首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Two distinct vitellogenins (VTG) were purified from the blood of estradiol-17beta (E(2))-injected tilapia, Oreochromis mossambicus. Enzyme-linked immunosorbent assays (ELISA) of each VTG were developed to examine effects of E(2) treatment on induction of VTG synthesis in the primarily cultured tilapia hepatocytes. Two VTG molecules (VTG210 and VTG140) had apparent molecular masses of 370 and 220 kDa by gel filtration and 210 and 140 kDa by SDS-PAGE, respectively. Western blot analyses showed that antibodies raised against the purified VTG210 and VTG140 reacted only with each protein band. Furthermore, ELISA for each VTG was specific for target VTG. When E(2) was added into the media of primarily cultured tilapia hepatocytes, VTG210 and VTG140 were both detected from E(2) concentrations of 1x10(-7) M and 5x10(-7) M, respectively. Time course experiments showed that there was a difference in the detection time of VTG210 and VTG140 after the hormone treatment. Although the injection of different E(2) doses induced both VTGs in the plasma of male tilapia, the concentration of VTG210 was nearly five to eight times higher than that of VTG140. These results suggest that E(2) is a direct inducer of both VTGs in the tilapia hepatocytes in vitro and in vivo, and that there is difference in the hormone response in inducing the VTGs in the tilapia hepatocytes.  相似文献   

2.
Blue crab vitellogenin (VTG) cDNA encodes a precursor that, together with two other Brachyuran VTGs, forms a distinctive cluster within a phylogenetic tree of crustacean VTGs. Using quantitative RT-PCR, we found that VTG was primarily expressed in the hepatopancreas of a vitellogenic female, with minor expression in the ovary. VTG expression in the hepatopancreas correlated with ovarian growth, with a remarkable 8000-fold increase in expression from stage 3 to 4 of ovarian development. In contrast, the VTG levels in the hepatopancreas and hemolymph decreased in stage 4. Western blot analysis and N-terminal sequencing revealed that vitellin is composed of three subunits of approximately 78.5 kDa, 119.42 kDa, and 87.9 kDa. The processing pathway for VTG includes an initial hepatopancreatic cleavage of the primary precursor into approximately 78.5-kDa and 207.3-kDa subunits, both of which are found in the hemolymph. A second cleavage in the ovary splits the approximately 207.3-kDa subunit into approximately 119.4-kDa and approximately 87.9-kDa subunits. The hemolymph VTG profiles of mated and unmated females during ovarian development indicate that early vitellogenesis and ovarian development do not require mating, which may be essential for later stages, as VTG decreased to the basal level at stage 4 in the unmated group but remained high in the mated females. Our results encompass comprehensive overall temporal and spatial aspects of vitellogenesis, which may reflect the reproductive physiology of the female blue crab, e.g., single mating and anecdysis in adulthood.  相似文献   

3.
建立稳定分泌抗人Y盒结合蛋白1单克隆抗体(anti-YB-1 mAb)的杂交瘤细胞株,鉴定其表位与免疫学应用。将重组YB-1蛋白免疫BALB/c小鼠,取脾细胞与Sp2/0骨髓瘤细胞融合。经ELISA法筛选鉴定、定株后采用腹水诱生法制备anti-YB-1 mAb;Protein G亲和层析法纯化mAb,ELISA法测定mAb效价、亚型及相对亲和力。采用抗原表位预测法鉴定anti-YB-1 mAb识别表位所在区域。Western blot和免疫组化鉴定mAb识别内源性YB-1的特异性。经筛选鉴定获得2株稳定分泌anti-YB-1 mAb的杂交瘤细胞(1-D9,3-E8);腹水抗体效价均≥1×10-6,亚型均为IgGl;1-D9和3-E8单抗识别表位分别位于(134-160aa)与(266-303aa)肽段。Western blot、免疫组化结果证实anti-YB-1 mAb能特异性识别内源性YB-1。该研究为YB-1免疫学定性、定量检测方法的建立、肿瘤靶向抗体治疗及进一步探讨YB-1的生物学功能奠定了基础。  相似文献   

4.
The envelope fusion protein F of baculoviruses is a class I viral fusion protein which play a significant role during virus entry into insect cells. F is initially synthesized as a precursor(F_0) and then cleaved into a disulfide-linked F_1 and F_2 subunits during the process of protein maturation and secretion. To facilitate further investigation into the structure and function of F protein during virus infection, monoclonal antibodies(mAbs) against the F_2 subunit of Helicoverpa armigera nucleopolyhedrovirus(HearNPV)(Ha F) were generated. Two kinds of mAbs were obtained according to their different recognition epitopes: one kind of mAbs, as represented by 38F10,recognizes amino acid(aa) 85 to 123 of F_2 and the other kind, represented by 44D11, recognizes aa148 to 173 of F_2. Western blot and immunofluorescence assay confirmed that both of the mAbs recognized the F protein expressed in HearNPV infected cells, however, only 44D11 could neutralize HearNPV infection. The results further showed that 44D11 may not interact with a receptor binding epitope, rather it was demonstrated to inhibit syncytium formation in cells expressing the Ha F protein. The results imply that the monoclonal antibody 44D11 recognizes a region within HaF_2 that may be involved in the F-mediated membrane fusion process.  相似文献   

5.
The localization of opsonic and tissue-cross-reactive epitopes within the amino terminus of type 1 streptococcal M protein was investigated by using murine mAb raised against synthetic peptides of type 1 M protein. Two mAb (IIIA2 and IIIB8) reacted with epitopes located within amino acid residues 1-12 of type 1 M protein. These antibodies opsonized type 1 streptococci and did not cross-react with human kidney and heart tissue. Another mAb (IC7) reacted with mesangial cells of renal glomeruli and human myocardium. The cross-reactive epitope of mAb IC7 was localized to position 13-19, indicating that it is not the same epitope as the previously described vimentin-cross-reactive epitope at position 23-26 of type 1 M protein. In Western blots of mesangial cell and myocardial proteins, mAb IC7 cross-reacted with a 43-kDa protein. Neither vimentin nor actin inhibited the binding of mAb IC7 to the cross-reactive protein, as determined by Western blot or immunofluorescence inhibition tests. These results provide evidence that type 1 M protein contains at least one autoimmune epitope shared with both human glomeruli and myocardium.  相似文献   

6.
Apolipoprotein D (apoD), a 169 amino acid member of the lipocalin family, is thought to be a transporter of small, hydrophobic ligands. A panel of 10 anti-apoD monoclonal antibodies (mAbs) was prepared and characterized in order to define apoD structure-function relationships. An apoD epitope map was constructed based on reactivity of the mAbs with apoD fragments. Three mAbs react with epitopes between apoD residues 7-78, seven mAbs with epitopes between residues 128-169, one mAb recognizes an epitope that straddles residues 99-102 and one mAb is specific for an epitope composed of non-contiguous apoD residues. Several pairs of mAbs whose respective epitopes are widely separated in apoD primary structure can compete for binding to immobilized apoD. This would be consistent with the compact beta-barrel tertiary structure that apoD is thought to adopt. None of the mAbs block the interaction of apoD with pregnenolone, a putative physiological ligand for apoD.  相似文献   

7.
Multidrug resistance in tumor cells is often accompanied by overexpression of multidrug resistance protein (MRP), a 190-kDa transmembrane protein that belongs to the ATP-binding cassette superfamily of transport proteins. MRP mediates ATP-dependent transport of a variety of conjugated organic anions and can also transport several unmodified xenobiotics in a glutathione-dependent manner. To facilitate structure-function studies of MRP, we have generated a panel of MRP-specific monoclonal antibodies (mAbs). Four of these mAbs, QCRL-2, -3, -4, and -6, bind intracellular conformation-dependent epitopes, and we have shown that they can inhibit the transport of several MRP substrates. Binding competition and immunoprecipitation assays indicated that mAbs QCRL-4 and -6 probably recognize the same detergent-sensitive epitope in MRP, whereas mAbs QCRL-2, -3, and -4 each bind distinct, non-overlapping epitopes. Fab fragments inhibit transport as effectively as the intact mAbs, suggesting that inhibition results from direct interactions of the mAbs with MRP. Immunodot blot and immunoprecipitation analyses revealed that the minimal regions of MRP sufficient for full reactivity of mAbs QCRL-2 and -3 are amino acids 617-858 and 617-932, respectively, which encompass the NH2-proximal nucleotide-binding domain (NBD). In contrast, the epitope bound by mAb QCRL-4 localized to amino acids 1294-1531, a region that contains the COOH-proximal NBD. However, none of the mAbs inhibited photolabeling of intact MRP with 8-azido-[alpha-32P]ATP. This suggests that rather than preventing nucleotide binding, the mAbs inhibit transport by interfering with substrate binding or by trapping MRP in a conformation that does not allow transport to occur. Our results also demonstrate for the first time that the NBDs of MRP can be expressed as soluble polypeptides that retain a native conformation.  相似文献   

8.
From early development through adulthood in the leech, sensory afferents, glial cells, and connective tissue express different epitopes located on a group of 130-kDa glycoproteins. The sensory epitope [reactive with monoclonal antibody (mAb) Lan3-2] is shared by the peripheral sensory afferents of different sensory modalities. In contrast, three other immunocytochemically distinct epitopes (reactive with mAbs Laz2-369, Laz7-79, and Laz6-212) differentiate these sensory afferents according to their sensory modalities. The glial epitope (mAb Laz6-297) is expressed on all macroglial processes, and the connective tissue epitope (mAb Laz9-84) is located on connective tissue surrounding the CNS, as well as in the peripheral tissues. The hydrophilic-hydrophobic nature of the 130-kDa sensory afferent and glial proteins was determined by phase separation with Triton X-114 and hypoosmotic extraction. They behave as peripheral membrane proteins. Deglycosylation of 130-kDa glycoproteins with N-Glycanase or preincubation of their respective mAbs with alpha-methylmannoside showed that the sensory epitope contains mannose, whereas the modality epitopes are of an undefined carbohydrate character. Immunoprecipitation and a peptide mapping experiment confirmed the existence of four distinct sensory afferent epitopes. Previous studies provided evidence that the mannose-containing Lan3-2 epitope mediates normal sensory afferent growth in the synaptic neuropile. We, therefore, postulate that the carbohydrate epitopes on sensory afferent glycoproteins participate in synapse formation.  相似文献   

9.
Several monoclonal antibodies (mAbs) and novel mAb-based assays for the androgen receptors (AR) have been developed. Large amounts of the recombinant human AR protein produced by a baculovirus expression system were used as an antigen to produce mAbs. Twenty-nine AR-specific mAbs were first confirmed by Western blot analysis and were then characterized for their immunoglobulin isotypes, epitopes, and epitope localization in AR. Novel assays using flow cytometry and sandwich enzyme-linked immunosorbent assays (ELISA) were established to detect AR-expressing cells and to quantify soluble AR protein, respectively. Using immunostaining, we identified several anti-AR mAbs exclusively recognizing AR within the nuclei of the prostate cancer cell line LNCaP and of prostate tissues in both frozen and paraffin-embedded sections, whereas other mAbs could detect AR in both nuclear and cytoplasmic compartments. Interestingly, certain mAbs, such as G122-25 and G122-77, could distinguish the androgen-bound AR from the unoccupied AR. In sum, many purified AR protein and anti-AR mAbs, together with the assays developed, could be powerful tools for the study of functional AR and for the diagnosis of prostatic cancers.  相似文献   

10.
Avian genomes typically encode three distinct vitellogenin (VTG) egg yolk proteins (VTG1, VTG2 and VTG3), which arose by gene duplication prior to the most recent common ancestor of birds. Analysis of VTG sequences from 34 avian species in a phylogenetic framework supported the hypothesis that VTG amino acid composition has co-evolved with embryo incubation time. Embryo incubation time was positively correlated with the proportions of dietary essential amino acids (EAAs) in VTG1 and VTG2, and with the proportion of sulfur-containing amino acids in VTG3. These patterns were seen even when only semi-altricial and/or altricial species were considered, suggesting that the duration of embryo incubation is a major selective factor on the amino acid composition of VTGs, rather than developmental mode alone. The results are consistent with the hypothesis that the level of EAAs provided to the egg represents an adaptation to the loss of amino acids through breakdown over the course of incubation and imply that life-history phenotypes and VTG amino acid composition have co-evolved throughout the evolutionary history of birds.  相似文献   

11.
Angiotensin I-converting enzyme (ACE, peptidyl dipeptidase, EC 3.4.15.2) is a key enzyme in cardiovascular pathophysiology. A wide spectrum of monoclonal antibodies to different epitopes on the N and C domains of human ACE has been used to study different aspects of ACE biology. In this study we characterized the monoclonal antibody (mAb) 5F1, developed against the N domain of human ACE, which recognizes both the catalytically active and the denatured forms of ACE. The epitope for mAb 5F1 was defined using species cross-reactivity, synthetic peptide (PepScan technology) and phage display library screening, Western blotting, site-directed mutagenesis, and protein modeling. The epitope for mAb 5F1 shows no overlap with the epitopes of seven other mAbs to the N domain described previously and is localized on the other side of the N domain globule. The binding of mAb 5F1 to ACE is carbohydrate-dependent and increased significantly as a result of altered glycosylation after treatment with alpha-glucosidase-1 inhibitor, N-butyldeoxynojirimycin (NB-DNJ), or neuraminidase. Out of 17 species tested, mAb 5F1 showed strict primate ACE specificity. In addition, mAb 5F1 recognized human ACE in Western blots and on paraffin-embedded sections. The sequential part of the epitope for mAb 5F1 is created by the N-terminal part of the N domain, between residues 1 and 141. A conformational region of the epitope was also identified, including the residues around the glycan attached to Asn117, which explains the sensitivity to changes in glycosylation state, and another stretch localized around the motif 454TPPSRYN460. Site-directed mutagensis and inhibition assays revealed that mAb 5F1 inhibits ACE activity at high concentrations due to binding of residues on both sides of the active site cleft, thus supporting a hinge-bending mechanism for substrate binding of ACE.  相似文献   

12.
Abstract Filamentous hemagglutinin (FHA), a 220-kDa protein located on the surface of Bordetella pertussis , is one of the major cell adhesins of this bacterium. We have produced three hybridoma cell lines that express monoclonal antibodies (mAbs) against FHA: X3C, X3E and X4B. The anti-FHA mAbs X3C and X3E reacted with 220-kDa FHA protein bands on Western blots. The mAb X4B, which reacted with FHA in ELISA, did not bind to FHA in a Western blot assay. All three mAbs seemed to be directed to the same epitope or to epitopes in close proximity as suggested by competition ELISAs. All three mAbs were able to inhibit the adherence of Chinese hamster ovary cells to purified FHA, and they could also inhibit the FHA-mediated agglutination of goose red blood cells. The attachment of B. pertussis to epithelial cell monolayers was inhibited by the mAb X3C. These antibodies are very useful probes to identify the presence of FHA in bordetellae species and in clinical reagents such as pertussis vaccines, and to characterize the functional domains of this important bacterial adhesin.  相似文献   

13.
We have developed a monoclonal antibody, designated PR7212 (IgG1), which specifically recognizes the platelet-derived growth factor receptor (PDGFR) of primate cells. The antibody recognizes an extracellular epitope of the receptor, demonstrated by its ability to bind to intact cells. Using this antibody, we have detected three forms of PDGFR of approximately 180, 164, and 130 kDa. All three of the forms were detected by Western blot analysis of human dermal fibroblasts. Immunoprecipitates of 32P-labeled membrane extracts of human dermal fibroblasts demonstrate that phosphorylation of all three forms of the receptor is stimulated by PDGF. In addition, several smaller molecules were detected, ranging in size from 113 to 49 kDa, which are also phosphorylated in response to PDGF addition. These smaller molecules may be either PDGFR kinase substrates or partially degraded PDGFR. Only the 180- and the 164-kDa forms of the receptor are detectable from immunoprecipitates of soluble extracts of 35S-metabolically labeled cells. Pulse-chase experiments demonstrate that the 164-kDa form is a precursor of the 180-kDa molecule. After PDGF binding at 37 degrees C, the 180-kDa form disappears from the cell surface in parallel with a decrease in 125I-PDGF binding, providing evidence that occupation results in internalization of PDGFR rather than inactivation.  相似文献   

14.
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) is a member of the genus Arterivirus within the family Arteriviridae. N and GP3 proteins are the immunodominance regions of the PRRSV viral proteins. To identify the B-cell linear antigenic epitopes within HP-PRRSV N and GP3 proteins, two monoclonal antibodies (mAbs) against N and GP3 proteins were generated and characterized, designated as 3D7 and 1F10 respectively. The mAb 3D7 recognized only HuN4-F112 not the corresponding virulent strain (HuN4-F5). It also recognized two other commercial vaccines (JXA1-R and TJM-F92), but not two other HP-PRRSV strains (HNZJJ-F1 and HLJMZ-F2). The B-cell epitope recognized by the mAb 3D7 was localized to N protein amino acids 7–33. Western blot showed that the only difference amino acid between HuN4-F112-N and HuN4-F5-N did not change the mAb 3D7 recognization to N protein. The epitope targeted by the mAb 1F10 was mapped by truncated proteins. We found a new epitope (68-76aa) can be recognized by the mAb. However, the epitope could not be recognized by the positive sera, suggesting the epitope could not induce antibody in pigs. These results should extend our understanding of the antigenic structure of the N protein and antigen-antibody reactions of the GP3 protein in different species.  相似文献   

15.
The P2 outer membrane protein of Haemophilus influenzae belongs to a class of apparently ubiquitous proteins in Gram-negative bacteria that function as porins. Murine hybridomas raised to the P2 protein and synthetic peptides were used to investigate the structural and antigenic relationships among P2 proteins of encapsulated and non-encapsulated H. influenzae. Three monoclonal antibodies (mAbs), P2-17, P2-18 and P2-19, recognizing epitopes on the P2 protein, as shown by Western immunoblotting of outer membrane preparations, and purified and recombinant P2 proteins are described. The epitopes reactive with the mAbs were widely distributed among H. influenzae strains since 70-100% of strains of encapsulated and non-encapsulated isolates collected worldwide were recognized by individual mAbs. None of the mAbs reacted with H. parainfluenzae or other bacterial species. The peptide composition of P2 epitopes was determined by analysis of mAb reactivity with a series of overlapping synthetic peptides that covered the amino acid sequences of H. influenzae type b. The domains recognized by these mAbs were completely distinct. mAb P2-18, reactive with an epitope conserved among all H. influenzae P2 porin molecules which were screened, recognized a peptide corresponding to the N-terminal segment (residues 1-14). The P2-17- and P2-19-specific epitopes were located between residues 28 and 55, and 101 and 129, respectively. None of the epitopes were exposed on the cell surface since no mAbs bound to intact live bacteria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Recombinant human transcobalamin (TC) was probed with 17 monoclonal antibodies (mAbs), using surface plasmon resonance measurements. These experiments identified five distinct epitope clusters on the surface of holo-TC. Western blot analysis of the CNBr cleavage fragments of TC allowed us to distribute the epitopes between two regions, which spanned either the second quarter of the TC sequence GQLA...TAAM(103-198) or the C-terminal peptide LEPA...LVSW(316-427). Proteolytic fragments of TC and the synthetic peptides were used to further specify the epitope map and define the functional domains of TC. Only one antibody showed some interference with cobalamin (Cbl) binding to TC, and the corresponding epitope was situated at the C-terminal stretch TQAS...QLLR(372-399). We explored the receptor-blocking effect of several mAbs and heparin to identify TC domains essential for the interaction between holo-TC and the receptor. The receptor-related epitopes were located within the TC sequence GQLA...HHSV(103-159). The putative heparin-binding site corresponded to a positively charged segment KRSN...RTVR(207-227), which also seemed to be necessary for receptor binding. We conclude that conformational changes in TC upon Cbl binding are accompanied by the convergence of multiple domains, and only the assembled conformation of the protein (i.e. holo-TC) has high affinity for the receptor.  相似文献   

17.
In this study,the coding region of type O FMDV capsid protein VP1 and a series of codon optimized DNA sequences coding for VP1 amino acid residues 141-160(epitope1),tandem repeat 200-213(epitope2(+2)) and the combination of two epitopes(epitope1-2)was genetically cloned into the prokaryotic expression vector pPROExHTb and pGEX4T-1,respectively.VP1 and the fused epitopes GST-E1,GST-E2(+2)and GST-E1-2 were successfully solubly expressed in the cytoplasm of Escherichia coli and Western blot analysis demonstrat...  相似文献   

18.
The integral membrane protein flavocytochrome b (Cyt b) is the catalytic core of the human phagocyte NADPH oxidase, an enzyme complex that initiates a cascade of reactive oxygen species important in the elimination of infectious agents. This study reports the generation and characterization of six mAbs (NS1, NS2, NS5, CS6, CS8, and CS9) that recognize the p22(phox) subunit of the Cyt b heterodimer. Each of the mAbs specifically detected p22(phox) by Western blot analysis but did not react with intact neutrophils in FACS studies. Phage display mapping identified core epitope regions recognized by mAbs NS2, NS5, CS6, CS8, and CS9. Fluorescence resonance energy transfer experiments indicated that mAbs CS6 and CS8 efficiently compete with Cascade Blue-labeled mAb 44.1 (a previously characterized, p22(phox)-specific mAb) for binding to Cyt b, supporting phage display results suggesting that all three Abs recognize a common region of p22(phox). Energy transfer experiments also suggested the spatial proximity of the mAb CS9 and mAb NS1 binding sites to the mAb 44.1 epitope, while indicating a more distant proximity between the mAb NS5 and mAb 44.1 epitopes. Cell-free oxidase assays demonstrated the ability of mAb CS9 to markedly inhibit superoxide production in a concentration-dependent manner, with more moderate levels of inhibition observed for mAbs NS1, NS5, CS6, and CS8. A combination of computational predictions, available experimental data, and results obtained with the mAbs reported in this study was used to generate a novel topology model of p22(phox).  相似文献   

19.
Monoclonal antibodies (mAbs) were generated to proteasome purified from human erythrocytes. Five of six proteasome-specific mAbs reacted with three subunits in the molecular mass range of 25-28 kDa, indicating a common epitope. The other mAb (AP5C10) exhibited a more restricted reactivity, recognizing a 32-kDa subunit of the proteasome purified in its latent state. However, when the proteasome is isolated in its active state, AP5C10 reacts with a 28-kDa subunit, evidence for processing of the proteasome subunits during purification. Purified proteasome preparations which exhibited partial latency have both AP5C10 reactive subunits. Although the 32-kDa subunit appears required for latency, loss of this component and generation of the 28-kDa component are not obligatory for activation. The 32- and 28-kDa subunits can each be further resolved into three components by isoelectric focusing. The apparent loss of 4 kDa during the conversion of the 32- to 28-kDa subunit is accompanied by a shift to a more basic pI for each polypeptide. Western blots of the early steps of proteasome purification reveal an AP5C10-reactive protein at 41 kDa. This protein was separated from proteasomes by sizing chromatography and may represent a pool of precursor subunits. Since the 32-kDa subunit appears necessary for latency, it is speculated to play a regulatory role in ATP-dependent proteolytic activity.  相似文献   

20.
To investigate whether anti-idiotypic (anti-Id) antibodies activate T cells either directly or indirectly, we examined the ability of syngeneic anti-Id monoclonal antibodies (mAbs) to regulate idiotype (Id) expression, antigen-binding antibody production, and T-cell reactivity to antigen. Our idiotypic system consists of an anti-I-A mAb that carries an infrequently expressed Id. Using three syngeneic anti-Id mAbs (Ab2), we previously defined the idiotype of the 11-5.2.1.9 (11-5) anti-I-Ak mAb. Two of these mAbs, IIID1 and IA2, recognize the same or closely related epitopes on 11-5 and cross react with two additional anti-I-Ak mAbs, 8B and 39J; the third anti-Id mAb, VC6, recognizes a distinct epitope shared by 11-5 and 8B. In the present study, BALB/c (H-2d) mice were primed with varying doses of these anti-Ids and were then boosted with C3H (H-2k) spleen cells. Among 130 such primed mice, the syngeneic anti-Ids when tested at priming doses between 10 ng and 10 micrograms were unable to induce Id production. The priming anti-Id mAbs persisted in the serum of the mice and were detectable as late as 40 days after priming. Ab1 expression was not modulated in BALB/c mice immunized with KLH-coupled Ab2, however, this immunization elicited the production of Ab3 which shared idiotypes with 11-5, 8B, and 39J. BALB/c anti-C3H alloreactive T-cell clones were also not induced by anti-Id priming, nor could they be shown to bind directly to the three Ab2 used. Nevertheless, the proliferative response of one anti-I-Ak specific T-cell clone that recognizes the same epitope as 11-5, 8B, and 39J, was inhibited by the IIID1 and IA2 Ab2. Thus, a T cell can express an idiotype shared by a B cell, but the linked recognition of an Id-associated carrier determinant(s) by an alloreactive T cell is required to elicit an anti-Id antibody response. These results favor the possibility that the activation of T cells is not dependent upon their ability to bind to anti-Id, but rather on their capacity to respond to epitopes of Id-anti-Id antigen-antibody complexes formed on B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号