首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic efficiency of class D β-lactamases depends critically on an unusual carboxylated lysine as the general base residue for both the acylation and deacylation steps of the enzyme. Microbiological and biochemical studies on the class D β-lactamases OXA-1 and OXA-24 showed that the two enzymes behave differently when reacting with two 6-methylidene penems (penem 1 and penem 3): the penems are good inhibitors of OXA-1 but act more like substrates for OXA-24. UV difference and Raman spectroscopy revealed that the respective reaction mechanisms are different. The penems form an unusual intermediate, a 1,4-thiazepine derivative in OXA-1, and undergo deacylation followed by the decarboxylation of Lys-70, rendering OXA-1 inactive. This inactivation could not be reversed by the addition of 100 mm NaHCO3. In OXA-24, under mild conditions (enzyme:inhibitor = 1:4), only hydrolyzed products were detected, and the enzyme remained active. However, under harsh conditions (enzyme:inhibitor = 1:2000), OXA-24 was inhibited via decarboxylation of Lys-84; however, the enzyme could be reactivated by the addition of 100 mm NaHCO3. We conclude that OXA-24 not only decarboxylates with difficulty but also recarboxylates with ease; in contrast, OXA-1 decarboxylates easily but recarboxylates with difficulty. Structural analysis of the active site indicates that a crystallographic water molecule may play an important role in carboxylation in OXA-24 (an analogous water molecule is not found in OXA-1), supporting the suggestion that a water molecule in the active site of OXA-24 can lower the energy barrier for carboxylation significantly.  相似文献   

2.
A basic (pI = 10.2) phospholipase A2 of the venom of the snake Agkistrodon halys blomhoffii is one of a few phospholipases A2 capable of hydrolyzing the phospholipids of Escherichia coli killed by a bactericidal protein purified from human or rabbit neutrophil granules. We have shown that modification of as many as 4 mol of lysine per mole of the phospholipase A2, either by carbamylation or by reductive methylation [Forst, S., Weiss, J., & Elsbach, P. (1982) J. Biol. Chem. 257, 14055-14057], had no effect on catalytic activity toward extracted E. coli phospholipids or the phospholipids of autoclaved E. coli. In contrast, modification of 1 mol of lysine per mole of enzyme substantially reduced activity toward the phospholipids of E. coli killed by the neutrophil protein. To explore further the role of lysines in the function of this phospholipase A2, we determined the amino acid sequence of the enzyme and the incorporation of [14C]cyanate into individual lysines when, on average, 1 lysine per molecule of enzyme had been carbamylated. After incorporation of approximately 1 mol of [14C]cyanate per mole of protein, the phospholipase A2 was reduced, alkylated, and exhaustively carbamylated with unlabeled cyanate. The amino acid sequence was determined of the NH2-terminal 33 amino acids of the holoprotein and of peptides isolated after digestion with trypsin and Staphylococcus aureus V-8 protease. The protein contains 122 amino acid residues, 17 of which are lysines. The NH2-terminal region is unique among more than 30 phospholipases A2 previously sequenced because of its high content of basic residues (His-1, Arg-6, and Lys-7, -10, -11, and -15).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Beta-lactamases and penicillin-binding proteins are bacterial enzymes involved in antibiotic resistance to beta-lactam antibiotics and biosynthetic assembly of cell wall, respectively. Members of these large families of enzymes all experience acylation by their respective substrates at an active site serine as the first step in their catalytic activities. A Ser-X-X-Lys sequence motif is seen in all these proteins, and crystal structures demonstrate that the side-chain functions of the serine and lysine are in contact with one another. Three independent methods were used in this report to address the question of the protonation state of this important lysine (Lys-73) in the TEM-1 beta-lactamase from Escherichia coli. These techniques included perturbation of the pK(a) of Lys-73 by the study of the gamma-thialysine-73 variant and the attendant kinetic analyses, investigation of the protonation state by titration of specifically labeled proteins by nuclear magnetic resonance, and by computational treatment using the thermodynamic integration method. All three methods indicated that the pK(a) of Lys-73 of this enzyme is attenuated to 8.0-8.5. It is argued herein that the unique ground-state ion pair of Glu-166 and Lys-73 of class A beta-lactamases has actually raised the pK(a) of the active site lysine to 8.0-8.5 from that of the parental penicillin-binding protein. Whereas we cannot rule out that Glu-166 might activate the active site water, which in turn promotes Ser-70 for the acylation event, such as proposed earlier, we would like to propose as a plausible alternative for the acylation step the possibility that the ion pair would reconfigure to the protonated Glu-166 and unprotonated Lys-73. As such, unprotonated Lys-73 could promote serine for acylation, a process that should be shared among all active-site serine beta-lactamases and penicillin-binding proteins.  相似文献   

4.
The OXA-1 beta-lactamase is one of the few class D enzymes that has an aspartate residue at position 66, a position that is proximal to the active-site residue Ser(67). In class A beta-lactamases, such as TEM-1 and SHV-1, residues adjacent to the active-site serine residue play a crucial role in inhibitor resistance and substrate selectivity. To probe the role of Asp(66) in substrate affinity and catalysis, we performed site-saturation mutagenesis at this position. Ampicillin MIC (minimum inhibitory concentration) values for the full set of Asp(66) mutants expressed in Escherichia coli DH10B ranged from < or =8 microg/ml for cysteine, proline and the basic amino acids to > or =256 microg/ml for asparagine, leucine and the wild-type aspartate. Replacement of aspartic acid by asparagine at position 66 also led to a moderate enhancement of extended-spectrum cephalosporin resistance. OXA-1 shares with other class D enzymes a carboxylated residue, Lys(70), that acts as a general base in the catalytic mechanism. The addition of 25 mM bicarbonate to Luria-Bertani-broth agar resulted in a > or =16-fold increase in MICs for most OXA-1 variants with amino acid replacements at position 66 when expressed in E. coli. Because Asp(66) forms hydrogen bonds with several other residues in the OXA-1 active site, we propose that this residue plays a role in stabilizing the CO2 bound to Lys(70) and thereby profoundly affects substrate turnover.  相似文献   

5.
Specific recognition of lysosomal hydrolases by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, the initial enzyme in the biosynthesis of mannose 6-phosphate residues, is governed by a common protein determinant. Previously, we generated a lysosomal enzyme recognition domain in the secretory protein glycopepsinogen by substituting in two regions (lysine 203 and amino acids 265-293 of the beta loop) from cathepsin D, a highly related lysosomal protease. Here we show that substitution of just two lysines (Lys-203 and Lys-267) stimulates mannose phosphorylation 116-fold. Substitution of additional residues in the beta loop, particularly lysines, increased phosphorylation 4-fold further, approaching the level obtained with intact cathepsin D. All the phosphorylation occurred at the carboxyl lobe glycan, indicating that additional elements are required for phosphorylation of the amino lobe glycan. These data support the proposal that as few as two lysines in the correct orientation to each other and to the glycan can serve as the minimal elements of the lysosomal enzyme recognition domain. However, our findings show that the spacing between lysines is flexible and other residues contribute to the recognition marker.  相似文献   

6.
Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases.  相似文献   

7.
Brownian dynamics simulations of computer models of GAPDH mutants interacting with F-actin emphasized the electrostatic nature of such interactions, and confirmed the importance of four previously identified lysine residues on the GAPDH structure in these interactions. Mutants were GAPDH models in which one or more of the previously identified lysines had been replaced with alanine. Simulations showed reduced binding of these mutants to F-actin compared to wild-type GAPDH. Binding was significantly reduced by mutating the four lysines; the specific electrostatic interaction energy of the quadruple mutant was -7.3 +/- 1.0 compared to -11.4 +/- 0.5 kcal/mol for the wild enzyme. The BD simulations also reaffirmed the importance of quaternary structure for GAPDH binding F-actin.  相似文献   

8.
The reactions of horse heart cytochrome c with succinate-cytochrome c reductase and cytochrome oxidase were studied as a function of ionic strength using both spectrophotometric and oxygen electrode assay techniques. The kinetic parameter Vmax/Km for both reactions decreased very rapidly as the ionic strength was increased, indicating that electrostatic interactions were important to the reactions. A new semiempirical relationship for the electrostatic energy of interaction between cytochrome c and its oxidation-reduction partners was developed, in which specific complementary charge-pair interactions between lysine amino groups on cytochrome c and negatively charged carboxylate groups on the other protein are assumed to dominate the interaction. The contribution of individual cytochrome c lysine amino groups to the electrostatic interaction was estimated from the decrease in reaction rate caused by specific modification of the lysine amino groups by reagents that change the charge to 0 or -1. These estimates range from -0.9 kcal/mol for lysines immediately surrounding the heme crevice of cytochrome c to 0 kcal/mol for lysines well removed from the heme crevice region. The semiempirical relationship for the total electrostatic energy of interaction was in quantitative agreement with the experimental ionic strength dependence of the reaction rates when the parameters were based on the specific lysine modification results. The electrostatic energies of interaction between cytochrome c and its reductase and oxidase were nearly the same, providing additional evidence that the two reactions take place at similar sites on cytochrome c.  相似文献   

9.
The crystallographic structure of the Escherichia coli OXA-1 beta-lactamase has been established at 1.5-A resolution and refined to R = 0.18. The 28.2-kD oxacillinase is a class D serine beta-lactamase that is especially active against the penicillin-type beta-lactams oxacillin and cloxacillin. In contrast to the structures of OXA-2, OXA-10, and OXA-13 belonging to other subclasses, the OXA-1 molecule is monomeric rather than dimeric and represents the subclass characterized by an enlarged Omega loop near the beta-lactam binding site. The 6-residue hydrophilic insertion in this loop cannot interact directly with substrates and, instead, projects into solvent. In this structure at pH 7.5, carboxylation of the conserved Lys 70 in the catalytic site is observed. One oxygen atom of the carboxylate group is hydrogen bonded to Ser 120 and Trp 160. The other oxygen atom is more exposed and hydrogen bonded to the Ogamma of the reactive Ser 67. In the overlay of the class D and class A binding sites, the carboxylate group is displaced ca. 2.6 A from the carboxylate group of Glu 166 of class A enzymes. However, each group is equidistant from the site of the water molecule expected to function in hydrolysis, and which could be activated by the carboxylate group of Lys 70. In this ligand-free OXA-1 structure, no water molecule is seen in this site, so the water molecule must enter after formation of the acyl-Ser 67 intermediate.  相似文献   

10.
Valyl-tRNA synthetase (ValRS) from Escherichia coli undergoes covalent valylation by a donor valyl adenylate synthesized by the enzyme itself. ValRS could also be modified, although to a lesser extent, by the noncognate isosteric substrate L-threonine from a donor threonyl adenylate synthesized by the synthetase itself, or by the nonsubstrate methionine from methionyl adenylate produced by catalytic amounts of methionyl-tRNA synthetase. MALDI mass spectrometry analysis designated lysines 154, 162, 170, 533, 554, 593, 894, 930, and 940 of ValRS as the target residues for the attachment of valine. Following autothreonylation, lysines 162, 170, 178, 277, 291, 554, 580, 593, 861, 894, and 930 were found to be modified. Finally, L-Met-labeled residues were lysines 118, 162, 170, 178, 277, and 938. Alignment of the available ValRS amino acid sequences showed that lysines 277 and 554 are strictly conserved (with the exception concerning replacement of Lys-277 with a methionine or a tyrosine in archaebacteria), suggesting that these residues might be functionally significant. Indeed, lysine 554 of ValRS is the first lysine of the Lys-Met-Ser-Lys-Ser signature of the catalytic site of class I aminoacyl-tRNA synthetases. Lys-277 which is labeled by L-threonine or L-methionine, and not by L-valine, is located at or near the editing site, in the three-dimensional structure of ValRS. The role of lysine 277 was evaluated by site-directed mutagenesis. The Lys277Ala mutant (K277A) exhibited a posttransfer Thr-tRNA(Val) editing rate that was significantly lower than that observed for the wild-type enzyme. In addition, the K277A substitution altered amino acid discrimination in the editing site, resulting in hydrolysis of the correctly charged cognate Val-tRNA(Val). Finally, significant amounts of mischarged Thr-tRNA(Val) were produced by the K277A mutant, and not by wild-type ValRS. Altogether, our results designate Lys-277 as a likely candidate for nucleophilic attack of misacylated tRNA in the editing site of ValRS.  相似文献   

11.
Díaz N  Suárez D  Sordo TL 《Biochemistry》2006,45(2):439-451
Herein, we present results from molecular dynamics (MD) simulations of the class C beta-lactamase from Citrobacter freundii and its Michaelis complex with aztreonam. Four different configurations of the active site were modeled in aqueous solution, and their relative stability was estimated by means of quantum mechanical energy calculations. For the free enzyme, the energetically most stable configurations present a neutral Lys67 residue or an anionic Tyr150 side chain. Our calculations predict that these two configurations are quite close in terms of free energy, the anionic Tyr150 state being favored by approximately 1 kcal/mol. In contrast, for the noncovalent complex formed between the C. freundii enzyme and aztreonam, the energetic analyses predict that the configuration with the neutral Lys67 residue is much more stable than the anionic Tyr150 one (approximately 20 kcal/mol). Moreover, the MD simulations reveal that the neutral Lys67 state results in a proper enzyme-aztreonam orientation for nucleophilic attack and in a very stable contact between the nucleophilic hydroxyl group of Ser64 and the neutral amino side chain of Lys67. Thus, both the computed free energies and the structural analyses support the assignation of Lys67 as the base catalyst for the acylation step in the native form of the C. freundii enzyme.  相似文献   

12.
Hydantoinases are industrial enzymes with varying degree of activities on variable substrates to form different products. Although, few of the hydantoinase structures were known recently, the functional details and active site mechanism were not clearly understood yet. In a structure determination effort we reported that Bacillus sp. AR9 hydantoinase contains uncarboxylated lysine in the active site, whereas all the other hydantoinases have a carboxylated active site lysine. Here we describe the importance of carboxylated lysine for differential activities by making lysine mutations as well as carboxylating the lysine in a D-hydantoinase from Bacillus sp. AR9. The lysine to alanine and lysine to arginine mutations showed reduced activities whereas carboxylation of the lysine has enhanced the activity. Theoretical studies involving the calculation of electrostatic potentials for the hydroxide ion between the two metal ions present in the active site suggest that the presence of carboxylated lysine increases the nucleophilicity of the hydroxide.  相似文献   

13.
The clinically used inhibitors tazobactam and sulbactam are effective in the inhibition of activity of class A beta-lactamases, but not for class D beta-lactamases. The two inhibitors exhibit a complex multistep profile for their chemistry of inhibition with class A beta-lactamases. To compare the inhibition profiles for class A and D enzymes, the reactions were investigated within OXA-10 beta-lactamase (a class D enzyme) crystals using a Raman microscope. The favored reaction pathway appears to be distinctly different from that for class A beta-lactamases. In contrast to the case of class A enzymes that favor the formation of a key enamine species, the OXA-10 enzyme forms an alpha,beta-unsaturated acrylate (acid or ester). Quantum mechanical calculations support the likely product as the adduct of Ser115 to the acrylate. Few enamine-like species are formed by sulbactam or tazobactam with this enzyme. Taken together, our results show that the facile conversion of the initial imine, formed upon acylation of the active site Ser67, to the cis- and/or trans-enamine is disfavored. Instead, there is a significant population of the imine that could either experience cross-linking to a second nucleophile (e.g., Ser115) or give rise to the alpha,beta-unsaturated product and permanent inhibition. Alternatively, the imine can undergo hydrolysis to regenerate the catalytically active OXA-10 enzyme. This last process is the dominant one for class D beta-lactamases since the enzyme is not effectively inhibited. In contrast to sulbactam and tazobactam, the reactions between oxacillin or 6alpha-hydroxyisopropylpenicillinate (both substrates) and OXA-10 beta-lactamase appear much less complex. These compounds lead to a single acyl-enzyme species, the presence of which was confirmed by Raman and MALDI-TOF experiments.  相似文献   

14.
We have extended the sequence of the OXA-2 beta-lactamase which together with S1 mapping has enabled us to identify the promoter site for this gene. This lies in a region that is found upstream from a variety of resistance genes on different plasmids; each gene appears to have been inserted at the same specific site and to be expressed from the same promoter. The ancestral plasmid thus appears to function as a natural expression vector. The sequence of the recombination site at the 5' end of the OXA-2 gene shows a marked similarity with the attP sequence of lambda. DNA-probe analysis confirmed that the OXA-2 and OXA-3 beta-lactamases are related, and indicated no similarity with other beta-lactamase genes. However, a comparison of amino acid sequences demonstrates that the OXA-2, OXA-1 and PSE-2 beta-lactamases show some similarities to the typical class A enzymes, especially in the central helical domain of the latter, which is largely responsible for forming the active site of the enzyme. The three oxacillinases also show marked amino acid sequence similarity with the product of a regulatory gene, blaR1, required for beta-lactamase induction in Bacillus licheniformis.  相似文献   

15.
The potential for engineering stable proteins with multiple amino acid substitutions was explored. Eleven lysine, five methionine, two tryptophan, one glycine, and three threonine substitutions were simultaneously made in barley chymotrypsin inhibitor-2 (CI-2) to substantially improve the essential amino acid content of the protein. These substitutions were chosen based on the three-dimensional structure of CI-2 and an alignment of homologous sequences. The initial engineered protein folded into a wild-type-like structure, but had a free energy of unfolding of only 2.2 kcal/mol, considerably less than the wild-type value of 7.5 kcal/mol. Restoration of the lysine mutation at position 67 to the wild-type arginine increased the free energy of unfolding to 3.1 kcal/mol. Subsequent cysteine substitutions at positions 22 and 82 resulted in disulfide bond formation and a protein with nearly wild-type thermodynamic stability (7.0 kcal/mol). None of the engineered proteins retained inhibitory activity against chymotrypsin or elastase, and all had substantially reduced inhibitory activity against subtilisin. The proteolytic stabilities of the proteins correlated with their thermodynamic stabilities. Reduction of the disulfide bond resulted in substantial loss of both thermodynamic and proteolytic stabilities, confirming that the disulfide bond, and not merely the cysteine substitutions, was responsible for the increased stability. We conclude that it is possible to replace over a third of the residues in CI-2 with minimal disruption of stability and structural integrity.  相似文献   

16.
Widespread use of beta-lactam antibiotics has promoted the evolution of beta-lactamase mutant enzymes that can hydrolyze ever newer classes of these drugs. Among the most pernicious mutants are the inhibitor-resistant TEM beta-lactamases (IRTs), which elude mechanism-based inhibitors, such as clavulanate. Despite much research on these IRTs, little is known about the structural bases of their action. This has made it difficult to understand how many of the resistance substitutions act as they often occur far from Ser-130. Here, three IRT structures, TEM-30 (R244S), TEM-32 (M69I/M182T), and TEM-34 (M69V), are determined by x-ray crystallography at 2.00, 1.61, and 1.52 A, respectively. In TEM-30, the Arg-244 --> Ser substitution (7.8 A from Ser-130) displaces a conserved water molecule that usually interacts with the beta-lactam C3 carboxylate. In TEM-32, the substitution Met-69 --> Ile (10 A from Ser-130) appears to distort Ser-70, which in turn causes Ser-130 to adopt a new conformation, moving its O gamma further away, 2.3 A from where the inhibitor would bind. This substitution also destabilizes the enzyme by 1.3 kcal/mol. The Met-182 --> Thr substitution (20 A from Ser-130) has no effect on enzyme activity but rather restabilizes the enzyme by 2.9 kcal/mol. In TEM-34, the Met-69 --> Val substitution similarly leads to a conformational change in Ser-130, this time causing it to hydrogen bond with Lys-73 and Lys-234. This masks the lone pair electrons of Ser-130 O gamma, reducing its nucleophilicity for cross-linking. In these three structures, distant substitutions result in accommodations that converge on the same point of action, the local environment of Ser-130.  相似文献   

17.
α(2)-Antiplasmin is the physiological inhibitor of plasmin and is unique in the serpin family due to N- and C-terminal extensions beyond its core domain. The C-terminal extension comprises 55 amino acids from Asn-410 to Lys-464, and the lysine residues (Lys-418, Lys-427, Lys-434, Lys-441, Lys-448, and Lys-464) within this region are important in mediating the initial interaction with kringle domains of plasmin. To understand the role of lysine residues within the C terminus of α(2)-antiplasmin, we systematically and sequentially mutated the C-terminal lysines, studied the effects on the rate of plasmin inhibition, and measured the binding affinity for plasmin via surface plasmon resonance. We determined that the C-terminal lysine (Lys-464) is individually most important in initiating binding to plasmin. Using two independent methods, we also showed that the conserved internal lysine residues play a major role mediating binding of the C terminus of α(2)-antiplasmin to kringle domains of plasmin and in accelerating the rate of interaction between α(2)-antiplasmin and plasmin. When the C terminus of α(2)-antiplasmin was removed, the binding affinity for active site-blocked plasmin remained high, suggesting additional exosite interactions between the serpin core and plasmin.  相似文献   

18.
Although lysines are known to be critical for ligand binding to LDL receptor family receptors, relatively small reductions in affinity have been found when such lysines have been mutated. To resolve this paradox, we have examined the specific binding contributions of four lysines, Lys-253, Lys-256, Lys-270, and Lys-289, in the third domain (D3) of receptor-associated protein (RAP), by eliminating all other lysine residues. Using D3 variants containing lysine subsets, we examined binding to the high affinity fragment CR56 from LRP1. With this simplification, we found that elimination of the lysine pairs Lys-253/Lys-256 and Lys-270/Lys-289 resulted in increases in Kd of 1240- and 100,000-fold, respectively. Each pair contributed additively to overall affinity, with 61% from Lys-270/Lys-289 and 39% from Lys-253/Lys-256. Furthermore, the Lys-270/Lys-289 pair alone could bind different single CR domains with similar affinity. Within the pairs, binding contributions of Lys-270 ≫ Lys-256 > Lys-253 ∼ Lys-289 were deduced. Importantly, however, Lys-289 could significantly compensate for the loss of Lys-270, thus explaining how previous studies have underestimated the importance of Lys-270. Calorimetry showed that favorable enthalpy, from Lys-256 and Lys-270, overwhelmingly drives binding, offset by unfavorable entropy. Our findings support a mode of ligand binding in which a proximal pair of lysines engages the negatively charged pocket of a CR domain, with two such pairs of interactions (requiring two CR domains), appropriately separated, being alone sufficient to provide the low nanomolar affinity found for most protein ligands of LDL receptor family members.  相似文献   

19.
Pyridoxal 5'-triphospho-5'-adenosine (AP3-PL), the affinity labeling reagent specific for lysine residues in the nucleotide-binding site of several enzymes [Tagaya, M., & Fukui, T. (1986) Biochemistry 25, 2958-2964; Yagami, T., Tagaya, M., & Fukui, T. (1988) FEBS Lett. 229, 261-264], was used to identify the ATP-binding site of Escherichia coli methionyl-tRNA synthetase (MetRS). Incubation of this enzyme with AP3-PL followed by reduction with sodium borohydride resulted in a rapid inactivation of both the tRNA(Met) aminoacylation and the methionine-dependent ATP-PPi exchange activities. Complete inactivation corresponded to the incorporation of 0.98 mol of AP3-PL/mol of monomeric trypsin-modified MetRS. ATP or MgATP protected the enzyme from inactivation. The labeling with AP3-PL was also applied to E. coli valyl-tRNA synthetase (ValRS). Both the tRNA(Val) aminoacylation and the valine-dependent ATP-PPi exchange activities were abolished by the incorporation of 0.91 mol of AP3-PL/mol of monomeric ValRS. AP3-PL was found attached to lysine residues 335, 402, and 528 in the primary structure of MetRS. In the case of ValRS, the AP3-PL-labeled residues corresponded to lysines 557, 593, and 909. We therefore conclude that these lysines of MetRS and ValRS are directed toward the ATP-binding site of these synthetases, more specifically at or close to the subsite for the gamma-phosphate of ATP. AP3-PL-labeled Lys-335 of MetRS and Lys-557 of ValRS belong to the consensus tRNA CCA-binding Lys-Met-Ser-Lys-Ser sequence [Hountondji, C., Dessen, P., & Blanquet, S. (1986) Biochimie 68, 1071-1078].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The OST48 subunit of the oligosaccharyltransferase complex is a type I membrane protein containing three lysines in its cytosolic domain. The two lysines in positions 3 and 5 from the C-terminus are able to direct protein localisation within the endoplasmic reticulum (ER) by COPI-mediated retrieval. Substitution of these lysines by arginine resulted in cell-surface expression of OST48, whereas ER residency was maintained when either Lys-5 or Lys-3 but not both was replaced with arginine. Localisation of OST48 was not affected by substitution of the two lysines by histidine, indicating that a His-Xaa-His sequence, in contrast to Arg-Xaa-Arg, contains ER-specific targeting information. These differences show that simple charge interactions are not sufficient for ER retention and that other structural factors also play a role. The His-Xaa-His sequence could represent a new and independent signal for directing ER localisation differing from both the arginine motif in type II proteins and the lysine motif in type I proteins. Our data do not exclude, however, that the histidine sequence simply mimics the lysine motif as a sorting signal, being recognised by and interacting with the same receptor subunit(s) in COP-I-coated vesicles. Conclusions arising from this assumption involving the conformation of lysine at the putative COP-I binding site and the failure of Arg-Xaa-Arg to mediate ER localisation for type I proteins are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号