共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a nonredundant protein-RNA docking benchmark dataset, which is derived from the available bound and unbound structures in the Protein Data Bank involving polypeptide and nucleic acid chains. It consists of nine unbound-unbound cases where both the protein and the RNA are available in the free form. The other 36 cases are of unbound-bound type where only the protein is available in the free form. The conformational change upon complex formation is calculated by a distance matrix alignment method, and based on that, complexes are classified into rigid, semi-flexible, and full flexible. Although in the rigid body category, no significant conformational change accompanies complex formation, the fully flexible test cases show large domain movements, RNA base flips, etc. The benchmark covers four major groups of RNA, namely, t-RNA, ribosomal RNA, duplex RNA, and single-stranded RNA. We find that RNA is generally more flexible than the protein in the complexes, and the interface region is as flexible as the molecule as a whole. The structural diversity of the complexes in the benchmark set should provide a common ground for the development and comparison of the protein-RNA docking methods. The benchmark can be freely downloaded from the internet. 相似文献
2.
A data set of 89 protein-RNA complexes has been extracted from the Protein Data Bank, and the nucleic acid recognition sites characterized through direct contacts, accessible surface area, and secondary structure motifs. The differences between RNA recognition sites that bind to RNAs in functional classes has also been analyzed. Analysis of the complete data set revealed that van der Waals interactions are more numerous than hydrogen bonds and the contacts made to the nucleic acid backbone occur more frequently than specific contacts to nucleotide bases. Of the base-specific contacts that were observed, contacts to guanine and adenine occurred most frequently. The most favored amino acid-nucleotide pairings observed were lysine-phosphate, tyrosine-uracil, arginine-phosphate, phenylalanine-adenine and tryptophan-guanine. The amino acid propensities showed that positively charged and polar residues were favored as expected, but also so were tryptophan and glycine. The propensities calculated for the functional classes showed trends similar to those observed for the complete data set. However, the analysis of hydrogen bond and van der Waal contacts showed that in general proteins complexed with messenger RNA, transfer RNA and viral RNA have more base specific contacts and less backbone contacts than expected, while proteins complexed with ribosomal RNA have less base-specific contacts than the expected. Hence, whilst the types of amino acids involved in the interfaces are similar, the distribution of specific contacts is dependent upon the functional class of the RNA bound. 相似文献
3.
We present here an extended protein-RNA docking benchmark composed of 71 test cases in which the coordinates of the interacting protein and RNA molecules are available from experimental structures, plus an additional set of 35 cases in which at least one of the interacting subunits is modeled by homology. All cases in the experimental set have available unbound protein structure, and include five cases with available unbound RNA structure, four cases with a pseudo-unbound RNA structure, and 62 cases with the bound RNA form. The additional set of modeling cases comprises five unbound-model, eight model-unbound, 19 model-bound, and three model-model protein-RNA cases. The benchmark covers all major functional categories and contains cases with different degrees of difficulty for docking, as far as protein and RNA flexibility is concerned. The main objective of this benchmark is to foster the development of protein-RNA docking algorithms and to contribute to the better understanding and prediction of protein-RNA interactions. The benchmark is freely available at http://life.bsc.es/pid/protein-rna-benchmark. 相似文献
4.
The crystal packing surfaces comprising protein-RNA interactions were analyzed for 50 RNA-protein crystal structures in the Protein Data Bank database. Protein-RNA crystal contacts, which represent nonspecific protein-RNA interfaces, were investigated for their amino acid propensities, hydrogen bond patterns, and backbone and side chain interactions. When compared to biologically relevant interactions, the protein-RNA crystal contacts exhibit similarities as well as differences with respect to the principles of protein-RNA interactions. Similar to what was observed at cognate protein-RNA interfaces, positively charged amino acids have high propensities at noncognate protein-RNA interfaces and preferentially form hydrogen bonds with RNA phosphate groups. In contrast, nonpolar residues are less frequently associated with noncognate interactions. These results highlight the important roles of both electrostatic and hydrogen bonding interactions, facilitated by positively charged amino acids, in mediating both specific and nonspecific protein-RNA interactions. 相似文献
5.
DNA:m(5)C MTases comprise a catalytic domain with conserved residues of the active site and a strongly diverged TRD with variable residues involved in DNA recognition and binding. To date, crystal structures of 2 DNA:m(5)C MTases complexed with the substrate DNA have been obtained; however, for none of these enzymes has the importance of the whole set of DNA-binding residues been comprehensively studied. We built a comparative model of M.NgoPII, a close homologue and isomethylomer of M.HaeIII, and systematically analyzed the effect of alanine substitutions for the complete set of amino acid residues from its TRD predicted to be important for DNA binding and target recognition. Our data demonstrate that only 1 Arg residue is indispensable for the MTase activity in vivo and in vitro, and that mutations of only a few other residues cause significant reduction of the activity in vitro, with little effect on the activity in vivo. The identification of dispensable protein-DNA contacts in the wild-type MTase will serve as a platform for exhaustive combinatorial mutagenesis aimed at the design of new contacts, and thus construction of enzyme variants that retain the activity but exhibit potentially new substrate preferences. 相似文献
6.
Histonelike proteins in prokaryotes and histone octamers in eukaryotes carry large positive charges, which are responsible of strong electrostatic interactions with DNA. As a result, DNA wraps around proteins and genetic information is condensed. We describe a generalized model of these electrostatic interactions mediated by salt that explains the wrapping of DNA around the nucleosome octamer, around remodeling factors in eukaryotes and around histonelike proteins in prokaryotes. It comes out that small changes in protein dimension and charge produce large effects in the supramolecular DNA-protein architecture. 相似文献
7.
8.
Protein-protein interactions networks has come to be a buzzword associated with nets containing edges that represent a pair of interacting proteins (e.g. hormone-receptor, enzyme-inhibitor, antigen-antibody, and a subset of multichain biological machines). Yet, each such interaction composes its own unique network, in which vertices represent amino acid residues, and edges represent atomic contacts. Recent studies have shown that analyses of the data encapsulated in these detailed networks may impact predictions of structure-function correlation. Here, we study homologous families of protein-protein interfaces, which share the same fold but vary in sequence. In this context, we address what properties of the network are shared among relatives with different sequences (and hence different atomic interactions) and which are not. Herein, we develop the general mathematical framework needed to compare the modularity of homologous networks. We then apply this analysis to the structural data of a few interface families, including hemoglobin alpha-beta, growth hormone-receptor, and Serine protease-inhibitor. Our results suggest that interface modularity is an evolutionarily conserved property. Hence, protein-protein interfaces can be clustered down to a few modules, with the boundaries being evolutionarily conserved along homologous complexes. This suggests that protein engineering of protein-protein binding sites may be simplified by varying each module, but retaining the overall modularity of the interface. 相似文献
9.
Moreno-Córdoba I Diago-Navarro E Barendregt A Heck AJ Alfonso C Díaz-Orejas R Nieto C Espinosa M 《Proteins》2012,80(7):1834-1846
The chromosome of the pathogenic Gram-positive bacterium Streptococcus pneumoniae contains between six to 10 operons encoding toxin-antitoxin systems (TAS). TAS are widespread and redundant in bacteria and archaea and their role, albeit still obscure, may be related to important aspects of bacteria lifestyle like response to stress. One of the most abundant TAS is the relBE family, being present in the chromosome of many bacteria and archaea. Because of the high rates of morbility and mortality caused by S. pneumoniae, it has been interesting to gain knowledge on the pneumococcal TAS, among them the RelBE2Spn proteins. Here, we have analyzed the DNA binding capacity of the RelB2Spn antitoxin and the RelB2Spn-RelE2Spn proteins by band-shift assays. Thus, a DNA region encompassing the operator region of the proteins was identified. In addition, we have used analytical ultracentrifugation and native mass spectrometry to measure the oligomerization state of the antitoxin alone and the RelBE2Spn complex in solution bound or unbound to its DNA substrate. Using native mass spectrometry allowed us to unambiguously determine the stoichiometry of the RelB2Spn and of the RelBE2Spn complex alone or associated to its DNA target. 相似文献
10.
11.
We perform an analysis of the quaternary structure and dimer/dimer interface in the crystal structures of 165 human hemoglobin tetramers; 112 are in the T, 17 the R, 14 the Y (or R2) state; 11 are high-affinity T state mutants, and 11 may either be intermediates between the states, or off the allosteric transition pathway. The tertiary structure is fixed within each state, in spite of the different ligands, mutations, and chemical modifications present in individual entries. The geometry of the tetramer assembly is essentially the same in all the R or the Y state entries; it is slightly different in high salt and low salt crystals of T state hemoglobins. The dimer/dimer interface differs in terms of size, chemical composition and polar interactions, between the states. It is loosely packed, like crystal packing contacts or the subunit interface of weakly associated homodimers, and unlike most oligomeric proteins, which have close-packed interfaces. The loose packing is most obvious in the liganded forms, where the tetramer is known to dissociate at low concentration. We identify cavities that contribute to the loose packing of the α1β2 and α2β1 contacts. Two pairs of cavities occur recurrently in both the T and the R state tetramers. They may contribute to the allosteric mechanism by facilitating the subunit movements and the tertiary structure changes that accompany the transition from T to R to Y. 相似文献
12.
Tryptophan biosynthesis in Bacillus stearothermophilus is regulated by a trp RNA binding attenuation protein (TRAP). It is a ring-shaped 11-mer of identical 74 residue subunits. Tryptophan binding pockets are located between adjacent subunits, and tryptophan binding activates TRAP to bind RNA. Here, we report results from all-atom molecular dynamics simulations of the system, complementing existing extensive experimental studies. We focus on two questions. First, we look at the activation mechanism, of which relatively little is known experimentally. We find that the absence of tryptophan allows larger motions close to the tryptophan binding site, and we see indication of a conformational change in the BC loop. However, complete deactivation seems to occur on much longer time scales than the 40 ns studied here. Second, we study the TRAP-RNA interactions. We look at the relative flexibilities of the different bases in the complex and analyze the hydrogen bonds between the protein and RNA. We also study the role of Lys37, Lys56, and Arg58, which have been experimentally identified as essential for RNA binding. Hydrophobic stacking of Lys37 with the nearby RNA base is confirmed, but we do not see direct hydrogen bonding between RNA and the other two residues, in contrast to the crystal structure. Rather, these residues seem to stabilize the RNA-binding surface, and their positive charge may also play a role in RNA binding. Simulations also indicate that TRAP is able to attract RNA nonspecifically, and the interactions are quantified in more detail using binding energy calculations. The formation of the final binding complex is a very slow process: within the simulation time scale of 40 ns, only two guanine bases become bound (and no others), indicating that the binding initiates at these positions. In general, our results are in good agreement with experimental studies, and provide atomic-scale insights into the processes. 相似文献
13.
LA Sommer MA Meier SA Dames 《Protein science : a publication of the Protein Society》2012,21(10):1566-1570
The expression of peptides and proteins as fusions to the B1 domain of streptococcal protein G (GB1) is very popular since GB1 often improves the solubility of the target protein and because the first purification step using IgG affinity chromatography is simple and efficient. However, the following protease digest is not always complete or can result in a digest of the target protein. In addition, a further purification step such as RP-HPLC has to be used to get rid of the GB1 tag and undigested fusion protein. Because the protease digest and the following purification step are not only time-consuming but generally also expensive, we tested if GB1 fusion proteins can directly be used for NMR interaction studies using lipids or membrane-mimetics. Based on NMR binding studies using only the GB1 part, this fusion tag does not significantly interact with different membrane-mimetics such as micelles, bicelles, or liposomes. Thus spectral changes observed using GB1-fusion proteins indicate lipid- and membrane interactions of the target protein. The method was initially established to probe membrane interactions of a large number of mutants of the FATC domain of the ser/thr kinase TOR. To demonstrate the usefulness of the approach, we show NMR binding data for the wild type protein and a leucine to alanine mutant. 相似文献
14.
Viral capsids are composed of multiple copies of one or a few chemically distinct capsid proteins and are mostly stabilized by inter subunit protein-protein interactions. There have been efforts to identify and analyze these protein-protein interactions, in terms of their extent and similarity, between the subunit interfaces related by quasi- and icosahedral symmetry. Here, we describe a new method to map quaternary interactions in spherical virus capsids onto polar angle space with respect to the icosahedral symmetry axes using azimuthal orthographic diagrams. This approach enables one to map the nonredundant interactions in a spherical virus capsid, irrespective of its size or triangulation number (T), onto the reference icosahedral asymmetric unit space. The resultant diagrams represent characteristic fingerprints of quaternary interactions of the respective capsids. Hence, they can be used as road maps of the protein-protein interactions to visualize the distribution and the density of the interactions. In addition, unlike the previous studies, the fingerprints of different capsids, when represented in a matrix form, can be compared with one another to quantitatively evaluate the similarity (S-score) in the subunit environments and the associated protein-protein interactions. The S-score selectively distinguishes the similarity, or lack of it, in the locations of the quaternary interactions as opposed to other well-known structural similarity metrics (e.g., RMSD, TM-score). Application of this method on a subset of T = 1 and T = 3 capsids suggests that S-score values range between 1 and 0.6 for capsids that belong to the same virus family/genus; 0.6-0.3 for capsids from different families with the same T-number and similar subunit fold; and <0.3 for comparisons of the dissimilar capsids that display different quaternary architectures (T-numbers). Finally, the sequence conserved interface residues within a virus family, whose spatial locations were also conserved have been hypothesized as the essential residues for self-assembly of the member virus capsids. 相似文献
15.
Wrapping DNA into chromatin provides a wealth of regulatory mechanisms that ensure normal growth and development in eukaryotes. Our understanding of chromatin structure, including nucleosomes and non-histone protein-DNA interactions, has benefited immensely from nuclease and chemical digestion techniques. DNA-bound proteins, such as histones or site-specific factors, protect DNA against nuclease cleavage and generate large nucleosomal or small regulatory factor footprints. Chromatin subject to distinct modes of regulation often coincides with sites of nuclease hypersensitivity or nucleosome positioning. An inherent limitation of cleavage-based analyses has been the inability to reliably analyze regions of interest when levels of digestion depart from single-hit kinetics. Moreover, cleavage-based techniques provide views that are averaged over all the molecules in a sample population. Therefore, in cases of occupancy of multiple regulatory elements by factors, one cannot define whether the factors are bound to the same or different molecules in the population. The recent development of DNA methyltransferase-based, single-molecule MAP-IT technology overcomes limitations of ensemble approaches and has opened numerous new avenues in chromatin research. Here, we review the strengths, limitations, applications and future prospects of MAP-IT ranging from structural issues to mechanistic questions in eukaryotic chromatin regulation. 相似文献
16.
Protein-protein interfaces are regions between 2 polypeptide chains that are not covalently connected. Here, we have created a nonredundant interface data set generated from all 2-chain interfaces in the Protein Data Bank. This data set is unique, since it contains clusters of interfaces with similar shapes and spatial organization of chemical functional groups. The data set allows statistical investigation of similar interfaces, as well as the identification and analysis of the chemical forces that account for the protein-protein associations. Toward this goal, we have developed I2I-SiteEngine (Interface-to-Interface SiteEngine) [Data set available at http://bioinfo3d.cs.tau.ac.il/Interfaces; Web server: http://bioinfo3d.cs.tau.ac.il/I2I-SiteEngine]. The algorithm recognizes similarities between protein-protein binding surfaces. I2I-SiteEngine is independent of the sequence or the fold of the proteins that comprise the interfaces. In addition to geometry, the method takes into account both the backbone and the side-chain physicochemical properties of the interacting atom groups. Its high efficiency makes it suitable for large-scale database searches and classifications. Below, we briefly describe the I2I-SiteEngine method. We focus on the classification process and the obtained nonredundant protein-protein interface data set. In particular, we analyze the biological significance of the clusters and present examples which illustrate that given constellations of chemical groups in protein-protein binding sites may be preferred, and are observed in proteins with different structures and different functions. We expect that these would yield further information regarding the forces stabilizing protein-protein interactions. 相似文献
17.
Bleijlevens B Shivarattan T Flashman E Yang Y Simpson PJ Koivisto P Sedgwick B Schofield CJ Matthews SJ 《EMBO reports》2008,9(9):872-877
The 2-oxoglutarate (2OG)- and Fe(2+)-dependent dioxygenase AlkB couples the demethylation of modified DNA to the decarboxylation of 2OG. Extensive crystallographic analyses have shown no evidence of significant structural differences between complexes binding either 2OG or succinate. By using nuclear magnetic resonance spectroscopy, we have shown that the AlkB-succinate and AlkB-2OG complexes have significantly different dynamic properties in solution. 2OG makes the necessary contacts between the metal site and the large beta-sheet to maintain a fully folded conformation. Oxidative decarboxylation of 2OG to succinate leads to weakening of a main contact with the large beta-sheet, resulting in an enhanced dynamic state. These conformational fluctuations allow for the replacement of succinate in the central core of the protein and probably contribute to the effective release of unmethylated DNA. We also propose that the inherent dynamics of the co-product complex and the subsequent increased molecular ordering of the co-substrate complex have a role in DNA damage recognition. 相似文献
18.
Lowe SL Atkinson DM Waingeh VF Thomasson KA 《Journal of molecular recognition : JMR》2002,15(6):423-431
Previous Brownian dynamics (BD) simulations (Ouporov IG, Knull HR and Thomasson KA 1999. Biophys. J. 76: 17-27) of complex formation between rabbit aldolase and F-actin have identified three lysine residues (K288, K293 and K341) on aldolase and acidic residues (DEDE) at the N-terminus of actin as important to binding. BD simulations of computer models of aldolase mutants with any of these lysine residues replaced by alanine show reduced binding energy; the greatest effect of a single substitution is for K341A, and replacement of all three lysines greatly reduces binding. BD simulations of wild-type rabbit aldolase vs altered F-actin show that binding is decreased if any one of the four N-terminal acidic residues is replaced by alanine and binding is greatly reduced if three or more of the N-terminal acidic residues are replaced; none of the four actin residues appear more critical for binding than the others. 相似文献
19.
Previous Brownian dynamics (BD) simulations identified specific basic residues on fructose-1,6-bisphophate aldolase (aldolase) (I. V. Ouporov et al., Biophysical Journal, 1999, Vol. 76, pp. 17-27) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (I. V. Ouporov et al., Journal of Molecular Recognition, 2001, Vol. 14, pp. 29-41) involved in binding F-actin, and suggested that the quaternary structure of the enzymes may be important. Herein, BD simulations of F-actin binding by enzyme dimers or peptides matching particular sequences of the enzyme and the intact enzyme triose phosphate isomerase (TIM) are compared. BD confirms the experimental observation that TIM has little affinity for F-actin. For aldolase, the critical residues identified by BD are found in surface grooves, formed by subunits A/D and B/C, where they face like residues of the neighboring subunit enhancing their electrostatic potentials. BD simulations between F-actin and aldolase A/D dimers give results similar to the native tetramer. Aldolase A/B dimers form complexes involving residues that are buried in the native structure and are energetically weaker; these results support the importance of quaternary structure for aldolase. GAPDH, however, placed the critical residues on the corners of the tetramer so there is no enhancement of the electrostatic potential between the subunits. Simulations using GAPDH dimers composed of either S/H or G/H subunits show reduced binding energetics compared to the tetramer, but for both dimers, the sets of residues involved in binding are similar to those found for the native tetramer. BD simulations using either aldolase or GAPDH peptides that bind F-actin experimentally show complex formation. The GAPDH peptide bound to the same F-actin domain as did the intact tetramer; however, unlike the tetramer, the aldolase peptide lacked specificity for binding a single F-actin domain. 相似文献
20.
We present version 3.0 of our publicly available protein-protein docking benchmark. This update includes 40 new test cases, representing a 48% increase from Benchmark 2.0. For all of the new cases, the crystal structures of both binding partners are available. As with Benchmark 2.0, Structural Classification of Proteins (Murzin et al., J Mol Biol 1995;247:536-540) was used to remove redundant test cases. The 124 unbound-unbound test cases in Benchmark 3.0 are classified into 88 rigid-body cases, 19 medium-difficulty cases, and 17 difficult cases, based on the degree of conformational change at the interface upon complex formation. In addition to providing the community with more test cases for evaluating docking methods, the expansion of Benchmark 3.0 will facilitate the development of new algorithms that require a large number of training examples. Benchmark 3.0 is available to the public at http://zlab.bu.edu/benchmark. 相似文献