chain of heme a. SDS polyacrylamide gel electrophoresis of the delipidated mitochondria showed that delta-amino[14C]levulinic acid was distributed into three bands migrating in the regions of Mr 28 000, 13 500, and 10 000, while [3H]mevalonic acid was found in a single band with apparent Mr of 10 000. The immunoprecipitates obtained by incubating the solubilized mitochondria of any OXI mutant with antibodies against cytochrome c oxidase, showed, after delipidation, a high specific radioactivity due to delta-amino[14C]levulinic acid and [3H]mevalonic acid. This suggested that a prophyrin a was present in all these OXI mutants. HCl fractionation confirmed the presence of porphyrin a in the apooxidase of these mutants. Atomic absorption spectra of the immunoprecipitate of cytochrome c oxidase showed that copper was not detectable in the mutant OXI IIIa which lacked subunit 1, but was present in the mutant OXI IIIb, which exhibited a minor alteration in the electrophoretic mobility of subunit 1. In OXI I and II mutants there was a 50% reduction in the amount of copper in the immunoprecipitated cytochrome c oxidase. These observations may be interpretable as follows: (1) alterations in polypeptide biosynthesis due to the OXI mutations lead to an improper configuration of cytochrome c oxidase, so that ferrochelatase cannot transfer iron into porphyrin a; (2) subunit I is the binding site for copper, but the mutations in subunits II and III alter the binding site of one of the two copper atoms in subunit I.  相似文献   

7.
1. The role of heme in the coordinate elevations of liver delta-aminolevulinate (ALA) synthase activity and microsomal cytochrome P-450 concentration induced by phenobarbital (PB) was investigated in the chicken embryo. 2. Eighteen day old chicken embryos were given PB, and the changes in liver content of PB-inducible cytochrome P-450 RNA and of ALA synthase RNA were determined at different times after exposure to the drug. 3. The concentrations of both types of RNA increased rapidly after PB administration, and by 9 hr the level of ALA synthase RNA was 55-fold higher than control and that of cytochrome P-450 RNA was 7-fold higher than normal. 4. While the rate of increase in ALA synthase activity paralleled closely that of the enzyme's RNA concentration, the rate of increase of spectrally active cytochrome P-450 concentration in microsomes lagged behind that of the apoprotein's RNA by several hours. 5. To test whether heme depletion was responsible for the coordinate inductions of the two enzymes, embryos were loaded with ALA 2 hr before exposure to PB. 6. The protocol led to a drop in the PB-inducible ALA synthase RNA concentration and to an increase in that of cytochrome P-450 RNA, measured 6 hr after drug administration. 7. In primary cultures of hepatocytes, hemin in the culture medium caused a modest drop in ALA synthase RNA concentration but had a variable effect on that of cytochrome P-450 RNA in cells incubated with PB for 9 hr.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The autoxidizability of beef heart cytochrome c1 was investigated in terms of the integrity of the binding of the hinge protein to the heme subunit. Cytochrome c1 was isolated as a subcomplex consisting of the heme subunit and the hinge protein. Treatment of the cytochrome c1 subcomplex with p-chloromercuribenzoate (pCMB) under mild conditions lessened the binding strength between the two subunits. They were dissociated on polyacrylamide gel electrophoresis (PAGE) under nondenaturing conditions, but were not separated by gel filtration chromatography. The pCMB-treated subcomplex had a slight autoxidizability. This was repressed to the level of the native subcomplex, when the mercurial compound bound to the subcomplex was removed by the addition of 2-mercaptoethanol. Concomitantly, the less stable binding between the subunits was apparently reversed to the native state. After pCMB treatment of the subcomplex, the heme subunit recovered from PAGE showed marked autoxidizability, even if it was treated with 2-mercaptoethanol. Addition of cholate repressed the autoxidizability of the heme subunit after the removal of the mercurial compound. These results confirmed that the stable binding of the hinge protein to the heme subunit was essential for the nonautoxidizability of cytochrome c1 subcomplex. In addition, it was suggested that cysteinyl residues in the subcomplex must be involved to a great extent in the stable binding between the two subunits.  相似文献   

9.
10.
Little is known about c-type cytochromes in Gram-positive bacteria in contrast to the wealth of information available on this type of cytochrome in Gram-negative bacteria and in eucaryotes. In the present work, the strictly aerobic bacterium Bacillus subtilis was analyzed for subcellular localization and number of different cytochromes c. In vivo labeling with radioactive 5-aminolevulinic acid, a precursor to heme, showed that the proteins containing covalently bound heme are predominantly found in the membrane fraction. One major membrane-bound cytochrome c of about 15 kDa and with an alpha-band absorption peak in the reduced state at 550 nm was analyzed in more detail. Cytochrome c-550 has the properties of an integral membrane protein. The physiological function of this relatively high redox potential cytochrome is not known. Its structural gene, cccA, was cloned, sequenced, and overexpressed in B. subtilis. The gene maps adjacent to rpoD (sigA) at 223 degrees on the chromosome. The amino acid sequence of cytochrome c-550 as deduced from the DNA sequence consists of 120 residues and contains one heme c binding site (Cys-Ile-Ala-Cys-His) located approximately in the middle of the polypeptide. From the hydropathy distribution and from comparisons to soluble c-type cytochromes of known three-dimensional structure, cytochrome c-550 seemingly consists of two domains; an N-terminal membrane-anchor domain and a C-terminal heme domain. A model for the topography of the cytochrome in the cytoplasmic membrane is suggested in which the N-terminal part spans the membrane in the form of a single segment in an alpha-helical conformation and the C-terminal heme domain is exposed on the extracytoplasmic side of the membrane. Deletion of cccA from the chromosome revealed another membrane-bound cytochrome with absorption maximum at 550 nm in the reduced state. Analysis of cccA deletion mutants demonstrated that the cytochrome c-550 encoded by cccA is not essential for growth of B. subtilis on rich or minimal media.  相似文献   

11.
The His-44 and Met-164 residues of yeast cytochrome c1 are evolutionally conserved and regarded as heme axial ligands bonding to the fifth and sixth coordination sites of the heme iron, which is directly involved in the electron transfer mechanism. Oligonucleotide-directed mutagenesis was used to generate mutant forms of cytochrome c1 of yeast having amino acid replacements of the putative axial ligands of the heme iron. When a cytochrome c1-deficiency yeast strain was transformed with a gene encoding the Phe-44, Tyr-44, Leu-164, or Lys-164 protein, none of these transformants could grow on the non-fermentable carbon source. These results suggest that the His-44 and Met-164 residues have a critical role in the function of cytochrome c1 in vivo, most probably as axial ligands of the heme iron. Further analysis revealed that the mutant yeast cells with the Phe-44, Tyr-44, or Leu-164 protein lacked the characteristic difference spectroscopic signal of cytochrome c1. However, in the Lys-164 mutant cells, partial recovery of the cytochrome c1 signal was observed. Moreover, the Lys-164 protein retained a low but significant level of succinate-cytochrome c reductase activity in vitro. The possibility that the nitrogen of Lys-164 served as the sixth heme ligand is discussed in comparison with cytochrome f of a photosynthetic electron-transfer complex, in which lysine has been proposed to be the sixth ligand.  相似文献   

12.
Cytochrome c" from Methylophilus methylotrophus is an unusual monohaem protein that undergoes a major redox-linked spin-state transition: one of the two axial histidines bound to the iron in the oxidised form is detached upon reduction and a proton is taken up. A 3.5-kb DNA fragment, containing the gene encoding cytochrome c" (cycA), has been cloned and sequenced. The cytochrome c" gene codes for a pre-protein with a typical prokaryotic 20-residue signal sequence, suggesting that the protein is synthesised as a precursor which is processed during its secretion into the periplasm. The C-terminus of cytochrome c" has homology with the corresponding region of an oxygen-binding haem protein (SHP) from phototrophically grown Rhodobacter sphaeroides. SHP is similar in size and in the location of its haem-binding site. Immediately downstream from cytochrome c" a second open reading frame (ORF) codes for a 23-kDa protein with similarity to the cytochrome b-type subunit of Ni-Fe hydrogenase. The possibility of coordinated expression of cycA and this ORF is discussed.  相似文献   

13.
Cytochrome c reductase purified from the trypanosomatid Crithidia fasciculata retained antimycin A sensitivity and catalyzed the reduction of horse heart ferricytochrome c in the presence of reduced coenzyme Q10. The complex contained heme b and heme c1 in a ratio of 2:1. Nine major protein bands ranging in size from 55.3 to approximately 12.8 kDa were resolved by SDS-polyacrylamide gel electrophoresis. A 31.6-kDa protein was identified as cytochrome c1 by the presence of a covalently attached heme. A red shift in the alpha-absorbance band of the cytochrome c1 absolute absorbance spectrum, difference absorbance spectrum, and pyridine ferrohemochrome absorbance spectrum suggested that the heme prosthetic group of C. fasciculata cytochrome c1 is bound to the apoprotein through only one thioether bond. A fragment of the cytochrome c1 gene was amplified from C. fasciculata, Trypanosoma brucei, Leishmania tarentolae, and Bodo caudatus. The deduced heme binding site sequence of each of these kinetoplastid species, Phe-Ala-Pro-Cys-His, contains a phenylalanine rather that a cysteine at the first position so that only one thioether bond can be formed between heme and apoprotein. This phenylalanine substitution and the presence of a conserved proline in the sequence may represent compensatory changes that are necessary for optimal interaction of the cytochromes c1 with the atypical cytochromes c of these species.  相似文献   

14.
15.
Hepatic microsonal cytochrome P-450 levels are significantly decreased (46–68%) in ascorbic acid-deficient guinea pigs. Studies attempting to elucidate the mechanism responsible for decreased cytochrome P-450 demonstrated that ascorbic acid status did not influence the turnover (t12) or the degradation of hepatic cytochrome P-450 heme. Urinary excretion of Δ-aminolevulinic acid (ALA) and coproporphyrin was significantly decreased (30 and 69% respectively) in ascorbic acid-deficient guinea pigs. Injections (ip) of ALA into ascorbic acid-deficient guinea pigs were not effective in returning cytochrome P-450 levels to values found in ascorbic acid-supplemented guinea pigs. In addition, plasma and hepatic iron and blood heme were related directly, while hepatic copper and plasma copper or ceruloplasmin were related inversely, to the ascorbic-acid status of the guinea pig. These data, along with past investigations on heme synthesis in the ascorbic acid-deficient guinea pig, are consistent with mechanisms proposing that ascorbic acid may influence: 1) apocytochrome P-450 synthesis, 2) binding of heme and apo-cytochrome P-450 to form active cytochrome P-450, and/or 3) incorporation of Fe++ into the heme moiety of cytochrome P-450, perhaps via changes in copper metabolism.  相似文献   

16.
Import of cytochrome c into mitochondria. Cytochrome c heme lyase   总被引:16,自引:0,他引:16  
The import of cytochrome c into mitochondria can be resolved into a number of discrete steps. Here we report on the covalent attachment of heme to apocytochrome c by the enzyme cytochrome c heme lyase in mitochondria from Neurospora crassa. A new method was developed to measure directly the linkage of heme to apocytochrome c. This method is independent of conformational changes in the protein accompanying heme attachment. Tryptic peptides of [35S]cysteine-labelled apocytochrome c, and of enzymatically formed holocytochrome c, were resolved by reverse-phase HPLC. The cysteine-containing peptide to which heme was attached eluted later than the corresponding peptide from apocytochrome c and could be quantified by counting 35S radioactivity as a measure of holocytochrome c formation. Using this procedure, the covalent attachment of heme to apocytochrome c, which is dependent on the enzyme cytochrome c heme lyase, could be measured. Activity required heme (as hemin) and could be reversibly inhibited by the analogue deuterohemin. Holocytochrome c formation was stimulated 5--10-fold by NADH greater than NADPH greater than glutathione and was independent of a potential across the inner mitochondrial membrane. NADH was not required for the binding of apocytochrome c to mitochondria and was not involved in the reduction of the cysteine thiols prior to heme attachment. Holocytochrome c formation was also dependent on a cytosolic factor that was necessary for the heme attaching step of cytochrome c import. The factor was a heat-stable, protease-insensitive, low-molecular-mass component of unknown function. Cytochrome c heme lyase appeared to be a soluble protein located in the mitochondrial intermembrane space and was distinct from the previously identified apocytochrome c binding protein having a similar location. A model is presented in which the covalent attachment of heme by cytochrome c heme lyase also plays an essential role in the import pathway of cytochrome c.  相似文献   

17.
Cytochrome c, a mitochondrial electron transfer protein containing a hexacoordinated heme, is involved in other physiologically relevant events, such as the triggering of apoptosis, and the activation of a peroxidatic activity. The latter occurs secondary to interactions with cardiolipin and/or post-translational modifications, including tyrosine nitration by peroxynitrite and other nitric oxide-derived oxidants. The gain of peroxidatic activity in nitrated cytochrome c has been related to a heme site transition in the physiological pH region, which normally occurs at alkaline pH in the native protein. Herein, we report a spectroscopic characterization of two nitrated variants of horse heart cytochrome c by using optical spectroscopy studies and NMR. Highly pure nitrated cytochrome c species modified at solvent-exposed Tyr-74 or Tyr-97 were generated after treatment with a flux of peroxynitrite, separated, purified by preparative high pressure liquid chromatography, and characterized by mass spectrometry-based peptide mapping. It is shown that nitration of Tyr-74 elicits an early alkaline transition with a pKa = 7.2, resulting in the displacement of the sixth and axial iron ligand Met-80 and replacement by a weaker Lys ligand to yield an alternative low spin conformation. Based on the study of site-specific Tyr to Phe mutants in the four conserved Tyr residues, we also show that this transition is not due to deprotonation of nitro-Tyr-74, but instead we propose a destabilizing steric effect of the nitro group in the mobile Omega-loop of cytochrome c, which is transmitted to the iron center via the nearby Tyr-67. The key role of Tyr-67 in promoting the transition through interactions with Met-80 was further substantiated in the Y67F mutant. These results therefore provide new insights into how a remote post-translational modification in cytochrome c such as tyrosine nitration triggers profound structural changes in the heme ligation and microenvironment and impacts in protein function.  相似文献   

18.
In the preceding paper (Ross, E., and Schatz, G. (1976) J. Biol. Chem. 251, 1991-1996) yeast cytochrome c1 was characterized as a 31,000 dalton polypeptide with a covalently bound heme group. In order to determine the site of translation of this heme-carrying polypeptide, yeast cells were labeled with [H]leu(be under the following conditions: (a) in the absence of inhibitors, (b) in the presence of acriflavin (an inhibitor of mitochondrial translation), or (c) in the presence of cycloheximide (an inhibitor of cytoplasmic translation). The incorporation of radioactivity into the hemeprotein was measured by immunoprecipitating it from mitochondrial extracts and analyzing it by dodecyl sulfate-polyacrylamide gel electrophoresis. Label was incorporated into the cytochrome c1 apoprotein only in the presence of acriflavin or in the absence of inhibitor, but not in the presence of cycloheximide. Cytochrome c1 is thus a cytoplasmic translation product. This conclusion was further supported by the demonstration that a cytolasmic petite mutant lacking mitochondrial protein synthesis still contained holocytochrome c1 that was indistinguishable from cytochrome c1 of wild type yeast with respect to molecular weight, absorption spectru, the presence of a covalently bound heme group, and antigenic properties. Cytochrome c1 in the mitochondria of the cytoplasmic petite mutant is firmly bound to the membrane, and its concentration approaches that typical of wild type mitochondria. However, its lability to proteolysis appeared to be increased. A mitochondrial translation product may thus be necessary for the correct conformation or orientation of cytochrome c1 in the mitochondrial inner membrane. Accumulation of cytochrome c1 protein in mitochondria is dependent on the abailability of heme. This was shown with a delta-aminolevulinic acid synthetase-deficient yeast mutant which lacks heme and any light-absorbing peaks attributable to cytochromes. Mitochondria from mutant cells grown without added delta-aminolevulinic acid contained at least 20 times less protein immunoprecipitable by cytochrome c1-antisera than mitochondria from cells grown in the presence of the heme precursor. Similarly, the respiration-deficient promitochondria of anaerobically grown wild type cells are almost completely devoid of material cross-reacting with cytochrome c1-antisera. A 105,000 X g supernatant of aerobically grown wild type cells contains a 29,000 dalton polypeptide that is precipitated by cytochrome c1-antiserum but not by nonimmune serum. This polypeptide is also present in high speed supernatants from the heme-deficient mutant or from anaerobically gorwn wild type cells. The possible identity of this polypeptide with soluble apocytochrome c1 is being investigated.  相似文献   

19.
Cytochrome c maturation in many bacteria, archaea, and plant mitochondria involves the integral membrane protein CcmF, which is thought to function as a cytochrome c synthetase by facilitating the final covalent attachment of heme to the apocytochrome c. We previously reported that the E. coli CcmF protein contains a b-type heme that is stably and stoichiometrically associated with the protein and is not the heme attached to apocytochrome c. Here, we show that mutation of either of two conserved transmembrane histidines (His261 or His491) impairs stoichiometric b-heme binding in CcmF and results in spectral perturbations in the remaining heme. Exogeneous imidazole is able to correct cytochrome c maturation for His261 and His491 substitutions with small side chains (Ala or Gly), suggesting that a "cavity" is formed in these CcmF mutants in which imidazole binds and acts as a functional ligand to the b-heme. The results of resonance Raman spectroscopy on wild-type CcmF are consistent with a hexacoordinate low-spin b-heme with at least one endogeneous axial His ligand. Analysis of purified recombinant CcmF proteins from diverse prokaryotes reveals that the b-heme in CcmF is widely conserved. We have also determined the reduction potential of the CcmF b-heme (E(m,7) = -147 mV). We discuss these results in the context of CcmF structure and functions as a heme reductase and cytochrome c synthetase.  相似文献   

20.
delta-Aminolevulinic acid (ALA), the first committed precursor to the tetrapyrrole components of hemes and chlorophylls, is synthesized by two different routes in the photosynthetic phytoflagellate Euglena gracilis: directly from glutamate, mediated by a 5-carbon pathway, and via condensation of glycine and succinyl-CoA, catalyzed by the enzyme ALA synthase. The physiological roles of the two pathways were determined by administration of specifically 14C-labeled ALA precursors to cultures growing under different physiological conditions. Relative activities of the ALA synthase and 5-carbon pathways were monitored by incorporation of radioactivity from [2-14C] glycine and [1-14C]glutamate into highly purified protoheme, heme a and chlorophyll a derivatives. Wild type cells grown photoautotrophically or photoheterotrophically synthesized chlorophyll and incorporated radioactivity from [1-14C]glutamate into the tetrapyrrole nucleus of the pigment. [2-14C]Glycine was incorporated primarily into the nontetrapyrrole-derived portions of chlorophyll. In the same cultures both [2-14C]glycine and [1-14C]glutamate were efficiently incorporated into protoheme, while only [2-14C] glycine was incorporated into heme a. In dark-grown wild type or light-grown aplastidic cells, no chlorophyll was formed, and both protoheme and heme a were labeled exclusively from [2-14C]glycine. These results indicate: (a) ALA synthase and the 5-carbon pathway operate simultaneously in growing green cells; (b) the 5-carbon pathway provides ALA for chloroplast protoheme and chlorophyll, and is associated with chloroplast development; (c) ALA synthase provides ALA only for nonplastid heme biosynthesis; and (d) the two ALA pathways are separately compartmentalized along with complete sets of enzymes for subsequent tetrapyrrole synthesis from each ALA pool. The protoheme that was synthesized from [1-14C] glutamate had a higher specific radioactivity than chlorophyll synthesized from the same precursor. This result together with calculated specific radioactivities of the products synthesized during the incubation period, suggest that both protoheme and heme a undergo metabolic turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号