首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Site-specific recombination in bacteriophage P1 occurs between two loxP sites in the presence of the Cre recombination protein. The structure of the 34-base pair loxP site consists of two 13-base pair inverted repeats separated by an 8-base pair spacer region. A mutation in the loxP site has been constructed which deletes one of the internal bases of the spacer region at the axis of dyad symmetry. This mutant loxP site shows a 10-fold reduction in recombination activity with a wild-type site both in vivo and in vitro. This low level of intramolecular recombination between a wild-type loxP site and the mutant loxP501 site is observed in vitro only when the DNA substrate is supercoiled. The majority of the supercoiled substrate is relaxed by the Cre protein, and on longer incubations, single-stranded nicks accumulate in the DNA. We have determined that these nicks occur in both the wild-type and the mutant sites. The positions of these nicks correspond to the positions of cleavage found during recombination of two wild-type sites, suggesting that the Cre protein is attempting to carry out recombination with the mutant site but most of the time this reaction is abortive. We have determined that the Cre protein relaxes a supercoiled topoisomer of a DNA substrate containing one wild-type site and one mutant site to yield a distribution of topoisomers whose linking numbers differ by steps of one, indicating that Cre can act as a type I topoisomerase.  相似文献   

2.
The bacteriophage P1 recombinase Cre mediates site-specific recombination between loxP sites. The loxP site consists of two 13 base-pair inverted repeats separated by an eight base-pair spacer region. When DNA containing the loxP site is incubated with Cre, specific cleavages occur within the spacer region, creating a six base-pair staggered cut. The cuts are centered on the axis of dyad symmetry of the loxP site, resulting in a 5' protruding terminus: 5' A decreases T-G-T-A-T-G C 3' T A-C-A-T-A-C increases G. At the point of cleavage, Cre becomes covalently attached to a 3' PO4, and produces a free 5' OH. A series of experiments were carried out in which a radioactively labeled loxP site is recombined with an unlabeled loxP site to locate the point at which strand exchange takes place during recombination. The points of strand exchange coincide with the sites at which Cre cleavage of the DNA backbone had been detected.  相似文献   

3.
The role of the loxP spacer region in P1 site-specific recombination.   总被引:30,自引:7,他引:23       下载免费PDF全文
The lox-Cre site-specific recombination system of bacteriophage P1 is comprised of a site on the DNA where recombination occurs called loxP, and a protein, Cre, which mediates the reaction. The loxP site is 34 base pairs (bp) in length and consists of two 13 bp inverted repeats separated by an 8 bp spacer region. Previously it has been shown that the cleavage and strand exchange of recombining loxP sites occurs within this spacer region. We report here an analysis of various base substitution mutations within the spacer region of loxP, and conclude the following: Homology is a requirement for efficient recombination between recombining loxP sites. There is at least one position within the spacer where a base change drastically reduces recombination even when there is homology between the two recombining loxP sites. When two loxP sites containing symmetric spacer regions undergo Cre-mediated recombination in vitro, the DNA between the sites undergoes both excision and inversion with equal frequency.  相似文献   

4.
CREB-binding protein (CBP) is a multifunctional cofactor implicated in many intracellular signal transduction pathways. We aimed to investigate the involvement of CBP in the cAMP response element-binding protein (CREB)-mediated pathway. The point mutation Tyr658Ala in the CREB-binding domain (CBD) was shown to abolish the binding activity of CBP to phospho-CREB, the activated form of CREB. By using a mutant Cre/loxP recombination system, this point mutation was aimed to be generated in the mouse genome in a tissue- and time-specific manner. A targeting construct in which CBD exon 5 and inverted exon 5* containing the point mutation flanked by two mutant loxP sites (lox66 and lox71) oriented in a head-to-head position was generated. When Cre recombinase is present, the DNA flanked by the two mutant loxP sites is inverted, forming one loxP and one double mutated loxP site. As the double mutated loxP site shows low affinity for Cre recombinase, the favorable reaction leads to a product where the mutated exon 5* is placed into the position to be correctly transcribed and spliced. Inversion was observed to be complete in both bacteria and mouse embryonic stem cells. Our results indicate that this Cre- mediated inversion method is a valuable tool to introduce point mutations in the mouse genome in a regulatable manner.  相似文献   

5.
In Cre-loxP recombination system, Cre recombinase binds cooperatively to two 13bp inverted repeats in a 34bp loxP and catalyzes strand exchange in the 8bp spacer region. Up to date, spacer sequences within the recombined loxP sites derived from two loxP sties that have different 8bp spacer regions have never been analyzed. In the present study, we analyzed the spacer sequences within the recombined products, resulted from intramolecular recombination between heterologous loxP sites including M2, M3, M7, M11, and 2272 in vivo and in vitro. From the analyses, it was found that loxP sites with aberrant 8bp spacers can be generated from Cre-mediated recombination between heterologous loxP sites at significantly high frequency, proposing the possibility that recombination between heterologous loxP sites would have not undergone typical formula of Cre-loxP recombination.  相似文献   

6.
Cre重组酶结构与功能的研究进展   总被引:1,自引:0,他引:1  
Cre/loxP定位重组系统来源于噬菌体P1,由Cre重组酶和loxP位点两部分组成。在Cre重组酶的介导下,设定的DNA片段可以被切除,可以发生倒位,亦可造成定点的整合。由于其作用方式高效简单,Cre/loxP定位重组系统已在特定基因的删除、基因功能的鉴定、外源基因的整合、基因捕获及染色体工程等方面得到了有效的利用,在转基因的酵母、植物、昆虫、哺乳动物的体内外DNA重组方面成为一个有力的工具。这里就Cre重组酶的结构、功能及该定位重组系统的应用等方面的研究进行了综述。  相似文献   

7.
Bacteriophage P1 contains a site-specific recombination system consisting of a site, loxP, and a recombinase protein Cre. We have shown that with purified Cre protein we can carry out recombination between two loxP sites in vitro. When that recombination occurs between two sites in direct orientation on the same DNA molecule, we observed the production of free and catenated circular molecules. In this paper we show that recombination between sites in opposite orientation leads to both knotted and unknotted circular products. We also demonstrate that the production of catenanes and knots is influenced by two factors: (1) supercoiling in the DNA substrate, supercoiled DNA substrates yield significantly more catenated and knotted products than nicked circular substrates; and (2) mutations in the loxP site, a class of mutations have been isolated that carry out recombination but result in a distribution of products in which the ratio of catenanes to free circles is increased over that observed with a wild-type site. A more detailed analysis of the products from recombination between wild-type sites indicates: (1) that the catenanes or knots produced by recombination are both simple and complex; (2) that the ratio of free products to catenanes is independent of the distance between the two directly repeated loxP sites; and (3) that for DNA substrates with four loxP sites significant recombination between non-adjacent sites occurs to give free circular products. These observations provide insights into how two loxP sites are brought together during recombination.  相似文献   

8.
In order to investigate the functions of the parts of the Tn 3 recombination site res, we created hybrid recombination sites by placing the loxP site for Cre recombinase adjacent to the "accessory" resolvase-binding sites II and III of res. The efficiency and product topology of in vitro recombination by Cre between two of these hybrid sites were affected by the addition of Tn 3 resolvase. The effects of resolvase addition were dependent on the relative orientation and spacing of the elements of the hybrid sites. Substrates with sites II and III of res close to loxP gave specific catenated or knotted products (four-noded catenane, three-noded knot) when resolvase and Cre were added together. The product topological complexity increased when the length of the spacer DNA segment between loxP and res site II was increased. Similar resolvase-induced effects on Cre recombination product topology were observed in reactions of substrates with loxP sites adjacent to full res sites. The results demonstrate that the res accessory sites are sufficient to impose topological selectivity on recombination, and imply that intertwining of two sets of accessory sites defines the simple catenane product topology in normal resolvase-mediated recombination. They are also consistent with current models for the mechanism of catalysis by Cre.  相似文献   

9.
Mlynárová L  Libantová J  Vrba L  Nap JP 《Gene》2002,296(1-2):129-137
Heterospecific lox sites are mutated lox sites that in the presence of Cre recombinase recombine with themselves but not or much less with wildtype loxP. We here show that in Escherichia coli both lox511 and lox2272 sites become highly promiscuous with respect to loxP when in the presence of Cre one of the recombination partners is present in a larger stretch of an inverted repeat of non-lox DNA. In such a palindromic DNA configuration, also the occurrence of other DNA repeat-mediated recombination events is somewhat increased in the presence of Cre. The results indicate that in recombinase mediated cassette exchange or other double lox applications based on the exclusivity of heterospecific lox sites, or in research combining Cre-lox approaches with hairpin RNA for gene silencing, the presence of duplicated DNA around lox sites has to be taken into account. It is proposed that the presence of palindromic non-lox DNA interferes with the homology search of the Cre enzyme prior to the actual recombination event.  相似文献   

10.
Many natural DNA site-specific recombination systems achieve directionality and/or selectivity by making recombinants with a specific DNA topology. This property requires that the DNA architecture of the synapse and the mechanism of strand exchange are both under strict control. Previously we reported that Tn3 resolvase-mediated synapsis of the accessory binding sites from the Tn3 recombination site res can impose topological selectivity on Cre/loxP recombination. Here, we show that the topology of these reactions is profoundly affected by subtle changes in the hybrid recombination site les. Reversing the orientation of loxP relative to the res accessory sequence, or adding 4 bp to the DNA between loxP and the accessory sequence, can switch between two-noded and four-noded catenane products. By analysing Holliday junction intermediates, we show that the innate bias in the order of strand exchanges at loxP is maintained despite the changes in topology. We conclude that a specific synaptic structure formed by resolvase and the res accessory sequences permits Cre to align the adjoining loxP sites in several distinct ways, and that resolvase-mediated intertwining of the accessory sequences may be less than has been assumed previously.  相似文献   

11.
Bacteriophage P1 encodes a site-specific recombination system that consists of a site (loxP) at which recombination occurs and a gene, cre, whose protein product is essential for recombination. The loxP-Cre recombination event can be studied in greater detail by the use of an in vitro system that efficiently carries out recombination between two loxP sites. This paper presents a purification and characterization of the Cre protein (Mr = 35,000), which is the only protein required for the in vitro reaction. No high energy cofactors are needed. The purified Cre protein binds to loxP-containing DNA and makes complexes that are resistant to heparin. Cre efficiently converts 70% of the DNA substrate to products and appears to act stoichiometrically. The action of Cre on a loxP2 supercoiled substrate containing two directly repeated loxP sites results in product molecules that are topologically unlinked. Several models to account for the ability of Cre to produce free supercoiled products are discussed.  相似文献   

12.
The cre gene of coliphage P1 encodes a 38 kDa protein which efficiently promotes both intra- and intermolecular recombination at specific 34 bp sites called loxP. To demonstrate that the Cre protein can promote DNA recombination at loxP sites resident on a mammalian chromosome, a mouse cell line was constructed containing two directly repeated loxP sites flanking a 2.5 kb yeast DNA fragment and inserted between the SV40 promoter and the neo structural gene to disrupt expression of the neo gene. Expression of the cre gene in this cell line results in excision of the intervening yeast DNA and thus permits sufficient expression of the neo gene to allow cell growth in high concentrations of G418. Southern analysis indicated that Cre-mediated excision occurred at the loxP sites. In the absence of the cre gene such excisive events are quite rare. Cre-mediated recombination should thus be quite useful in effecting a variety of genomic rearrangements in eukaryotic cells.  相似文献   

13.
The bacteriophage P1-encoded recombinase Cre forms a simple DNA-protein complex at the specific recognition site loxP. Furthermore, Cre is able to mediate a synaptic union of two loxP sites. When two loxP sites are on the same linear DNA molecule, Cre binds the two sites together to form a circular protein-DNA complex. These complexes can be resolved into a linear DNA molecule and a closed circular DNA molecule, the end products of site-specific recombination.  相似文献   

14.
K Abremski  R Hoess  N Sternberg 《Cell》1983,32(4):1301-1311
Bacteriophage P1 encodes its own site-specific recombination system consisting of a site at which recombination takes place called loxP and a recombinase called Cre. A number of lambda and plasmid substrates containing two loxP sites have been constructed. Using these substrates we have shown both in vivo and in vitro that a fully functional loxP site is composed of no more than 60 bp. In vitro, when an extract containing Cre is used, recombination between loxP sites on supercoiled, nicked-circle or linear DNA occurs efficiently. The most surprising result from the in vitro studies is that 50% of the products of recombination between loxP sites on a supercoiled DNA substrate are present as free supercoiled circles. The ability to produce free products starting with a supercoiled substrate suggests a rather unique property of Cre-mediated lox recombination, the implications of which are discussed in terms of possible effects of the protein on the topology of the DNA molecule.  相似文献   

15.
The Cre/loxP system has been used in transgenic models primarily to excise DNA flanked by loxP sites for gene deletion. However, the insertion reaction is more difficult to control since the excision event is kinetically favored. Mutant loxP sites favoring integration were identified using a novel, bacterial screening system. Utilizing lambda integrase, mutant loxP sites were placed at the E. coli attB site and the excision-insertion ratios of incoming DNA plasmids carrying a second, complementary mutant loxP site were determined. Comparison of 50 mutant loxP sites combinations to the native loxP site revealed that mutations to the inner 6 bp of the Cre binding domain severely inhibited recombination, while those in the outer 8 bps were more tolerated. The most efficient loxP combinations resulted in 1421-fold and 1529-fold increases in relative integration rates over wild-type loxP sites. These loxP mutants could be exploited for site-directed "tag and insert" recombination experiments.  相似文献   

16.
The bacteriophage P1 Cre recombinase catalyzes site-specific recombination between 34-base-pair loxP sequences in a variety of topological contexts. This reaction is widely used to manipulate DNA molecules in applications ranging from benchtop cloning to genome modifications in transgenic animals. Despite the simple, highly symmetric nature of the Cre-loxP system, there is strong evidence that the reaction is asymmetric; the 'bottom' strands in the recombining loxP sites are preferentially exchanged before the 'top' strands. Here, we address the mechanistic basis for ordered strand exchange in the Cre-loxP recombination pathway. Using suicide substrates containing 5'-bridging phosphorothioate linkages at both cleavage sites, fluorescence resonance energy transfer between synapsed loxP sites and a Cre mutant that can cleave the bridging phosphorothioate linkage but not a normal phosphodiester linkage, we showed that preferential formation of a specific synaptic complex between loxP sites imposes ordered strand exchange during recombination and that synapsis stimulates cleavage of loxP sites.  相似文献   

17.
S Brecht  H Erdhart  M Soete  D Soldati 《Gene》1999,234(2):239-247
Site-specific DNA recombinases from bacteriophage and yeasts have been developed as novel tools for genome engineering both in prokaryotes and eukaryotes. The 38kDa Cre protein efficiently produces both inter- and intramolecular recombination between specific 34bp sites called loxP. We report here the in vivo use of Cre recombinase to manipulate the genome of the protozoan parasite Toxoplasma gondii. Cre catalyzes the precise removal of transgenes from T. gondii genome when flanked by two directly repeated loxP sites. The efficiency of excision has been determined using LacZ as reporter and indicates that it can easily be applied to the removal of undesired sequences such as selectable marker genes and to the determination of gene essentiality. We have also shown that the reversibility of the recombination reaction catalyzed by Cre offers the possibility to target site-specific integration of a loxP-containing vector in a chromosomally placed loxP target in the parasite. In mammalian systems, the Cre recombinase can be regulated by hormone and is used for inducible gene targeting. In T. gondii, fusions between Cre recombinase and the hormone-binding domain of steroids are constitutively active, hampering the utilization of this mode of post-translational regulation as inducible gene expression system.  相似文献   

18.
Altier C  Suyemoto M 《Gene》1999,240(1):99-106
Bacterial genes are often differentially expressed in response to specific environmental conditions. We have devised a method to identify regulated bacterial promoters, such that transient promoter expression leads to a permanent and selectable change in bacterial phenotype. This system consists of a promoterless derivative of cre, the phage P1 recombinase, carried on a plasmid, and two chromosomal loxP sites, the targets of the Cre recombinase. The loxP sites flank npt, conferring kanamycin resistance, and sacB, which confers sensitivity to sucrose, allowing positive selection for both the presence and absence of this chromosomal cassette. Fusion of active promoters to cre induces recombination of the loxP sites and deletion of intervening DNA, allowing selection on media containing sucrose, while inactive promoters fail to induce recombination and so remain resistant to kanamycin. We tested the system in Salmonella typhimurium using a known regulated promoter, that from the araBAD operon, and found it to be a sensitive indicator of gene expression over a wide range of promoter induction. We then used this system to identify S. typhimurium genes that are specifically expressed when bacteria interact with cultured epithelial cells and identified a novel DNA fragment, not found in E. coli, which might represent part of a new pathogenicity island.  相似文献   

19.
The Flp recombinase of yeast and the Cre recombinase of bacteriophage P1 both belong to the lambda-integrase (Int) family of site-specific recombinases. These recombination systems recognize recombination-target sequences that consist of two 13bp inverted repeats flanking a 6 or 8bp spacer sequence. Recombination reactions involve particular geometric and topological relationships between DNA target sites at synapsis, which we investigate using nicked-circular DNA molecules. Examination of the tertiary structure of synaptic complexes formed on nicked plasmid DNAs by atomic-force microscopy, in conjunction with detailed topological analysis using the mathematics of tangles, shows that only a limited number of recombination-site topologies are consistent with the global structures of plasmids bearing directly and inversely repeated sites. The tangle solutions imply that there is significant distortion of the Holliday-junction intermediate relative to the planar structure of the four-way DNA junction present in the Flp and Cre co-crystal structures. Based on simulations of nucleoprotein structures that connect the two-dimensional tangle solutions with three-dimensional models of the complexes, we propose a recombination mechanism in which the synaptic intermediate is characterized by a non-planar, possibly near-tetrahedral, Holliday-junction intermediate. Only modest conformational changes within this structure are needed to form the symmetric, planar DNA junction, which may be characteristic of shorter-lived intermediates along the recombination pathway.  相似文献   

20.
A mutational analysis of the bacteriophage P1 recombinase Cre   总被引:12,自引:0,他引:12  
Bacteriophage P1 encodes a 38,600 Mr site-specific recombinase, Cre, that is responsible for reciprocal recombination between sites on the P1 DNA called loxP. Using in vitro mutagenesis 67 cre mutants representing a total of 37 unique changes have been characterized. The mutations result in a wide variety of phenotypes as judged by the varying ability of each mutant Cre protein to excise a lacZ gene located between two loxP sites in vivo. Although the mutations are found throughout the entire cre gene, almost half are located near the carboxyl terminus of the protein, suggesting a region critical for recombinase function. DNA binding assays using partially purified mutant proteins indicate that mutations in two widely separated regions of the protein each result in loss of heparin-resistant complexes between Cre and a loxP site. These results suggest that Cre may contain two separate domains, both of which are involved in binding to loxP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号