首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ectonucleoside triphosphate diphosphohydrolase 1 (NTPDase1) activity present in alkaline phosphatase-depleted rat osseous plate membranes, obtained 14 days after implantation of demineralized bone particles in the subcutaneous tissue of Wistar rats, was characterized. At pH 7.5, NTPDase1 hydrolyzed nucleotide triphosphates at rates 2.4-fold higher than those of nucleotide diphosphates, while the hydrolysis of nucleotide monophosphates and non-nucleotide phosphates was negligible. NTPDase 1 hydrolyzed ATP and ADP following Michaelis-Menten kinetics with V=1278.7+/-38.4 nmol Pi/min/mg and K(M)=83.3+/-2.5 microM and V=473.9+/-18.9 nmol Pi/min/mg and K(M)=150.6+/-6.0 microM, respectively, but in the absence of magnesium and calcium ions, ATP or ADP hydrolysis was negligible. The stimulation of the NTPDase1 by calcium (V=1084.7+/-32.5 nmol Pi/min/mg; and K(M)=377.8+/-11.3 microM) and magnesium (V=1367.2+/-41.0 nmol Pi/min/mg and K(M)=595.3+/-17.8 microM) ions suggested that each ion could replace the other during the catalytic cycle of the enzyme. Oligomycin, ouabain, bafilomycin A(1), theophylline, thapsigargin, ethacrynic acid, P(1),P(5)-(adenosine-5')-pentaphosphate and omeprazole had negligible effects on the hydrolysis of ATP and ADP by NTPDase1. However, suramin and sodium azide were effective inhibitors of ATP and ADP hydrolysis.To our knowledge this is the first report suggesting the presence of NTPDase1 in rat osseous plate membranes. Considering that the ectonucleoside triphosphate diphosphohydrolase family of enzymes participates in many regulatory functions, such as response to hormones, growth control, and cell differentiation, the present observations raise interesting questions about the participation of this activity in the calcification process.  相似文献   

2.
In the present report the enzymatic properties of an ATP diphosphohydrolase (apyrase, EC 3.6.1.5) in Trichomonas vaginalis were determined. The enzyme hydrolyses purine and pyrimidine nucleoside 5'-di- and 5'-triphosphates in an optimum pH range of 6.0--8.0. It is Ca(2+)-dependent and is insensitive to classical ATPase inhibitors, such as ouabain (1 mM), N-ethylmaleimide (0.1 mM), orthovanadate (0.1 mM) and sodium azide (5 mM). A significant inhibition of ADP hydrolysis (37%) was observed in the presence of 20 mM sodium azide, an inhibitor of ATP diphosphohydrolase. Levamisole, a specific inhibitor of alkaline phosphatase, and P(1), P(5)-di (adenosine 5'-) pentaphosphate, a specific inhibitor of adenylate kinase, did not inhibit the enzyme activity. The enzyme has apparent K(m) (Michaelis Constant) values of 49.2+/-2.8 and 49.9+/-10.4 microM and V(max) (maximum velocity) values of 49.4+/-7.1 and 48.3+/-6.9 nmol of inorganic phosphate x min(-1) x mg of protein(-1) for ATP and ADP, respectively. The parallel behaviour of ATPase and ADPase activities and the competition plot suggest that ATP and ADP hydrolysis occur at the same active site. The presence of an ATP diphosphohydrolase activity in T. vaginalis may be important for the modulation of nucleotide concentration in the extracellular space, protecting the parasite from the cytolytic effects of the nucleotides, mainly ATP.  相似文献   

3.
The participation of ecto-ATP diphosphohydrolase (CD39; ecto-NTPDase) and ecto-5'-nucleotidase (CD73) activities in the nucleotide hydrolysis by salivary gland cells from rats was evaluated. We investigated the biochemical characteristics of these ectoenzymes in cells cultured from submandibular salivary glands of rats. The V(max) for the hydrolysis of ATP, ADP and AMP were 2275+/-153 (mean+/-SEM, n = 4), 941+/-96 (mean+/-SEM, n = 5) and 175+/-5 (mean+/-SEM, n = 5) nmol Pi liberated per min per mg of protein, respectively. The K(m) values for ATP, ADP and AMP were 224+/-8 microM (mean+/-SEM, n = 4), 163+/-15 microM (mean+/-SEM, n = 5) and 117+/-5 microM (mean+/-SEM, n = 5), respectively. The competition plot showed that ATP and ADP were hydrolyzed at the same active site on the enzyme. It may be postulated that the physiological role for this ecto-enzyme cascade is to terminate the action of the co-transmitter ATP, generating adenosine.  相似文献   

4.
Here we described an nucleoside triphosphate diphosphohydrolase (NTPDase) activity in living trophozoites of Trichomonas gallinae. The enzyme hydrolyzes a variety of purine and pyrimidine nucleoside di- and triphosphates in an optimum pH range of 6.0-8.0. This enzyme activity was activated by high concentrations of divalent cations, such as calcium and magnesium. Contaminant activities were ruled out because the enzyme was not inhibited by classical inhibitors of ATPases (ouabain, 5.0 mM sodium azide, oligomycin) and alkaline phosphatases (levamisole). A significant inhibition of ATP hydrolysis (38%) was observed in the presence of 20 mM sodium azide. Sodium orthovanadate inhibited ATP and ADP hydrolysis (24% and 78%), respectively. The apparent K(M) (Michaelis constant) values were 667.62+/-13 microM for ATP and 125+/-5.3 microM for ADP. V(max) (maximum velocity) values were 0.44+/-0.007 nmol Pi min(-1) per 10(6) trichomonads and 0.91+/-0.12 nmol Pi min(-1) per 10(6) trichomonads for ATP and ADP, respectively. Moreover, we showed a marked decrease in ATP, ADP and AMP hydrolysis when the parasites were grown in the presence of penicillin and streptomycin. The existence of an NTPDase activity in T. gallinae may be involved in pathogenicity, protecting the parasite from the cytolytic effects of the extracellular nucleotides.  相似文献   

5.
In this study we describe the molecular identification, kinetic characterization and biochemical properties of an E-NTPDase and an 5'-nucleotidase in Walker 256 cells. For the ATP, ADP and AMP hydrolysis there were optimum pH in the range 6.5-8.0, and absolute requirement for divalent cations (Mg(2+)>Ca(2+)). A significant inhibition of ATP and ADP hydrolysis was observed in the presence of high concentrations of sodium azide and 0.5 mM of Gadolinium chloride. These activities were insensitive to ATPase, adenylate kinase and alkaline phosphatase classical inhibitors. The K(m) values were 464.2+/-86.6 microM (mean+/-SEM, n=4), 137.0+/-31 microM (mean+/-SEM, n=5) and 44.8+/-10.2 microM (mean+/-SEM, n=4), and V(max) values were 655.0+/-94.6 (mean+/-SEM, n=4), 236.3+/-27.2 (mean+/-SEM, n=5) and 177.6+/-13.8 (mean+/-SEM, n=5) nmol of inorganic phosphate min(-1) mg of protein(-1) for ATP, ADP and AMP, respectively. Using RT-PCR analysis we identified the mRNA of two members of the ecto-nucleoside triphosphate diphosphohydrolase family (NTPDase 2 and 5) and a 5'-nucleotidase. The presence of NTPDases and 5'-nucleotidase enzymes in Walker 256 tumor cells may be important to regulate the ratio adenine nucleotides/adenine nucleoside extracellularly, therefore motivating tumor growth.  相似文献   

6.
The synthesis of the p-nitrophenyl esters of the 5'- and 3'-phosphates of the nucleoside analogue 2',3'-secouridine are described. Unlike the corresponding diesters of thymidine, these two compounds are diastereoisomers. Their affinity for phosphodiesterases types I and II were investigated. Both analogues were hydrolysed very slowly by snake venom phosphodiesterase but their affinity for the enzyme was similar to that of the p-nitrophenyl ester of thymidine 5'-monophosphate of which they were both competitive inhibitors with Ki approximately Km. Neither compound was hydrolysed by spleen phosphodiesterase but both competitively inhibited the p-nitrophenyl ester of thymidine 3'-monophosphate, with Ki's slightly higher than the Km. Although for each enzyme the Ki of the correct analogue phosphodiester (i.e. the 5'-derivative for snake venom and the 3'-derivative for spleen) was the lower, the absolute specificity seen for the normal substrates had been lost.  相似文献   

7.
Human lymphocytes contain NTPDase (NTPDase-1; ecto-apyrase; ecto-diphosphohydrolase; CD39; EC 3.6.1.5), a cation-dependent enzyme that hydrolyzes ATP and ADP and also other di- and triphosphate nucleosides, acting at an optimum pH of 8.0. A significant inhibition of ATP and ADP hydrolysis (P<0.05) was observed in the presence of 20 mM sodium azide. NTPDase inhibitors, 20 mM sodium fluoride, 0.2 mM trifluoperazine and 0.3 mM suramin, significantly decreased ATP and ADP hydrolysis (P<0.05) and ADP hydrolysis was only inhibited by 0.5 mM orthovanadate (P<0.05). ATP and ADP hydrolysis was not inhibited in the presence of 0.01 mM Ap5A (P1,P5-di(adenosine-5')pentaphosphate), 0.1 mM ouabain, 1 mM levamisole, 2 microg/mL oligomycin, 0.1 mM N-ethylmaleimide (NEM), or 5 mM sodium azide. With respect to kinetic behavior, apparent K(m) values of 77.6+/-10.2 and 106.8+/-21.0 microM, and V(max) values of 68.9+/-8.1 and 99.4+/-8.5 (mean+/-S.E., n=3) nmol Pi/min/mg protein were obtained for ATP and ADP, respectively. A Chevilard plot demonstrated that only one enzymatic site is responsible for the hydrolysis of ATP and ADP. The presence of CD39 was determined by flow cytometry, showing a low density of 2.72+/-0.24% (mean+/-S.E.; n=30) in human peripheral lymphocytes. The study of NTPDase activity in human lymphocytes may be important to determine the immune response status against infectious agents related to ATP and ADP hydrolysis.  相似文献   

8.
9.
Patients with homocystinuria, an inborn error of metabolism, present neurological dysfunction and commonly experience frequent thromboembolic complications. The nucleoside triphosphate diphosphohydrolase (NTPDase) and 5'-nucleotidase enzymes regulate the nucleotide/nucleoside ratio in the central nervous system and in the circulation and are thought to be involved in these events. Thus, the current study investigated the effect of homocysteine administration on NTPDase and 5'-nucleotidase activities, in the synaptosomal fraction of rat hippocampus, and on nucleotidase activities in rat serum. Twenty-nine-day-old Wistar rats were divided in two groups: group I (control), animals received 0.9% saline; group II (homocysteine-treated), animals received one single subcutaneous injection of homocysteine (0.6 micromol/g). Rats were killed 1 h after the injection. NTPDase and 5'-nucleotidase activities from brain and serum were significantly increased in the homocysteine-treated group. Results show that, in hippocampus, ATP and ADP hydrolysis increased by 20.5% and 20%, respectively, and AMP hydrolysis increased by 48%, when compared to controls. In serum, ATP and ADP hydrolysis increased 136% and 107%, respectively, and AMP hydrolysis increased 95%, in comparison to controls. The current data strongly indicate that in vivo homocysteine administration alters the activities of the enzymes involved in nucleotide hydrolysis, both in the central nervous system and in the serum of adult rats.  相似文献   

10.
Extracellular ATP and adenosine modulate synaptic transmission in hippocampal neurons. ATP released from neural cells is hydrolyzed to adenosine by a chain of ecto-nucleotidases. ATP diphosphohydrolase hydrolyses ATP and ADP nucleotides to AMP and 5'-nucleotidase hydrolyses AMP to adenosine. In this work, we investigated the ATPase and ADPase activities of ATP diphosphohydrolase in cultured hippocampal neurons. The apparent Michaelis-Menten constant (K(m)) was 233.9 +/- 14.6 and 221.8 +/- 63.6 microM, with a calculated maximal velocity (V(max), approximately) of 49.2 +/- 10.7 and 10.9 +/- 5.2 nmol Pi/mg protein/min for ATP and ADP, respectively. The horizontal straight line obtained in the competition plot indicated that only one active site is able to hydrolyze both substrates. Furthermore, we detected the presence of this enzyme using anti-CD39 antibody, which strongly stained the soma of pyramidal and bipolar neurons, but the neurites connecting the cell clusters were also immunopositive. This antibody recognized three bands with a molecular mass close to 95, 80 and 60kDa in immunoblotting analysis. The present results show, for the first time, the kinetic and immunocytochemical characterization of an ATP diphosphohydrolase in cultured hippocampal neurons. Probably, the widespread distribution of this enzyme on the surface of neurons in culture could reflect its functional importance in studies of synaptic plasticity hippocampal.  相似文献   

11.
We report the kinetic characterization of an ecto-nucleosidetriphosphate diphosphohydrolase 1 from rat osseous plate membranes in streptozotocin-induced diabetic rats, which arises during ectopic mineralization twenty days after a subcutaneous implantation of demineralized bone matrix, Insulin deficiency decreased the ecto-nucleoside triphosphate diphosphohydrolase activity from 1293.1 +/- 39.8 (control rats) to 556.0 +/- 8.2 nmol Pi/(min mg). Two families of ATP hydrolyzing sites showed cooperative effects with specific activities of 256.2 +/- 7.7 nmol Pi/(min mg) and 299.8 +/- 8.9 nmol Pi/(min mg), and studies on the stimulation of the enzyme by magnesium and calcium ions showed that the decrease in enzyme activity results from changes in the affinity of the enzyme for these ions. To our knowledge this is the first study associating the effects of type I diabetes with an ecto-nucleoside triphosphate diphosphohydrolase activity from rat osseous plate membranes.  相似文献   

12.
Inorganic pyrophosphate (PPi) may be important in the regulation of mineralisation but its origin in epiphyseal cartilage is ill-defined. Nucleoside triphosphate pyrophosphatase is one potential source, as this enzyme catalyses the formation of PPi from nucleoside triphosphates. This enzyme has been identified in matrix vesicles derived from rabbit epiphyseal cartilage and a method developed to measure the activity using ATP as substrate in intact matrix vesicles under relatively physiological conditions. The enzyme had a high affinity for ATP (Km less than 10 microM) and was also active towards GTP, CTP and UTP. Disruption of the matrix vesicle membrane by sonication failed to alter the activity. Treatment of sonicated matrix vesicles with Triton X-100 increased the activity which may indicate a direct effect of the detergent on the enzyme. Activity towards ATP was inhibited substantially by ADP and AMP and by another potential substrate beta,gamma-methyleneadenosine 5'-triphosphate. Dichloromethylene bisphosphonate, an analogue of the product PPi, inhibited the activity to a lesser extent. Two other potential substrates, NADP+ and thymidine 5'-monophosphate p-nitrophenyl ester were only weakly inhibitory as was 1-hydroxyethylidene 1,1-bisphosphonate. These results imply that nucleoside triphosphates are the substrates in vivo and the inhibitory effects of ADP and AMP suggest mechanisms whereby this activity could be regulated.  相似文献   

13.
1. The metabolism of extracellular nucleotides in NG108-15 cells, a neuroblastoma × glioma hybrid cell line, was studied by means of capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MECC).2. In NG108-15 cells ATP, ADP, AMP, UTP, UDP, and UMP were hydrolyzed to the nucleosides adenosine and uridine indicating the presence of ecto-nucleotidases and ecto-phosphatases. The hydrolysis of the purine nucleotides ATP and ADP was significantly faster than the hydrolysis of the pyrimidine nucleotides UTP and UDP.3. ATP and UTP breakdown appeared to be mainly due to an ecto-nucleotide- diphosphohydrolase. ADP, but not UDP, was initially also phosphorylated to some extent to the corresponding triphosphate, indicating the presence of an adenylate kinase on NG108-15 cells. The alkaline phosphatase (ALP) inhibitor levamisole did not only inhibit the hydrolysis of AMP to adenosine and of UMP to uridine, but also the degradation of ADP and to a larger extent that of UDP. ATP and UTP degradation was only slightly inhibited by levamisole.4. These results underscore the important role of ecto-alkaline phosphatase in the metabolism of adenine as well as uracil nucleotides in NG108-15 cells. Dipyridamole, a potent inhibitor of nucleotide breakdown in superior cervical ganglion cells, had no effect on nucleotide degradation in NG108-15 cells.5. Dipyridamole, which is a therapeutically used nucleoside reuptake inhibitor in humans, reduced the extracellular adenosine accumulation possibly by allosteric enhancement of adenosine reuptake into the cells.  相似文献   

14.
Two soluble cyclic nucleotide phosphodiesterase activities, designated Peak I (Mr = 216,000) and Peak II (Mr = 230,000), have been isolated from bovine adrenal medulla by DEAE-cellulose chromatography. Peak I has Ca2+-independent, cGMP-specific phosphodiesterase activity and Peak II has cGMP-stimulated cyclic nucleotide phosphodiesterase activity. Peak I hydrolyzes cGMP with hyperbolic kinetics and demonstrates a Km of 23 microM. Peak II hydrolyzes cGMP with hyperbolic kinetics but hydrolyzes cAMP with slightly sigmoidal kinetics and demonstrates Km values of 54 +/- 0.7 microM cGMP and 38 +/- 6 microM cAMP. Cyclic AMP and cGMP are competitive inhibitors of each other's hydrolysis, suggesting that these nucleotides may be hydrolyzed at the same catalytic site. Micromolar concentrations of cGMP cause a 5-fold stimulation of the hydrolysis of subsaturating concentrations of cAMP by the Peak II phosphodiesterase. Half-maximal activation occurs at 0.5 microM cGMP and the result of activation is a decrease in the apparent Km for cAMP. Stimulation of the hydrolysis of subsaturating concentrations of cGMP by cAMP was also detected; however, cAMP is a less potent activator of the enzyme than cGMP. Cyclic AMP causes a 1.5-fold stimulation of cGMP hydrolysis and half-maximal activation occurs at 2.5 microM cAMP.  相似文献   

15.
Soluble cyclic nucleotide phosphodiesterase of rat uterus displays distinct structural and regulatory properties. Like phosphodiesterases from many mammalian sources the soluble uterine enzyme system exhibits nonlinear Lineweaver--Burk kinetics with cyclic adenosine 3':5'-monophosphate (cAMP) as substrate (apparent Kms congruent to 3 and 20 micron) and linear kinetics with cyclic guanosine 3':5'-monophosphate (cGMP) as substrate (apparent Km congruent to 3 micron). Unlike most other mammalian phosphodiesterases, however, numerous separation procedures reveal only a single form of uterine phosphodiesterase which catalyzes the hydrolysis of both cAMP and cGMP. A single form of the enzyme is observed upon sucrose gradient centrifugation (7.9 S), agarose gel filtration, and DEAE-cellulose chromatography at either pH 8.0 OR 6.0. Heat denaturation (50 degrees C) of soluble uterine phosphodiesterase causes the loss of both cAMP and cGMP hydrolytic activities at the same rate. Isoelectric focusing reveals major (pI = 5.2) and minor forms (pI = 5.8) of phosphodiesterase which both catalyze the hydrolysis of the two cyclic nucleotide substrates. In vivo administration of estradiol produces identical decreases in the activities of cAMP and cGMP phosphodiesterase. These results raise the possibility that the uterus contains a single form of soluble phosphodiesterase which catalyzes the hydrolysis of both cAMP and cGMP.  相似文献   

16.
Nucleotides, e.g. ATP and ADP, are important signaling molecules, which elicit several biological responses. The degradation of nucleotides is catalyzed by a family of enzymes called NTPDases (nucleoside triphosphate diphosphohydrolases). The present study reports the enzymatic properties of a NTPDase (CD39, apyrase, ATP diphosphohydrolase) in brain membranes of zebrafish (Danio rerio). This enzyme was cation-dependent, with a maximal rate for ATP and ADP hydrolysis in a pH range of 7.5-8.0 in the presence of Ca(2+) (5 mM). The enzyme displayed a maximal activity for ATP and ADP hydrolysis at 37 degrees C. It was able to hydrolyze purine and pyrimidine nucleosides 5'-di and triphosphates, being insensitive to classical ATPase inhibitors, such as ouabain (1 mM), N-ethylmaleimide (0.1 mM), orthovanadate (0.1 mM) and sodium azide (0.1 mM). A significant inhibition of ATP and ADP hydrolysis (68% and 34%, respectively) was observed in the presence of 20 mM sodium azide, used as a possible inhibitor of ATP diphosphohydrolase. Levamisole (1 mM) and tetramisole (1 mM), specific inhibitors of alkaline phosphatase and P1, P(5)-di (adenosine 5'-) pentaphosphate, an inhibitor of adenylate kinase did not alter the enzyme activity. The presence of a NTPDase in brain membranes of zebrafish may be important for the modulation of nucleotide and nucleoside levels, controlling their actions on specific purinoceptors in central nervous system of this specie.  相似文献   

17.
18.
19.
Keratinocytes are the major building blocks of the human epidermis. In many physiological and pathophysiological conditions, keratinocytes release adenosine triphosphate (ATP) as an autocrine/paracrine mediator that regulates cell proliferation, differentiation, and migration. ATP receptors have been identified in various epidermal cell types; therefore, extracellular ATP homeostasis likely determines its long-term, trophic effects on skin health. We investigated the possibility that human keratinocytes express surface-located enzymes that modulate ATP concentration, as well as the corresponding receptor activation, in the pericellular microenvironment. We observed that the human keratinocyte cell line HaCaT released ATP and hydrolyzed extracellular ATP. Interestingly, ATP hydrolysis resulted in adenosine diphosphate (ADP) accumulation in the extracellular space. Pharmacological inhibition by ARL 67156 or gene silencing of the endogenous ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) isoform 2 resulted in a 25% reduction in both ATP hydrolysis and ADP formation. Using intracellular calcium as a reporter, we found that although NTPDase2 hydrolyzed ATP and generated sustainable ADP levels, only ATP contributed to increased intracellular calcium via P2Y2 receptor activation. Furthermore, knocking down NTPDase2 potentiated the nanomolar ATP-induced intracellular calcium increase, suggesting that NTPDase2 globally attenuates nucleotide concentration in the pericellular microenvironment as well as locally shields receptors in the vicinity from being activated by extracellular ATP. Our findings reveal an important role of human keratinocyte NTPDase2 in modulating nucleotide signaling in the extracellular milieu of human epidermis.  相似文献   

20.
We have examined the permissible nucleotide occupancy states of human MutSalpha. The MSH2.MSH6 heterodimer binds 1 mol of ADP and 1 mol of adenosine 5'-O-(thiotriphosphate) (ATPgammaS), with a K(d) for each nucleotide of about 1 microm. Anisotropy measurements using BODIPY TR and BODIPY FL fluorescent derivatives of ADP and 5'-adenylyl-beta,gamma-imidodiphosphate (AMPPNP) also indicate an interaction stoichiometry of 1 mol of ADP and 1 mol of triphosphate analogue per MutSalpha heterodimer. Di- and triphosphate sites can be simultaneously occupied as judged by sequential filling of the two binding site classes with differentially radiolabeled ADP and ATPgammaS and by fluorescence resonance energy transfer between BODIPY TR- and BODIPY FL-labeled ADP and AMPPNP. ATP hydrolysis by MutSalpha is accompanied by a pre-steady-state burst of ADP formation, and analysis of MutSalpha-bound nucleotide during the first turnover has demonstrated the presence of both ADP and ATP. Simultaneous presence of ADP and a nonhydrolyzable ATP analogue modulates MutSalpha.heteroduplex interaction in a manner that is distinct from that observed in the presence of ADP or nonhydrolyzable triphosphate alone, and it is unlikely that this effect is due to the presence of a mixed population of binary complexes between MutSalpha and ADP or a triphosphate analogue. These findings imply that MutSalpha has two nucleotide binding sites with differential specificities for ADP and ATP and suggest that the ADP.MutSalpha.ATP ternary complex has an important role in mismatch repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号