首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amphotericin B (AmB, 1) is known to assemble together and form an ion channel across biomembranes, by which the drug presumably exerts its antimicrobial activity. To access the whole architecture of this channel assemblage, the understanding of binary interaction between AmB molecules is of prime importance because the dimeric interaction is the basis of the assemblage. In this context, we have recently reported covalently conjugated AmB dimers such as 2 and 3 with a long linker, which show prominent hemolytic potency and ion-channel activity. To evaluate the effect of the length and hydrophilicity of linker parts on the activity, we prepared new dimers bearing tartarate linkages (4 and 5). Especially, 5 exhibited potent hemolytic activity (EC50, 0.03 microM) surpassing those of AmB, 2, and 3. Measurements of UV and CD spectra of 5 in liposomes indicated that AmB portions of 5 could adopt appropriate arrangements in molecular assemblage in spite of the short linkage, and also indicated that the assemblage formed by 5 appeared more stable than AmB. These short-tethered dimers are expected to be a promising tool to reveal the mechanism of dimeric interaction in the ion channel formed by AmB.  相似文献   

2.
Ulens C  Siegelbaum SA 《Neuron》2003,40(5):959-970
Recent X-ray structures show that the binding domains of tetrameric ligand-gated channels form either a 4-fold symmetric gating ring or a 2-fold symmetric dimer of dimers. To determine how such structures function to coordinate the binding of multiple ligands during channel activation, we examined the action of cAMP to enhance the opening of the hyperpolarization-activated HCN2 channels, whose cytoplasmic C terminus forms a gating ring in the presence of cAMP. Using tandem dimers and tetramers in which cAMP binding to selected HCN2 subunits was prevented by a point mutation or deletion, we provide the first direct determination of the energetic effects on gating of each of four ligand binding events and demonstrate the importance of the gating ring for cAMP regulation. We suggest that cAMP binding enhances channel opening by promoting assembly of the gating ring from an unliganded state in which the four subunits interact as a 2-fold symmetric dimer of dimers.  相似文献   

3.
Ion channels from sheep cardiac mitoplast (inverted inner mitochondrial membrane vesicle) preparations were incorporated into voltage-clamped planar lipid bilayers. A low-conductance anion channel (~40 or ~85 pS in symmetric 300 or 550 mM choline Cl, respectively), characterized by the presence of two well-defined substates, at ~25 and ~50% of the fully open level, was studied in detail. The substate behavior was consistent with a multibarrelled channel containing four functionally coupled pores. At negative (cis-trans) membrane potentials, the putative portomers appeared to gate with substantial positive cooperativity, accounting for the apparent absence of a ~75% sublevel. At positive holding potentials, allosteric protomer interactions were more complicated, and the channel complex could be modeled as a dimer of dimers. The protochannels in one dimer (“dimer A”) appeared to open independently of each other, and with a relatively high probability, while the monomers comprising the second dimer (“dimer B”) were functionally coupled, could only open if both protomers in dimer A were open, and closed as soon as one of the monomers in dimer A shut. The channels also displayed Ca2+- (and Mg2+-) sensitive rectification related to bilayer lipid surface charge. By assuming that Ca2+ acted solely by screening surface charge, the membrane surface potential profile was used as a “microscopic ruler” to place one mouth of the channel within 10–11 Å of the bilayer surface.  相似文献   

4.
We have expressed, purified, and characterized glutamate receptor ion channels (GluR) assembled as homomers of the subunit GluRB. For the first time, single-milligram quantities of biochemically homogeneous GluR have been obtained. The protein exhibits the expected pharmacological profile and a high specific activity for ligand binding. Density-gradient centrifugation reveals a uniform oligomeric assembly and a molecular mass suggesting that the channel is a tetramer. On the basis of electron microscopic images, the receptor appears to form an elongated structure that is visualized in several orientations. The molecular dimensions of the molecule are approximately 11 x 14 x 17 nm, and solvent-accessible features can be seen; these may contribute to formation of the ion-conducting pathway of the channel. The channel dimensions are consistent with an overall 2-fold symmetric assembly, suggesting that the tetrameric receptor may be a dimer of dimers.  相似文献   

5.
Extending previous work (Sung & Jordan, 1987 a, Biophys. J. 51, 661-672; 1988, Biophys. J.54, 519-526), we describe channel properties of five possible gramicidin dimers by studying dimerization energies and axial electrical potentials. Unlike the head-to-head dimer (the predominant channel former), both tail-to-tail and head-to-tail dimers with the same beta-helical monomer structure as the head-to-head dimer only form four intermonomer hydrogen bonds and are much less stable. Were channels formed from these dimers to be observed, their electrical potential profiles suggest that they should be cation selective, probably conduct less than the head-to-head dimer, have a central cation binding site, bind cations preferentially if crystallizable, and in the case of the head-to-tail dimer, rectify. Like the antiparallel double stranded helical dimer (a possible minor conducting pathway) the parallel double stranded helical dimer has 28 interstrand hydrogen bonds, but its hydrogen bond network is quite distorted and it is much less stable. If it formed, its electrical potential profile suggests that it would be cation selective, bind anions preferentially if crystallizable, rectify, and at high enough voltages, might exhibit a conductance greater than that of the antiparallel form.  相似文献   

6.
The action of antifungal drug, amphotericin B (AmB), on solvent-containing planar lipid bilayers made of sterols (cholesterol, ergosterol) and synthetic C14–C18 tail phospholipids (PCs) or egg PC has been investigated in a voltage-clamp mode. Within the range of PCs tested, a similar increase was achieved in the lifetime of one-sided AmB channels in cholesterol- and ergosterol-containing membranes with the C16 tail PC, DPhPC at sterol/DPhPC molar ratio ≤1. The AmB channel lifetimes decreased only at sterol/DPhPC molar ratio >1 that occurred with sterol/PC molar ratio of target cell membranes at a pathological state. These data obtained on bilayer membranes two times thicker than one-sided AmB channel length are consistent with the accepted AmB pore-forming mechanism, which is associated with membrane thinning around AmB–sterol complex in the lipid rafts. Our results show that AmB can create cytotoxic (long open) channels in cholesterol membrane with C14–C16 tail PCs and nontoxic (short open) channels with C17–C18 tail PCs as the lifetime of one-sided AmB channel depends on ~2–5 Å difference in the thickness of sterol-containing C16 and C18 tail PC membranes. The reduction in toxic AmB channels efficacy can be required at the drug administration because C16 tails in native membrane PCs occur almost as often as C18 tails. The comparative analysis of AmB channel blocking by tetraethylammonium chloride, tetramethylammonium chloride and thiazole derivative of vitamin B1, 3-decyloxycarbonylmethyl-4-methyl-5-(2-hydroxyethyl) thiazole chloride (DMHT), has proved that DMHT is a comparable substitute for both tetraalkylammonia that exhibits a much higher affinity.  相似文献   

7.
Two different stereoisomers of the dioxolane-linked gramicidin A (gA) channels were individually synthesized (the SS and RR dimers;. Science. 244:813-817). The structural differences between these dimers arise from different chiralities within the dioxolane linker. The SS dimer mimics the helicity and the inter- and intramolecular hydrogen bonding of the monomer-monomer association of gA's. In contrast, there is a significant disruption of the helicity and hydrogen bonding pattern of the ion channel in the RR dimer. Single ion channels formed by the SS and RR dimers in planar lipid bilayers have different proton transport properties. The lipid environment in which the different dimers are reconstituted also has significant effects on single-channel proton conductance (g(H)). g(H) in the SS dimer is about 2-4 times as large as in the RR. In phospholipid bilayers with 1 M [H(+)](bulk), the current-voltage (I-V) relationship of the SS dimer is sublinear. Under identical experimental conditions, the I-V plot of the RR dimer is supralinear (S-shaped). In glycerylmonooleate bilayers with 1 M [H(+)](bulk), both the SS and RR dimers have a supralinear I-V plot. Consistent with results previously published (. Biophys. J. 73:2489-2502), the SS dimer is stable in lipid bilayers and has fast closures. In contrast, the open state of the RR channel has closed states that can last a few seconds, and the channel eventually inactivates into a closed state in either phospholipid or glycerylmonooleate bilayers. It is concluded that the water dynamics inside the pore as related to proton wire transfer is significantly different in the RR and SS dimers. Different physical mechanisms that could account for this hypothesis are discussed. The gating of the synthetic gA dimers seems to depend on the conformation of the dioxolane link between gA's. The experimental results provide an important framework for a detailed investigation at the atomic level of proton conduction in different and relatively simple ion channel structures.  相似文献   

8.
In organic solvents gramicidin A (gA) occurs as a mixture of slowly interconverting double-stranded dimers. Membrane-spanning gA channels, in contrast, are almost exclusively single-stranded beta(6,3)-helical dimers. Based on spectroscopic evidence, it has previously been concluded that the conformational preference of gA in phospholipid bilayers varies as a function of the degree of unsaturation of the acyl chains. Double-stranded pi pi(5,6)-helical dimers predominate (over single-stranded beta(6,3)-helical dimers) in lipid bilayer membranes with polyunsaturated acyl chains. We therefore examined the characteristics of channels formed by gA in 1-palmitoyl-2-oleoylphosphatidylcholine/n-decane, 1,2-dioleoylphosphatidylcholine/n-decane, and 1,2-dilinoleoylphosphatidylcholine/n-decane bilayers. We did not observe long-lived channels that could be conducting double-stranded pi pi(5,6)-helical dimers in any of these different membrane environments. We conclude that the single-stranded beta(6,3)-helical dimer is the only conducting species in these bilayers. Somewhat surprisingly, the average channel duration and channel-forming potency of gA are increased in dilinoleoylphosphatidylcholine/n-decane bilayers compared to 1-palmitoyl-2-oleoylphosphatidylcholine/n-decane and dioleoylphosphatidylcholine/n-decane bilayers. To test for specific interactions between the aromatic side chains of gA and the acyl chains of the bilayer, we examined the properties of channels formed by gramicidin analogues in which the four tryptophan residues were replaced with naphthylalanine (gN), tyrosine (gT), and phenylalanine (gM). The results show that all of these analogue channels experience the same relative stabilization when going from dioleoylphosphatidylcholine to dilinoleoylphosphatidylcholine bilayers.  相似文献   

9.
The antimycotic activity of amphotericin B (AmB) depends on its ability to make complexes sterols to form ion channels that cause membrane leakage. To study this phenomenon, surface pressure (pi) as a function of surface area (A) and pi-A hysteresis were measured in monolayers of AmB-cholesterol mixtures on the water-air interface. The most stable monolayers were produced from molecules of AmB and cholesterol with 2:1 stoichiometry. At this ratio, AmB and cholesterol interact to form ion channels in lipid bilayers with millisecond dwell times and conductances of 4-400 pS. The AmB-cholesterol complexes assemble in three, four, etc., subunit aggregates to form ion channels of diverse and large-conductances. Their I-V characteristics were linear over a range of +/-200 mV. The channel currents were inhibited by the addition of tetraethylammonium (TEA), potassium channel blocker, to the cis-side of the membrane. Likewise, AmB-cholesterol complexes reconstituted in membrane-coated nanoporous silicon dioxide surfaces showed single channel behavior with large amplitudes at various voltages. Large-conductance ion channels show great promise for use in biosensors on solid supports.  相似文献   

10.
Escherichia coli preprotein translocase comprises a membrane-embedded trimeric complex of SecY, SecE and SecG. Previous studies have shown that this complex forms ring-like assemblies, which are thought to represent the preprotein translocation channel across the membrane. We have analyzed the functional state and the quaternary structure of the SecYEG translocase by employing cross-linking and blue native gel electrophoresis. The results show that the SecYEG monomer is a highly dynamic structure, spontaneously and reversibly associating into dimers. SecG-dependent tetramers and higher order SecYEG multimers can also exist in the membrane, but these structures form at high SecYEG concentration or upon overproduction of the complex only. The translocation process does not affect the oligomeric state of the translocase and arrested preproteins can be trapped with SecYEG or SecYE dimers. Dissociation of the dimer into a monomer by detergent induces release of the trapped preprotein. These results provide direct evidence that preproteins cross the bacterial membrane, associated with a translocation channel formed by a dimer of SecYEG.  相似文献   

11.
12.
A covalent dimer of alamethicin Rf30 was synthesized by linking the N-termini by a disulfide bond. When the dimer peptides were added to the cis-side of a diphytanoyl PC membrane, macroscopic channel current was induced only at cis positive voltages. The single-channel recordings showed several conductance levels that were alternately stabilized. These results indicate that the dimer peptides form stable channels by N-terminal insertion like alamethicin and that most of the pores are assembled from even numbers of helices. Taking advantages of the long open duration of the dimer peptide channels, the current-voltage (I-V) relations of the single-channels were obtained by applying fast voltage ramps during the open states. The I-V relations showed rectification, such that current from the cis-side toward the trans-side is larger than that in the opposite direction. The intrinsic rectification is mainly attributed to the macro dipoles of parallel peptide helices surrounding a central pore.  相似文献   

13.
Or E  Rapoport T 《FEBS letters》2007,581(14):2616-2620
The ATPase SecA is involved in post-translational protein translocation through the SecY channel across the bacterial inner membrane. SecA is a dimer that can dissociate into monomers with translocation activity. Here, we have addressed whether dissociation of the SecA dimer is required for translocation. We show that a dimer in which the two subunits are cross-linked by disulfide bridges is inactive in protein translocation, translocation ATPase, and binding to a lipid bilayer. In contrast, upon reduction of the disulfide bridges, the resulting monomers regain these activities. These data support the notion that dissociation of SecA dimers into monomers occurs during protein translocation.  相似文献   

14.
Acetylcholine receptors from Torpedo californica electric organ were solubilized and purified under conditions which prevent inactivation of the agonist-regulated cation channels. The dimer form of the receptors was preserved during purification. Treatment with reducing agents converted dimers into monomers. Receptor monomers and dimers were separately reconstituted into soybean lipid vesicles by the cholate dialysis technique. Reconstituted monomers and dimers were functionally equivalent with respect to their carbamylcholine-induced dose-dependent uptake of 22Na+, the total flux of 22Na+ per receptor during the permeability response, and the occurrence of desensitization. Evidence against non-covalent association of monomers to produce dimeric functional units was obtained using glutaraldehyde as a crosslinking agent. These results show that both the acetylcholine-binding sites and the agonist-regulated cation-specific channel are contained within the alpha 2 beta gamma delta subunit structure of the acetylcholine receptor monomer.  相似文献   

15.
ATP-sensitive K(+) (K(ATP)) channels modulate their activity as a function of inhibitory ATP and stimulatory Mg-nucleotides. They are constituted by two proteins: a pore-forming K(+) channel subunit (Kir6.1, Kir6.2) and a regulatory sulfonylurea receptor (SUR) subunit, an ATP-binding cassette (ABC) transporter that confers MgADP stimulation to the channel. Channel regulation by MgADP is dependent on nucleotide interaction with the cytoplasmic nucleotide binding folds (NBF1 and NBF2) of the SUR subunit. Crystal structures of bacterial ABC proteins indicate that NBFs form as dimers, suggesting that NBF1-NBF2 heterodimers may form in SUR and other eukaryotic ABC proteins. We have modeled SUR1 NBF1 and NBF2 as a heterodimer, and tested the validity of the predicted dimer interface by systematic mutagenesis. Engineered cysteine mutations in this region have significant effects, both positive and negative, on MgADP stimulation of K(ATP) channels in excised patches and on macroscopic channel activity in intact cells. Additionally, the mutations cluster in the model structure according to their functional effect, such that patterns of alteration emerge. Of note, three gain-of-function mutations, leading to MgADP hyperstimulation of the channel, are located in the D-loop region at the center of the predicted dimer interface. Overall, the data support the idea that SUR1 NBFs assemble as heterodimers and that this interaction is functionally critical.  相似文献   

16.
The gating ring of cyclic nucleotide-modulated channels is proposed to be either a two-fold symmetric dimer of dimers or a four-fold symmetric tetramer based on high-resolution structure data of soluble cyclic nucleotide-binding domains and functional data on intact channels. We addressed this controversy by obtaining structural data on an intact, full-length, cyclic nucleotide-modulated potassium channel, MloK1, from Mesorhizobium loti, which also features a putative voltage-sensor. We present here the 3D single-particle structure by transmission electron microscopy and the projection map of membrane-reconstituted 2D crystals of MloK1 in the presence of cAMP. Our data show a four-fold symmetric arrangement of the CNBDs, separated by discrete gaps. A homology model for full-length MloK1 suggests a vertical orientation for the CNBDs. The 2D crystal packing in the membrane-embedded state is compatible with the S1-S4 domains in the vertical "up" state.  相似文献   

17.
Most proteins adopt a well defined three-dimensional structure; however, it is increasingly recognized that some proteins can exist with at least two stable conformations. Recently, a class of intracellular chloride ion channel proteins (CLICs) has been shown to exist in both soluble and integral membrane forms. The structure of the soluble form of CLIC1 is typical of a soluble glutathione S-transferase superfamily protein but contains a glutaredoxin-like active site. In this study we show that on oxidation CLIC1 undergoes a reversible transition from a monomeric to a non-covalent dimeric state due to the formation of an intramolecular disulfide bond (Cys-24-Cys-59). We have determined the crystal structure of this oxidized state and show that a major structural transition has occurred, exposing a large hydrophobic surface, which forms the dimer interface. The oxidized CLIC1 dimer maintains its ability to form chloride ion channels in artificial bilayers and vesicles, whereas a reducing environment prevents the formation of ion channels by CLIC1. Mutational studies show that both Cys-24 and Cys-59 are required for channel activity.  相似文献   

18.
Inward rectifier K+ channels are important in regulating membrane excitability in many cell types. The physiological functions of these channels are related to their unique inward rectification, which has been attributed to voltage-dependent block. Here, we show that inward rectification can also be induced by neutral and positively charged residues at site 224 in the internal vestibule of tetrameric Kir2.1 channels. The order of extent of inward rectification is E224K mutant > E224G mutant > wild type in the absence of internal blockers. Mutating the glycines at the equivalent sites to lysines also rendered weak inward rectifier Kir1.1 channels more inwardly rectifying. Also, conjugating positively charged methanethiosulfonate to the cysteines at site 224 induced strong inward rectification, whereas negatively charged methanethiosulfonate alleviated inward rectification in the E224C mutant. These results suggest that charges at site 224 may control inward rectification in the Kir2.1 channel. In a D172N mutant, spermine interacting with E224 and E299 induced channel inhibition during depolarization but did not occlude the pore, further suggesting that a mechanism other than channel block is involved in the inward rectification of the Kir2.1 channel. In this and our previous studies we showed that the M2 bundle crossing and selectivity filter were not involved in the inward rectification induced by spermine interacting with E224 and E299. We propose that neutral and positively charged residues at site 224 increase a local energy barrier, which reduces K+ efflux more than K+ influx, thereby producing inward rectification.  相似文献   

19.
The polyene antibiotic amphotericin B (AmB) is known to form aqueous pores in lipid membranes and biological membranes. Here, membrane potential and ion permeability measurements were used to demonstrate that AmB can form two types of selective ion channels in human erythrocytes, differing in their interaction with cholesterol. We show that AmB induced a cation efflux (negative membrane polarization) across cholesterol-containing liposomes and erythrocytes at low concentrations (≤1.0 × 10−6 M), but a sharp reversal of such polarization was observed at concentrations greater than 1.0 × 10−6 M AmB, an indication that aqueous pores are formed. Cation-selective AmB channels are also formed across sterol-free liposomes, but aqueous pores are only formed at AmB concentrations 10 times greater. The effect of temperature on the AmB-mediated K+ efflux across erythrocytes revealed that the energies of activation for channel formation are negative and positive at AmB concentrations that lead predominantly to the formation of cation-selective channels and aqueous pores, respectively. These findings support the conclusion that the two types of AmB channels formed in human erythrocytes differ in their interactions with cholesterol and other membrane components. In effect, a membrane lipid reorganization, as induced by incubation of erythrocytes with tetrathionate, a cross-linking agent of the lipid raft–associated protein spectrin, led to differential changes in the activation parameters for the formation of both types of channels, reflecting the different lipid environments in which such structures are formed.  相似文献   

20.
Sulfonylurea receptors (SURs) associate with Kir6.x subunits to form tetradimeric K(ATP) channel complexes. SUR1 and SUR2 confer differential channel sensitivities to nucleotides and pharmacological agents, and are expressed in specific, but overlapping, tissues. This raises the question of whether these different SUR subtypes can assemble in the same channel complex and generate channels with hybrid properties. To test this, we engineered dimeric constructs of wild type or N160D mutant Kir6.2 fused to SUR1 or SUR2A. Dimeric fusions formed functional, ATP-sensitive, channels. Coexpression of weakly rectifying SUR1-Kir6.2 (WTF-1) with strongly rectifying SUR1-Kir6.2[N160D] (NDF-1) in COSm6 cells results in mixed subunit complexes that exhibit unique rectification properties. Coexpression of NDF-1 and SUR2A-Kir6.2 (WTF-2) results in similar complex rectification, reflecting the presence of SUR1- and SUR2A-containing dimers in the same channel. The data demonstrate clearly that SUR1 and SUR2A subunits associate randomly, and suggest that heteromeric channels will occur in native tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号