首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell culture models implicate increased nitric oxide (NO) synthesis as a cause of mucosal hyperpermeability in intestinal epithelial infection. NO may also mediate a multitude of subepithelial events, including activation of cyclooxygenases. We examined whether NO promotes barrier function via prostaglandin synthesis using Cryptosporidium parvum-infected ileal epithelium in residence with an intact submucosa. Expression of NO synthase (NOS) isoforms was examined by real-time RT-PCR of ileal mucosa from control and C. parvum-infected piglets. The isoforms mediating and mechanism of NO action on barrier function were assessed by measuring transepithelial resistance (TER) and eicosanoid synthesis by ileal mucosa mounted in Ussing chambers in the presence of selective and nonselective NOS inhibitors and after rescue with exogenous prostaglandins. C. parvum infection results in induction of mucosal inducible NOS (iNOS), increased synthesis of NO and PGE2, and increased mucosal permeability. Nonselective inhibition of NOS (NG-nitro-L-arginine methyl ester) inhibited prostaglandin synthesis, resulting in further increases in paracellular permeability. Baseline permeability was restored in the absence of NO by exogenous PGE2. Selective inhibition of iNOS [L-N6-(1-iminoethyl)-L-lysine] accounted for approximately 50% of NOS-dependent PGE2 synthesis and TER. Using an entire intestinal mucosa, we have demonstrated for the first time that NO serves as a proximal mediator of PGE2 synthesis and barrier function in C. parvum infection. Expression of iNOS by infected mucosa was without detriment to overall barrier function and may serve to promote clearance of infected enterocytes.  相似文献   

2.
Reports conflict regarding the effect of nitric oxide (NO) on intestinal epithelium. In chronic injury, NO appears detrimental by combining with reactive oxygen to form potent-free radicals. In contrast, inhibition of NO synthesis after acute injury exacerbates damage and inflammation. Recent studies have disclosed constitutive expression of inducible NO synthase (iNOS) by normal intestinal epithelia, yet little attention has been given to the role of iNOS in acute epithelial repair. We studied the local effects of iNOS on early epithelial repair of porcine ileal mucosa injured by deoxycholate within Ussing chambers. iNOS was constitutively expressed by the villous epithelium, and after deoxycholate injury, iNOS was expressed by injured and detaching enterocytes. Selective inhibition of iNOS abolished increases in NO synthesis and villous reepithelialization after injury. Exogenous L-arginine rescued baseline reepithelialization from NOS inhibitors but was only capable of stimulating additional repair in the presence of serum. These results demonstrate that iNOS-derived NO is a key mediator of early villous reepithelialization following acute mucosal injury.  相似文献   

3.
4.
Pathogenesis of Cryptosporidium parvum infection   总被引:2,自引:0,他引:2  
Cryptosporidium parvum can be regarded as a minimally invasive mucosal pathogen, since it invades surface epithelial cells that line the intestinal tract but does not invade deeper layers of the intestinal mucosa. Nonetheless, infection can be associated with diarrhea and marked mucosal inflammation. This article briefly reviews in vitro and in vivo models useful for studying the pathogenesis of C. parvum infection and explores the role of innate and acquired immune responses in host defense against this protozoan parasite.  相似文献   

5.
We had previously shown that ileal intraepithelial lymphocytes isolated from calves with cryptosporidiosis include significantly increased numbers of CD8+ T lymphocytes and activated CD4+ cells. These increases could result from redistribution of resident mucosal lymphocytes or from homing of peripheral T cells to ileal mucosa. To determine whether resident mucosal lymphocytes can redistribute to Cryptosporidium parvum-infected epithelium, oocysts were inoculated in vitro onto ileum explants taken from 1-2-wk-old noninfected calves. After 24 hr of incubation, the explants were collected and frozen in liquid nitrogen. Immunohistochemical analysis of T-lymphocyte subpopulations was performed on sections, and labeled lymphocytes adjacent to villous epithelial cells were counted. Compared with uninoculated explants, there was a statistically significant increase in the number of CD8+ T lymphocytes per 100 epithelial cells in oocyst-inoculated tissue. In addition, there were increased numbers of CD4+ T cells and activated (CD25+) lymphocytes adjacent to C. parvum-infected epithelium. These results show that resident mucosal T lymphocytes can accumulate at the epithelium during C. parvum infection.  相似文献   

6.
This study was undertaken to characterize the mucosal response to Cryptosporidium parvum in infected calves that had recovered from diarrhea. Flow cytometric surface phenotypes of lamina propria lymphocyte (LPL) suspensions from infected calves and age-matched controls revealed the presence of a significantly larger proportion of CD25+ LPL in infected calves than in controls. Freshly isolated LPL from infected calves expressed more iNOS and interferon (IFN)-gamma than did controls. Infected calves excreted IgG1 and IgG2 isotype antibodies to C. parvum p23 by the end of the experiment. Moreover, immunohistochemistry of ileal sections revealed the presence of IgG1+ and IgG2+ B lymphocytes in the villi and IgG1+ but not IgG2+ B lymphocytes in continuous Peyer's patch nodules. These data are consistent with the emergence of a type-1-like mucosal immune response in terminal ileal mucosa as calves recover from cryptosporidiosis.  相似文献   

7.
Human infection with the protozoan parasite Cryptosporidium parvum has recently emerged as a global public health problem. Although infection is unrelenting in patients classically regarded as immunocompromised, a tantalizing observation is that infection with this parasite results in both acute self-limited as well as chronic diarrhea in young children. Recent data have begun to elucidate multiple potential mechanisms by which parasitism of the intestinal epithelium may yield an intestinal secretory response. However, a central issue for future studies is to understand how Cryptosporidium infection in young children results in such a broad spectrum of clinical presentation. An answer to this question is likely to result through a dual understanding of how systemic or enteric immunity impacts on intestinal secretory responses and how intra-cellular parasitism alters intestinal epithelial cell function and signals the submucosal intestinal compartment. The virulence factors of Cryptosporidium mediating these events need to be identified. Douglas Clark and Cynthia Sears here review the current understanding of the pathogenesis of intestinal secretion in response to Cryptosporidium infection, and discuss key questions requiring additional study.  相似文献   

8.
Diseases of intestinal inflammation like necrotizing enterocolitis (NEC) are associated with impaired epithelial barrier integrity and the sustained release of intestinal nitric oxide (NO). NO modifies the cytoskeletal regulator RhoA-GTPase, suggesting that NO could affect barrier healing by inhibiting intestinal restitution. We now hypothesize that NO inhibits enterocyte migration through RhoA-GTPase and sought to determine the pathways involved. The induction of NEC was associated with increased enterocyte NO release and impaired migration of bromodeoxyuridine-labeled enterocytes from terminal ileal crypts to villus tips. In IEC-6 enterocytes, NO significantly inhibited enterocyte migration and activated RhoA-GTPase while increasing the formation of stress fibers. In parallel, exposure of IEC-6 cells to NO increased the phosphorylation of focal adhesion kinase (pFAK) and caused a striking increase in cell-matrix adhesiveness, suggesting a mechanism by which NO could impair enterocyte migration. NEC was associated with increased expression of pFAK in the terminal ileal mucosa of wild-type mice and a corresponding increase in disease severity compared with inducible NO synthase knockout mice, confirming the dependence of NO for FAK phosphorylation in vivo and its role in the pathogenesis of NEC. Strikingly, inhibition of the protein tyrosine phosphatase SHP-2 in IEC-6 cells prevented the activation of RhoA by NO, restored focal adhesions, and reversed the inhibitory effects of NO on enterocyte migration. These data indicate that NO impairs mucosal healing by inhibiting enterocyte migration through activation of RhoA in a SHP-2-dependent manner and support a possible role for SHP-2 as a therapeutic target in diseases of intestinal inflammation like NEC.  相似文献   

9.
10.
Microvilli - actin - villin - ezrin - Cryptosporidium parvum The sporozoites and merozoites of the Apicomplexan protozoan Cryptosporidium parvum (C. parvum) invade the apical side of enterocytes and induce the formation of a parasitophorous vacuole which stays in the brush border area and disturbs the distribution of microvilli. The vacuole is separated from the apical cytoplasm of the cell by an electron-dense layer of undetermined composition. In order to characterize the enterocyte cytoskeleton changes that occur during C. parvum invasion and development, we used both confocal immunofluorescence and immunoelectron microscopy to examine at the C.parvum-enterocyte interface the distribution of three components of the microvillous skeleton, actin, villin and ezrin. In infected cells, rhodamine-phalloidin and anti-villin and anti-ezrin antibodies recognized ring-like structures surrounding the developing parasites. By immunoelectron microscopy, both villin and ezrin were detected in the parasitophorous vacuole wall surrounding the luminal and lateral sides of the intracellular parasite. In contrast, anti-beta and anti-gamma actin antibodies showed no significant labelling of the vacuolar wall. These observations indicate that the parasitophorous vacuole wall contains at least two microvillus-derived components, villin and ezrin, as well as a low amount of F-actin. These data suggest that C.parvum infection induces a rearrangement of cytoskeleton molecules at the apical pole of the host cell that are used to build the parasitophorous vacuole.  相似文献   

11.
Cryptosporidium parvum infection represents a significant cause of diarrhea in humans and animals. We studied the effect of luminally applied glutamine and the PG synthesis inhibitor indomethacin on NaCl absorption from infected calf ileum in Ussing chambers. Infected ileum displayed a decrease in both mucosal surface area and NaCl absorption. Indomethacin and glutamine or its stable derivative alanyl-glutamine increased the net absorption of Na(+) in infected tissue in an additive manner and to a greater degree than in controls. Immunohistochemical and Western blot studies showed that in control animals neutral amino acid transport system ASC was present in villus and crypts, whereas in infected animals, ASC was strongly present only on the apical border of crypts. These results are consistent with PGs mediating the altered NaCl and water absorption in this infection. Our findings further illustrate that the combined use of a PG synthesis inhibitor and glutamine can fully stimulate Na(+) and Cl(-) absorption despite the severe villous atrophy, an effect associated with increased expression of a Na(+)-dependent amino acid transporter in infected crypts.  相似文献   

12.
Enterocytes exist in close association with tissue macrophages, whose activation during inflammatory processes leads to the release of nitric oxide (NO). Repair from mucosal injury requires the migration of enterocytes into the mucosal defect, a process that requires connexin43 (Cx43)-mediated gap junction communication between adjacent enterocytes. Enterocyte migration is inhibited during inflammatory conditions including necrotizing enterocolitis, in part, through impaired gap junction communication. We now hypothesize that activated macrophages inhibit gap junctions of adjacent enterocytes and seek to determine whether NO release from macrophages was involved. Using a coculture system of enterocytes and macrophages, we now demonstrate that "activation" of macrophages with lipopolysaccharide and interferon reduces the phosphorylation of Cx43 in adjacent enterocytes, an event known to inhibit gap junction communication. The effects of macrophages on enterocyte gap junctions could be reversed by treatment of macrophages with the inducible nitric oxide synthase (iNOS) inhibitor l-Lysine omega-acetamidine hydrochloride (l-NIL) and by incubation with macrophages from iNOS(-/-) mice, implicating NO in the process. Activated macrophages also caused a NO-dependent redistribution of connexin43 in adjacent enterocytes from the cell surface to an intracellular location, further suggesting NO release may inhibit gap junction function. Treatment of enterocytes with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) markedly inhibited gap junction communication as determined using single cell microinjection of the gap junction tracer Lucifer yellow. Strikingly, activated macrophages inhibited enterocyte migration into a scraped wound, which was reversed by l-NIL pretreatment. These results implicate enterocyte gap junctions as a target of the NO-mediated effects of macrophages during intestinal inflammation, particularly where enterocyte migration is impaired.  相似文献   

13.
Cryptosporidium parvum is an intracellular protozoan parasite that causes enteric infection and diarrhea in a wide range of mammalian hosts, including humans and economically important livestock species. There are no effective vaccines or drug treatments available for cryptosporidiosis. Cryptosporidium parvum utilizes a unique metabolic pathway for the synthesis of polyamines, forming agmatine as an intermediary metabolite. We treated infant mice with oral doses of agmatine for 2 days before, the day of, and 5 days following experimental infection with C. parvum. Mice treated with agmatine were significantly less infected with C. parvum than were control mice receiving phosphate-buffered saline. Mice treated with agmatine only on the day of experimental infection with C. parvum were also significantly less infected than were control mice. These data suggest that exogenous agmatine alters the metabolism of C. parvum sufficient to interfere with its ability to colonize the mammalian intestine.  相似文献   

14.
Apoptosis plays a major role in the development of pathogenesis due to a number of microbial infections. Epithelial cells have been previously shown to die through apoptosis during in vitro infection by the Apicomplexan parasite Cryptosporidium parvum. We now test the possibility that Fas (APO-1/CD95)-dependent apoptosis of uninfected cells, due to enhanced expression of the Fas ligand (FasL) on infected cells, may contribute to the pathology of cryptosporidiosis. Expression of the FasL increased by a large amount on the surface of intestinal epithelial cells infected with C. parvum, and the increase was limited exclusively to infected cells. In addition, a significant increase in FasL expression was observed in epithelial cells from the small intestine of mice infected with C. parvum. Finally, whereas wild-type mice depleted of CD4(+) lymphocytes lost weight during C. parvum infection, CD4(+) cell-depleted lpr mice (deficient in Fas function) infected with C. parvum gained weight at the same rate as undepleted wild-type or lpr mice. These results suggest that bystander Fas-dependent apoptosis of uninfected epithelial cells may exacerbate the weight loss associated with cryptosporidiosis.  相似文献   

15.
16.
Rotavirus infection is the most common cause of severe infantile gastroenteritis worldwide. In vivo, rotavirus exhibits a marked tropism for the differentiated enterocytes of the intestinal epithelium. In vitro, differentiated and undifferentiated intestinal cells can be infected. We observed that rotavirus infection of the human intestinal epithelial Caco-2 cells induces cytoskeleton alterations as a function of cell differentiation. The vimentin network disorganization detected in undifferentiated Caco-2 cells was not found in fully differentiated cells. In contrast, differentiated Caco-2 cells presented Ca(2+)-dependent microtubule disassembly and Ca(2+)-independent cytokeratin 18 rearrangement, which both require viral replication. We propose that these structural alterations could represent the first manifestations of rotavirus-infected enterocyte injury leading to functional perturbations and then to diarrhea.  相似文献   

17.
Enterohemorrhagic Escherichia coli (EHEC) are the causative agent of hemolytic-uremic syndrome. In the first stage of the infection, EHEC interact with human enterocytes to modulate the innate immune response. Inducible NO synthase (iNOS)-derived NO is a critical mediator of the inflammatory response of the infected intestinal mucosa. We therefore aimed to analyze the role of EHEC on iNOS induction in human epithelial cell lines. In this regard, we show that EHEC down-regulate IFN-gamma-induced iNOS mRNA expression and NO production in Hct-8, Caco-2, and T84 cells. This inhibitory effect occurs through the decrease of STAT-1 activation. In parallel, we demonstrate that EHEC stimulate the rapid inducible expression of the gene hmox-1 that encodes for the enzyme heme oxygenase-1 (HO-1). Knock-down of hmox-1 gene expression by small interfering RNA or the blockade of HO-1 activity by zinc protoporphyrin IX abrogated the EHEC-dependent inhibition of STAT-1 activation and iNOS mRNA expression in activated human enterocytes. These results highlight a new strategy elaborated by EHEC to control the host innate immune response.  相似文献   

18.
19.
Cronobacter sakazakii is a Gram-negative pathogen associated with the cases of necrotizing enterocolitis (NEC) that result from formula contamination. In a mouse model of NEC, we demonstrate that C. sakazakii infection results in epithelial damage by recruiting greater numbers of dendritic cells (DCs) than macrophages and neutrophils in the gut and suppresses DC maturation, which requires outer membrane protein A (OmpA) expression in C. sakazakii. Pretreatment of intestinal epithelial cell monolayers with supernatant from OmpA(+) C. sakazakii/DC culture markedly enhanced membrane permeability and enterocyte apoptosis, whereas OmpA(-) C. sakazakii/DC culture supernatant had no effect. Analysis of OmpA(+) C. sakazakii/DC coculture supernatant revealed significantly greater TGF-β production compared with the levels produced by OmpA(-) C. sakazakii infection. TGF-β levels were elevated in the intestinal tissue of mice infected with OmpA(+) C. sakazakii. Cocultures of CaCo-2 cells and DCs in a "double-layer" model followed by infection with OmpA(+) C. sakazakii significantly enhanced monolayer leakage by increasing TGF-β production. Elevated levels of inducible NO synthase (iNOS) were also observed in the double-layer infection model, and abrogation of iNOS expression prevented the C. sakazakii-induced CaCo-2 cell monolayer permeability despite the presence of DCs or OmpA(+) C. sakazakii/DC supernatant. Blocking TGF-β activity using a neutralizing Ab suppressed iNOS production and prevented apoptosis and monolayer leakage. Depletion of DCs in newborn mice protected against C. sakazakii-induced NEC, whereas adoptive transfer of DCs rendered the animals susceptible to infection. Therefore, C. sakazakii interaction with DCs in intestine enhances the destruction of the intestinal epithelium and the onset of NEC due to increased TGF-β production.  相似文献   

20.
Kim JM  Kim JS  Jung HC  Song IS  Kim CY 《Helicobacter》2002,7(2):116-128
Background. Nitric oxide (NO) generated by nitric oxide synthase (NOS) is known to be an important modulator of the mucosal inflammatory response. In this study, we questioned whether Helicobacter pylori infection could up‐regulate the epithelial cell inducible NOS (iNOS) gene expression and whether NO production could show polarity that can be regulated by immune mediators. Materials and Methods. Human gastric epithelial cell lines were infected with H. pylori, and the iNOS mRNA expression was assessed by quantitative RT‐PCR. NO production was assayed by determining nitrite/nitrate levels in culture supernatants. To determine the polarity of NO secretion by the H. pylori‐infected epithelial cells, Caco‐2 cells were cultured as polarized monolayers in transwell chambers, and NO production was measured. Results. iNOS mRNA levels were significantly up‐regulated in the cells infected with H. pylori, and expression of iNOS protein was confirmed by Western blot analysis. Increased NO production in the gastric epithelial cells was seen as early as 18 hours postinfection, and reached maximal levels by 24 hours postinfection. The specific MAP kinase inhibitors decreased H. pylori‐induced iNOS and NO up‐regulation. After H. pylori infection of polarized epithelial cells, NO was released predominantly into the apical compartment, and IL‐8 was released predominantly into basolateral compartment. The addition of IFN‐γ to H. pylori‐infected polarized epithelial cells showed a synergistically higher apical and basolateral NO release. Conclusion. These results suggest that apical NO production mediated by MAP kinase in H. pylori‐infected gastric epithelial cells may influence the bacteria and basolateral production of NO and IL‐8 may play a role in the tissue inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号