首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Exopolysaccharides were isolated and purified from Lactobacillus johnsonii FI9785, which has previously been shown to act as a competitive exclusion agent to control Clostridium perfringens in poultry. Structural analysis by NMR spectroscopy revealed that L. johnsonii FI9785 can produce two types of exopolysaccharide: EPS-1 is a branched dextran with the unusual feature that every backbone residue is substituted with a 2-linked glucose unit, and EPS-2 was shown to have a repeating unit with the following structure: -6)-α-Glcp-(1–3)-β-Glcp-(1–5)-β-Galf-(1–6)-α-Glcp-(1–4)-β-Galp-(1–4)-β-Glcp-(1-. Sites on both polysaccharides were partially occupied by substituent groups: 1-phosphoglycerol and O-acetyl groups in EPS-1 and a single O-acetyl group in EPS-2. Analysis of a deletion mutant (ΔepsE) lacking the putative priming glycosyltransferase gene located within a predicted eps gene cluster revealed that the mutant could produce EPS-1 but not EPS-2, indicating that epsE is essential for the biosynthesis of EPS-2. Atomic force microscopy confirmed the localization of galactose residues on the exterior of wild type cells and their absence in the ΔepsE mutant. EPS2 was found to adopt a random coil structural conformation. Deletion of the entire 14-kb eps cluster resulted in an acapsular mutant phenotype that was not able to produce either EPS-2 or EPS-1. Alterations in the cell surface properties of the EPS-specific mutants were demonstrated by differences in binding of an anti-wild type L. johnsonii antibody. These findings provide insights into the biosynthesis and structures of novel exopolysaccharides produced by L. johnsonii FI9785, which are likely to play an important role in biofilm formation, protection against harsh environment of the gut, and colonization of the host.  相似文献   

2.
Lactobacillus johnsonii is a member of the acidophilus group of lactobacilli. Because of their probiotic properties, including attachment to epithelial cells, immunomodulation, and competitive exclusion of pathogens, representatives of this group are being intensively studied. Here we report the complete annotated genome sequence of Lactobacillus johnsonii FI9785, a strain which prevents the colonization of specific-pathogen-free chicks by Clostridium perfringens.The competitive exclusion law formulated by Gause (5) states that two species that compete for the exact same resources cannot stably coexist. In recent times, the exploitation of this concept has gained renewed interest in the agricultural sector. Modern animal production methods rely on stringent hygiene measures, vaccination, and until recently the use of antimicrobial agents in order to control pathogens. A new regulation (1831/2003/EC) preventing the regular use of antibiotic growth promoters previously frequently included in feeds has led to an increase in the occurrence of endemic diseases. Clostridium perfringens, which causes necrotic enteritis in poultry, has emerged as one of the beneficiaries of this policy change (16). Lactobacillus johnsonii FI9785 has been shown to reduce the extent to which C. perfringens colonizes and persists in specific-pathogen-free chicks (8). In order to interrogate the genome sequence with regard to the strain''s exclusion properties and to enable the use of “omics”-type techniques for further analyses of these properties, the complete genome sequence of this strain was determined using 454 pyrosequencing technology (454 Life Sciences, Branford, CT).The initial draft assembly provided by 454 Life Sciences was based on 708,584 pyrosequencing reads with an average read length of 108 nucleotides which assembled into 45 contigs. The genome sequence of L. johnsonii NCC533 (12) was used to order these contigs into large scaffolds. Standard PCR followed by primer walk sequencing on the resulting products was used to close the gaps in combination with inverse PCR for gaps for which no linkage information could be obtained. In the case of one large gap (10 kb), an integration/rescue cloning strategy, followed by transposon-assisted sequencing of the rescued fragment, was used to close the respective gap. Sequence assembly was carried out using the Phred/Phrap (4) software program in conjunction with the Staden software package (14). The predicted error rate of the finished sequence is 1 × 10−6.The finished L. johnsonii FI9785 sequence was annotated using the GenDB 2.2 annotation tool (11). Open reading frame (ORF) sequences were determined using the REGANOR5 software program (10), based on the combined ORF predictions of CRITICA (2) and Glimmer (13). Putative ribosomal binding sites and tRNA genes were identified using the RBSfinder (15) and tRNAscan-SE (9) software programs, respectively. An automatic functional annotation was computed based on different analyses, followed by a manual annotation of each predicted gene. Eighteen similarity searches (1) were performed against different databases, including the nonredundant database provided by National Center for Biotechnology Information, SWISS-PROT and TrEMBL, KEGG, Pfam, TIGRFAM, and InterPro. Additionally, SignalP (3), helix-turn-helix, and TMHMM (7) were applied. Predicted ORFs were manually reviewed, and alterations were made on the basis of the presence of potential ribosomal binding sites, sequence alignments, and available literature data. The L. johnsonii FI9785 genome is composed of one circular chromosome of 1,755,993 bp with a GC content of 34.49% and two circular plasmids, p9785S (3,471 bp) (6) and p9785L (25,652 bp), with GC contents of 35.81% and 30.38%, respectively. A total of 1,710 ORFs were identified on the chromosome, of which the majority (77.6%) are encoded on the leading strand of chromosome replication. The small and large plasmids carry 3 and 25 ORFs, respectively. The chromosome contains 4 rRNA gene operons and 53 tRNA genes, as well as 1 complete prophage genome.  相似文献   

3.

Background

The bacterial cell surface is a crucial factor in cell-cell and cell-host interactions. Lactobacillus johnsonii FI9785 produces an exopolysaccharide (EPS) layer whose quantity and composition is altered in mutants that harbour genetic changes in their eps gene clusters. We have assessed the effect of changes in EPS production on cell surface characteristics that may affect the ability of L. johnsonii to colonise the poultry host and exclude pathogens.

Results

Analysis of physicochemical cell surface characteristics reflected by Zeta potential and adhesion to hexadecane showed that an increase in EPS gave a less negative, more hydrophilic surface and reduced autoaggregation. Autoaggregation was significantly higher in mutants that have reduced EPS, indicating that EPS can mask surface structures responsible for cell-cell interactions. EPS also affected biofilm formation, but here the quantity of EPS produced was not the only determinant. A reduction in EPS production increased bacterial adhesion to chicken gut explants, but made the bacteria less able to survive some stresses.

Conclusions

This study showed that manipulation of EPS production in L. johnsonii FI9785 can affect properties which may improve its performance as a competitive exclusion agent, but that positive changes in adhesion may be compromised by a reduction in the ability to survive stress.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-015-0347-2) contains supplementary material, which is available to authorized users.  相似文献   

4.
AIMS: To test the efficacy of Lactobacillus johnsonii FI9785 in reducing the colonization and shedding of Salmonella enterica serotype Enteritidis, Escherichia coli O78:K80 and Clostridium perfringens in poultry. METHODS AND RESULTS: Specific pathogen-free chicks (1 day old) were dosed with a single oral inoculum of 1x10(9) CFU. Lactobacillus johnsonii FI9785 and 24 h later were challenged in separate experiments with S. Enteritidis (S1400, nalr) and E. coli O78:K80 (EC34195, nalr). There were no significant effects against S. Enteritidis whereas colonization of the small intestine by E. coli O78:K80 was reduced significantly. Both S. Enteritidis and E. coli colonized the caeca and colon to levels equivalent to control birds and there was no reduction in shedding as assessed by a semi-quantitative cloacal swabbing technique. Specific pathogen-free chicks (20 day old) were dosed with a single oral inoculum of 1x10(9) CFU L. johnsonii FI9785 and 24 h later were challenged with C. perfringens. A single oral dose of L. johnsonii FI9785 was sufficient to suppress all aspects of colonization and persistence of C. perfringens. CONCLUSIONS: Lactobacillus johnsonii FI9785 may be given to poultry for use as a competitive exclusion agent to control C. perfringens. SIGNIFICANCE AND IMPACT OF THE STUDY: Lactobacillus johnsonii FI9785 may be a valuable tool to control the endemic disease of necrotic enteritis, thereby reducing economic losses associated with reduced use of antimicrobials in the poultry industry.  相似文献   

5.
We have identified and sequenced the genes encoding the aggregation-promoting factor (APF) protein from six different strains of Lactobacillus johnsonii and Lactobacillus gasseri. Both species harbor two apf genes, apf1 and apf2, which are in the same orientation and encode proteins of 257 to 326 amino acids. Multiple alignments of the deduced amino acid sequences of these apf genes demonstrate a very strong sequence conservation of all of the genes with the exception of their central regions. Northern blot analysis showed that both genes are transcribed, reaching their maximum expression during the exponential phase. Primer extension analysis revealed that apf1 and apf2 harbor a putative promoter sequence that is conserved in all of the genes. Western blot analysis of the LiCl cell extracts showed that APF proteins are located on the cell surface. Intact cells of L. johnsonii revealed the typical cell wall architecture of S-layer-carrying gram-positive eubacteria, which could be selectively removed with LiCl treatment. In addition, the amino acid composition, physical properties, and genetic organization were found to be quite similar to those of S-layer proteins. These results suggest that APF is a novel surface protein of the Lactobacillus acidophilus B-homology group which might belong to an S-layer-like family.  相似文献   

6.
The cell-envelope proteinase from Lactobacillus helveticus CRL 1062 was detected in the cell membrane fraction. The enzyme remained associated with the cells even after treatment with lysozyme and was not released from washed cells in absence of calcium. The proteinase was maximally active at pH 6.5–7.0 and 42°C and hydrolysed - and -caseins at different rates. Activity was inhibited (98%) by 1 mM PMSF, suggesting it was a serine-type protease.  相似文献   

7.
A plasmid from Lactobacillus sakei YSI8, designated as pYSI8, was sequenced and characterized. It consisted of a 4973 bp circular molecule with a G + C content of 35.6%. The plasmid pYSI8 was predicted to contain five putative ORFs, in which ORF1 shared 79% and 76% identity with Rep proteins of pLH2 and pLC2, members of rolling-circle replication (RCR) pMV158 family. Detection of single-stranded DNA (ssDNA) intermediates by Southern hybridization and mung bean nuclease treatment confirmed that pYSI8 replicated via the RCR mechanism. Accumulation of ssDNA in rifampicin-treated strains implied that the host-encoded RNA polymerase was involved in the conversion of ssDNA to double-stranded DNA (dsDNA). Furthermore, the copy number of pYSI8 was estimated to be 41.9 ± 0.5 in each cell by real-time polymerase chain reaction.  相似文献   

8.
Characterization of a cryptic plasmid from Lactobacillus plantarum   总被引:11,自引:0,他引:11  
E E Bates  H J Gilbert 《Gene》1989,85(1):253-258
  相似文献   

9.
In Lactobacillus johnsonii strain NCC533, two prophages were integrated into tRNA genes and one was disrupted by integration. In a survey, the prophages were restricted to strains sharing an essentially identical restriction pattern. Microarray analysis showed that the prophage DNA represents about 50% of the NCC533 strain-specific DNA.  相似文献   

10.
11.
12.
13.
14.
Lee JH  Chae JP  Lee JY  Lim JS  Kim GB  Ham JS  Chun J  Kang DK 《Journal of bacteriology》2011,193(18):5030-5031
Lactobacillus johnsonii PF01, an autochthonous bacterium of the gastrointestinal tract, was isolated from a fecal sample from a piglet. The strain adhered specifically to the duodenal and jejunal epithelial cells of the piglet and had high bile resistance activity. Here we report the genomic sequence of L. johnsonii PF01.  相似文献   

15.
Corynebacterium tuberculostearicum B146, a strain derived from healthy human skin, contains a medium copy plasmid, p1B146. This plasmid was cloned and its complete nucleotide sequence determined. As a result, p1B146 was found to be 4.2 kb in size with a 53% G+C content, plus six open reading frames (ORFs) were distinguished. According to a computer-assisted alignment, two of the ORFs exhibited significant similarities to already-known common plasmid proteins, the first being the RepA gene, responsible for plasmid replication via a rolling-circle mechanism, and the second being an FtsK-like protein, the function of which remains unclear. The presence and quantity of RNA fragments in the putative ORFs were also evaluated.  相似文献   

16.
Two plasmids, pLAB1000 and pLAB2000 (3.3 and 9.1 kb, respectively), have been isolated from a grass silage strain of Lactobacillus hilgardii. Both plasmids were cloned in Escherichia coli and characterized through restriction mapping. A 1.6-kb XbaI-SacI fragment of pLAB1000 appeared to be sufficient for autonomous replication in Lactobacillus plantarum and in Bacillus subtilis. Different shuttle vectors for E. coli and gram-positive bacteria were developed using the pLAB1000 plasmid. These could stably be maintained in Lactobacillus, Enterococcus, and Bacillus under selective conditions. Plasmids sharing DNA homologies with pLAB1000 have been observed in different strains of the related species L. plantarum.  相似文献   

17.
Characterisation of a novel amylosucrase from Deinococcus radiodurans   总被引:2,自引:0,他引:2  
The BLAST search for amylosucrases has yielded several gene sequences of putative amylosucrases, however, with various questionable annotations. The putative encoded proteins share 32-48% identity with Neisseria polysaccharea amylosucrase (AS) and contain several amino acid residues proposed to be involved in AS specificity. First, the B-domains of the putative proteins and AS are highly similar. In addition, they also reveal additional residues between putative beta-strand 7 and alpha-helix 7 which could correspond to the AS B'-domain, which turns the active site into a deep pocket. Finally, conserved Asp and Arg residues could form a salt bridge similar to that found in AS, which is responsible for the glucosyl unit transfer specificity. Among these found genes, locus NP_294657.1 (dras) identified in the Deinococcus radiodurans genome was initially annotated as an alpha-amylase encoding gene. The putative encoded protein (DRAS) shares 42% identity with N. polysaccharea AS. To investigate the activity of this protein, gene NP_294657.1 was cloned and expressed in Escherichia coli. When acting on sucrose, the pure recombinant enzyme was shown to catalyse insoluble amylose polymer synthesis accompanied by side-reactions (sucrose hydrolysis, sucrose isomer and soluble maltooligosaccharide formation). Kinetic analyses further showed that DRAS follows a non-Michaelian behaviour toward sucrose substrate and is activated by glycogen, as is AS. This demonstrates that gene NP_294657.1 encodes an amylosucrase.  相似文献   

18.
ABSTRACT: BACKGROUND: The intestinal microbiota, composed of complex bacterial populations, is host-specific and affected by environmental factors as well as host genetics. One important bacterial group is the lactic acid bacteria (LAB), which include many health-promoting strains. Here, we studied the genetic variation within a potentially probiotic LAB species, Lactobacillus johnsonii, isolated from various hosts. RESULTS: A wide survey of 104 fecal samples was carried out for the isolation of L. johnsonii. As part of the isolation procedure, terminal restriction fragment length polymorphism (tRFLP) was performed to identify L. johnsonii within a selected narrow spectrum of fecal LAB. The tRFLP results showed host specificity of two bacterial species, the Enterococcus faecium species cluster and Lactobacillus intestinalis, to different host taxonomic groups while the appearance of L. johnsonii and E. faecalis was not correlated with any taxonomic group. The survey ultimately resulted in the isolation of L. johnsonii from few host species The genetic variation among the 47 L. johnsonii strains isolated from the various hosts was analyzed based on variation at simple sequence repeats (SSR) loci and multi-locus sequence typing (MLST) of conserved hypothetical genes. The genetic relationships among the strains inferred by each of the methods were similar, revealing three different clusters of L. johnsonii strains, each cluster consisting of strains from a different host, i.e., chickens, humans or mice. CONCLUSIONS: Our typing results support phylogenetic separation of L. johnsonii strains isolated from different animal hosts, suggesting specificity of L. johnsonii strains to their hosts. Taken together with the tRFLP results, that indicated the association of specific LAB species with the host taxonomy, our study supports co-evolution of the host and its intestinal lactic acid bacteria.  相似文献   

19.
20.
Pan Q  Zhang L  Li J  Chen T  Chen W  Wang G  Yin J 《Plasmid》2011,65(3):204-209
A cryptic plasmid of Lactobacillus plantarum PC518 isolated from Chinese pickle, designated pLP18, was sequenced and characterized. It is a 1806-bp circular molecule with a G+C content of 37.5%. Sequence analysis of pLP18 revealed three putative open reading frames (ORFs), in which ORF1 contained conserved motifs of pMV158-family Rep proteins and showed 60% similarity with the Rep protein of pPSC22, a member of rolling-circle replication (RCR) pMV158 family. The double strand origin (dso) of pMV158 family and the single strand origin A (ssoA) located upstream of the rep gene. The putative cop and rnaII genes were predicted to be regulatory genes controlling copy number of pLP18. The results of Southern hybridization suggested that pLP18 replicate via the RCR mechanism. Furthermore, the relative copy number of pLP18 was estimated to be about 24 copies per chromosome equivalent by quantitative PCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号