首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A microarray consisting of oligonucleotide probes targeting variable regions of the 16S rRNA gene was designed and tested for the investigation of microbial communities in compost. Probes were designed for microorganisms that have been previously reported in the composting process and for plant, animal and human pathogens. The oligonucleotide probes were between 17 and 25 bp in length and included mostly species-specific sequences. Validation of probe specificity and optimization of hybridization conditions were conducted using fluorescently labeled 16S rRNA gene PCR products of pure culture strains. A labeling method employing a Cy3 or Cy5-labeled forward primer together with a phosphate-conjugated reverse primer for the production of single stranded DNA after a digestion step was optimised and used to label target DNA. A combination of two different DNA extraction methods using both physical and chemical lysis was found to give the best DNA yields. Increased hybridization signal intensities were obtained for probes modified with a 12 mer T-spacer. The microarray was found to have a detection limit of 10(3) cells, although in compost spiking experiments, the detection limit was reduced to 10(5) cells. The application of the microarray to compost samples indicated the presence of Streptococcus, Acinetobacter lwoffii, and Clostridium tetani in various compost samples. The presence of A. lwoffii in those compost samples was confirmed by PCR using primers specific for the organism. The aim of this study was to develop a molecular tool that would allow screening for the presence or absence of different microorganisms within compost samples.  相似文献   

2.
荧光原位杂交法检测双歧杆菌   总被引:6,自引:0,他引:6  
检验荧光原位杂交法在双歧杆菌属鉴定方面的调途。方法:采用对数生长期的8株双歧杆菌和10析其他厌氧、需氧杆菌在相同的条件下分别与双歧杆菌属特异性16SrRNA寡核苷酸基因探针和细菌界通用16SrRNA寡核苷酸基因探针在载玻片上进行原位杂交,在荧光显微镜下观察杂交结果,拍摄同一视野的荧光显微镜照片和相关显微镜照片,计算杂交率。结果所用的双歧杆菌菌株均与两种基因探针杂交,在荧光显微镜下发校菌与黑暗背景对  相似文献   

3.
Low accessibility of the rRNA is together with cell wall impermeability and low cellular ribosome content a frequent reason for failure of whole-cell fluorescence hybridization with fluorescently labeled oligonucleotide probes. In this study we compare accessibility data for the 16S rRNA of Escherichia coli (gamma Proteobacteria, Bacteria) with the phylogenetically distantly related organisms Pirellula sp. strain 1 (Planctomycetes, Bacteria) and Metallosphaera sedula (Crenarchaeota, Archaea) and the 18S rRNA accessibility of Saccharomyces cerevisiae (Eucarya). For a total of 537 Cy3-labeled probes, the signal intensities of hybridized cells were quantified under standardized conditions by flow cytometry. The relative probe-conferred fluorescence intensities are shown on color-coded small-subunit rRNA secondary-structure models. For Pirellula sp., most of the probes belong to class II and III (72% of the whole data set), whereas most of the probes targeting sites on M. sedula were grouped into class V and VI (46% of the whole data set). For E. coli, 45% of all probes of the data set belong to class III and IV. A consensus model for the accessibility of the small-subunit rRNA to oligonucleotide probes is proposed which uses 60 homolog target sites of the three prokaryotic 16S rRNA molecules. In general, open regions were localized around helices 13 and 14 including target positions 285 to 338, whereas helix 22 (positions 585 to 656) and the 3' half of helix 47 (positions 1320 to 1345) were generally inaccessible. Finally, the 16S rRNA consensus model was compared to data on the in situ accessibility of the 18S rRNA of S. cerevisiae.  相似文献   

4.
A 16S rRNA gene of the obligate intracellular bacterial parasite Sarcobium lyticum was amplified using the polymerase chain reaction in combination with site-specific primers. The amplified DNA was cloned, sequenced and compared with other bacterial 16S rRNA sequences. The analysis revealed that S. lyticum belongs to the gamma subclass of the Proteobacteria and shows the closest relationship to an intracellular Legionella species recovered by amoebal enrichment from the sputum of a patient with pneumonia. S. lyticum could be detected in situ with a fluorescent oligonucleotide probe by whole cell hybridization.  相似文献   

5.
The aim of this study was to develop a sensitive, cultivation-independent analytical method for Legionella in man-made water systems which can be performed within one day in crude sample extracts. The new assay for the genus Legionella is a paramagnetic bead based fluorescence sandwich hybridization assay (SHA) for the 16S rRNA based on two oligonucleotide probes which makes the method highly specific. An advantage over RT-PCR is the exclusive detection of viable cells and, due to the high number of 16S RNA molecules, the possibility to apply the method directly in crude cell extracts without prior purification of the nucleic acids. A high sensitivity was obtained by modifying the probe chemistry and hybridization conditions. The most sensitive assay uses a 3'-end biotin-labelled capture probe and a 3'-end DIG tailed detection probe and has a detection limit of 20 amol target molecules corresponding to 1.2x10(7) molecules of 16S rRNA and approximately 1800 Legionella cells. Using this assay type the number of Legionella cells was determined in Legionella contaminated water samples. The results show that the developed SHA can be applied for estimation of the approximate number of Legionella cells based on the number of 16S rRNA molecules in a water sample.  相似文献   

6.
Portions of the 16S rRNA from closely related species of the genus Bifidobacterium that are found in the human intestinal microflora were sequenced in order to design species-specific oligonucleotide probes. Five oligonucleotide probes ranging from 16 to 19 bases in length and complementary to 16S rRNA sequences from Bifidobacterium adolescentis, B. bifidum, B. breve, B. infantis, and B. longum were synthesized. With crude high-molecular-weight RNA preparations as targets, these probes showed the desired species specificity, even down to a 1-nucleotide difference. For the practical evaluation of these probes, their specificity and sensitivity were tested against seven strains of the same species and 54 strains of heterologous bacteria with fixed whole cells as targets. The probes for B. adolescentis, B. breve, and B. longum showed efficient and specific hybridization. Although the probes for B. bifidum and B. infantis cross-reacted with a few bacterial strains not isolated from humans, these probes showed species specificity for human intestinal bacteria. These 16S rRNA probes should prove valuable for the identification and detection of human intestinal Bifidobacterium species.  相似文献   

7.
T Yamamoto  M Morotomi    R Tanaka 《Applied microbiology》1992,58(12):4076-4079
Portions of the 16S rRNA from closely related species of the genus Bifidobacterium that are found in the human intestinal microflora were sequenced in order to design species-specific oligonucleotide probes. Five oligonucleotide probes ranging from 16 to 19 bases in length and complementary to 16S rRNA sequences from Bifidobacterium adolescentis, B. bifidum, B. breve, B. infantis, and B. longum were synthesized. With crude high-molecular-weight RNA preparations as targets, these probes showed the desired species specificity, even down to a 1-nucleotide difference. For the practical evaluation of these probes, their specificity and sensitivity were tested against seven strains of the same species and 54 strains of heterologous bacteria with fixed whole cells as targets. The probes for B. adolescentis, B. breve, and B. longum showed efficient and specific hybridization. Although the probes for B. bifidum and B. infantis cross-reacted with a few bacterial strains not isolated from humans, these probes showed species specificity for human intestinal bacteria. These 16S rRNA probes should prove valuable for the identification and detection of human intestinal Bifidobacterium species.  相似文献   

8.
Abstract A subclone of plasmid p14B8 containing the major part of a 23S rRNA gene of Bacillus subtilis was constructed and designated pJK1. Labeled plasmid pJK1 could be used as a DNA probe with conserved gene sequences. DNA-DNA hybridization experiments between filter-bound DNA from various bacteria and labeled pJK1 showed a good correlation between oligonucleotide sequence analysis of 16S rRNA and DNA homology values. Application of suboptimal or stringent hybridization conditions and an additional short incubation under the same conditions following hybridization yielded the best data for differentiating organisms related to B. subtilis from less or non-related bacteria.  相似文献   

9.
Direct cultivation-independent sequence retrieval of unidentified bacteria from histological tissue sections has been limited by the difficulty of selectively isolating specific bacteria from a complex environment. Here, a new DNA isolation approach is presented for prokaryotic cells. By this method, a potentially pathogenic strain of the genus Brachyspira from formalin-fixed human colonic biopsies were visualized by fluorescence in situ hybridization (FISH) with a 16S rRNA-targeting oligonucleotide probe, followed by laser capture microdissection (LCM) of the targeted cells. Direct 16S rRNA gene PCR was performed from the dissected microcolonies, and the subsequent DNA sequence analysis identified the dissected bacterial cells as belonging to the Brachyspira aalborgi cluster 1. The advantage of this technique is the ability to combine the histological recognition of the specific bacteria within the tissue with molecular analysis of 16S rRNA gene or other genes of interest. This method is widely applicable for the identification of noncultivable bacteria and their gene pool from formalin-fixed paraffin-embedded tissue samples.  相似文献   

10.
Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes is a method that is widely used to detect and quantify microorganisms in environmental samples and medical specimens by fluorescence microscopy. Difficulties with FISH arise if the rRNA content of the probe target organisms is low, causing dim fluorescence signals that are not detectable against the background fluorescence. This limitation is ameliorated by technical modifications such as catalyzed reporter deposition (CARD)-FISH, but the minimal numbers of rRNA copies needed to obtain a visible signal of a microbial cell after FISH or CARD-FISH have not been determined previously. In this study, a novel competitive FISH approach was developed and used to determine, based on a thermodynamic model of probe competition, the numbers of 16S rRNA copies per cell required to detect bacteria by FISH and CARD-FISH with oligonucleotide probes in mixed pure cultures and in activated sludge. The detection limits of conventional FISH with Cy3-labeled probe EUB338-I were found to be 370 ± 45 16S rRNA molecules per cell for Escherichia coli hybridized on glass microscope slides and 1,400 ± 170 16S rRNA copies per E. coli cell in activated sludge. For CARD-FISH the values ranged from 8.9 ± 1.5 to 14 ± 2 and from 36 ± 6 to 54 ± 7 16S rRNA molecules per cell, respectively, indicating that the sensitivity of CARD-FISH was 26- to 41-fold higher than that of conventional FISH. These results suggest that optimized FISH protocols using oligonucleotide probes could be suitable for more recent applications of FISH (for example, to detect mRNA in situ in microbial cells).  相似文献   

11.
One of the main causes of failure of fluorescence in situ hybridization with rRNA-targeted oligonucleotides, besides low cellular ribosome content and impermeability of cell walls, is the inaccessibility of probe target sites due to higher-order structure of the ribosome. Analogous to a study on the 16S rRNA (B. M. Fuchs, G. Wallner, W. Beisker, I. Schwippl, W. Ludwig, and R. Amann, Appl. Environ. Microbiol. 64:4973-4982, 1998), the accessibility of the 23S rRNA of Escherichia coli DSM 30083(T) was studied in detail with a set of 184 CY3-labeled oligonucleotide probes. The probe-conferred fluorescence was quantified flow cytometrically. The brightest signal resulted from probe 23S-2018, complementary to positions 2018 to 2035. The distribution of probe-conferred cell fluorescence in six arbitrarily set brightness classes (classes I to VI, 100 to 81%, 80 to 61%, 60 to 41%, 40 to 21%, 20 to 6%, and 5 to 0% of the brightness of 23S-2018, respectively) was as follows: class I, 3%; class II, 21%; class III, 35%; class IV, 18%; class V, 16%; and class VI, 7%. A fine-resolution analysis of selected areas confirmed steep changes in accessibility on the 23S RNA to oligonucleotide probes. This is similar to the situation for the 16S rRNA. Indeed, no significant differences were found between the hybridization of oligonucleotide probes to 16S and 23S rRNA. Interestingly, indications were obtained of an effect of the type of fluorescent dye coupled to a probe on in situ accessibility. The results were translated into an accessibility map for the 23S rRNA of E. coli, which may be extrapolated to other bacteria. Thereby, it may contribute to a better exploitation of the high potential of the 23S rRNA for identification of bacteria in the future.  相似文献   

12.
We have developed a multi-color fluorescence in situ hybridization (FISH) method which detects, by a single reaction, all seven species of Bifidobacterium (B. adolescentis, B. angulatum, B. bifidum, B. breve, B. catenulatum, B. dentium, and B. longum), the dominant bacteria in human feces. First, eight new types of oligonucleotide probe were designed, complementary with the 16S rRNA sequence specific to genus Bifidobacterium and each bifidobacterial species described above. Using whole cell hybridization, the fluorescent intensity was measured against the bacterial species targeted by each probe, to show that each probe is specific to the targeted bacteria and that the relative fluorescent intensity (RFI) as an indicator of probe accessibility is high at 61-117%. Then, bacterial species-specific probes were labeled with fluorochromes (FITC, TAMRA and Cy5) in seven different ways, singly or in combination. Using these probes, seven species of Bifidobacterium were differentially stained in mixed samples of cultured bacteria and feces from adult volunteers, proving the efficacy of this technique.  相似文献   

13.
A method for quantifying eubacterial cell densities in dilute communities of small bacterioplankton is presented. Cells in water samples were stained with 4',6-diamidino-2-phenylindole (DAPI), transferred to gelatin-coated slides, and hybridized with rhodamine-labeled oligonucleotide probes specific for kingdom-level 16S rRNA sequences. Between 48 and 69% of the cells captured on membrane filters were transferred to gelatin-coated slides. The number of DAPI-stained cells that were visualized with eubacterial probes varied from 35 to 67%. Only 2 to 4% of these cells also fluoresced following hybridization with a probe designed to target a eukaryotic 16S rRNA sequence. Between 0.1 and 6% of the bacterioplankton in these samples were autofluorescent and may have been mistaken as cells that hybridized with fluorescent oligonucleotide probes. Dual staining allows precise estimates of the efficiency of transfers of cells to gelatin films and can be used to measure the percentage of the total bacterioplankton that also hybridize with fluorescent oligonucleotide probes, indicating specific phylogenetic groups.  相似文献   

14.
A method for quantifying eubacterial cell densities in dilute communities of small bacterioplankton is presented. Cells in water samples were stained with 4',6-diamidino-2-phenylindole (DAPI), transferred to gelatin-coated slides, and hybridized with rhodamine-labeled oligonucleotide probes specific for kingdom-level 16S rRNA sequences. Between 48 and 69% of the cells captured on membrane filters were transferred to gelatin-coated slides. The number of DAPI-stained cells that were visualized with eubacterial probes varied from 35 to 67%. Only 2 to 4% of these cells also fluoresced following hybridization with a probe designed to target a eukaryotic 16S rRNA sequence. Between 0.1 and 6% of the bacterioplankton in these samples were autofluorescent and may have been mistaken as cells that hybridized with fluorescent oligonucleotide probes. Dual staining allows precise estimates of the efficiency of transfers of cells to gelatin films and can be used to measure the percentage of the total bacterioplankton that also hybridize with fluorescent oligonucleotide probes, indicating specific phylogenetic groups.  相似文献   

15.
M Boye  T Ahl    S Molin 《Applied microbiology》1995,61(4):1384-1390
Sequence analysis of domains 3 and 4 of 23S rRNA from Pseudomonas fluorescens Ag1 was carried out to allow the design of a strain-specific rRNA oligonucleotide probe targeting this strain. The specificity of the probe, Ps-Ag1, was assessed by dot blot analysis and whole-cell hybridization, and it was found to be specific for P. fluorescens Ag1. The correlation between the ribosomal content of P. fluorescens Ag1 and growth rate was determined during balanced growth conditions with generation times ranging from 1.2 to 31.8 h. Hybridization of the rRNA-targeting probes combined with charged coupled device-enhanced microscopy was used to determine the rRNA content. The total RNA content per cell was determined by staining with acridine orange and charged coupled device-enhanced microscopy. After 2 h under carbon starvation conditions, the rRNA content per cell decreased to 45% of the content of an exponentially growing cell. After 1 day of carbon starvation, the rRNA content had decreased to 20%. When cells were grown at different temperatures, it was found that the rRNA content per cell was only dependent on the substrate in the temperature range from 5 to 30 degrees C. P. fluorescens Ag1 was used in a mesocosm release experiment. The strain could be detected by use of the oligonucleotide probe targeting rRNA for 8 days in the water column and for 10 days on solid surfaces. The standard curve correlating growth rate with rRNA content was used to estimate the physiological activity of P. fluorescens Ag1 in the mesocosm experiment.  相似文献   

16.
【目的】筛选具有较强脱氮除磷能力的细菌,建立结合S1酶保护分析的分子探针技术,以分析该菌在发酵过程中的数量变化情况。【方法】采用缺磷培养基厌氧培养、富磷培养基好氧培养和硝酸盐还原产气实验进行脱氮除磷菌筛选。通过16S rRNA基因序列分析及同源性比对,结合菌株的生理生化鉴定试验,鉴定筛选株。设计相应的16S rRNA探针组,建立结合S1酶保护分析的分子探针技术。【结果】筛选的菌株被鉴定为假单胞菌Pseudomonas sp.,命名为LY10。菌株LY10在富磷培养基中好氧培养24 h,总磷去除率达90.01%。在反硝化聚磷培养基中培养48 h,总氮和总磷去除率分别为84.71%和89.37%。针对假单胞菌16S rRNA基因序列设计了一组用于结合S1酶保护分析的分子探针Probe-P.sp,该探针具有很高的甄别灵敏度,能够将LY10与丛毛单胞属(Commonas)等5种细菌区分开;分子探针定量分析假单胞菌LY10,其细胞量与吸光值呈线性关系,检测的线性范围为103~106 cells/mL,线性方程为:y=-0.967 87+0.372 99x(R2=0.996 7,n=5)。【结论】新筛的假单胞菌LY10的脱氮除磷能力较强,具有生物脱氮除磷的工业化应用潜质。所建立的结合S1酶保护分析的分子探针技术的特异性和灵敏度良好,有望应用于混菌体系中的假单胞菌的定性定量分析。  相似文献   

17.
A rapid, sensitive, inexpensive in situ hybridization technique, using 30-mer 16S rRNA probes, can specifically differentiate two closely related Bacillus spp., B. polymyxa and B. macerans. The 16S rRNA probes were labeled with a rhodamine derivative (Texas Red), and quantitative fluorescence measurements were made on individual bacterial cells. The microscopic fields analyzed were selected by phase-contrast microscopy, and the fluorescence imaging analyses were performed on 16 to 67 individual cells. The labeled 16S rRNA probe, POL, whose sequence was a 100% match with B. polymyxa 16S rRNA but only a 60% match with B. macerans 16S rRNA, gave quantitative fluorescence ratio measurements that were 34.8-fold higher for B. polymyxa cells than for B. macerans cells. Conversely, the labeled probe, MAC, which matched B. polymyxa 16S rRNA in 86.6% of its positions and B. macerans 16S rRNA in 100% of its positions, gave quantitative fluorescence measurements that were 59.3-fold higher in B. macerans cells than in B. polymyxa cells. Control probes, whose 16S rRNA sequence segment (P-M) was present in both B. polymyxa and B. macerans as well as a panprokaryotic probe (16S), having a 100% match with all known bacteria, hybridized equally well with both organisms. These latter hybridizations generated very high fluorescence signals, but their comparative fluorescence ratios (the differences between two organisms) were low. The control paneukaryotic probe (28S), which had less than 30% identity for both B. macerans and B. polymyxa, did not hybridize with either organism.  相似文献   

18.
The distribution and population density of aerobic hydrocarbon-oxidizing bacteria in the high-temperature oil fields of Western Siberia, Kazakhstan, and China were studied. Seven strains of aerobic thermophilic spore-forming bacteria were isolated from the oil fields and studied by microbiological and molecular biological methods. Based on the 16S rRNA gene sequences, phenotypic characteristics, and the results of DNA-DNA hybridization, the taxonomic affiliation of the isolates was tentatively established. The strains were assigned to the first and fifth subgroups of the genus Bacillus on the phylogenetic branch of the gram-positive bacteria. Strains B and 421 were classified as B. licheniformis. Strains X and U, located between B. stearothermophilus and B. thermocatenulatus on the phylogenetic tree, and strains K, Sam, and 34, related but not identical to B. thermodenitrificans and B. thermoleovorans, undoubtedly represent two new species. Phylogenetically and metabolically related representatives of thermophilic bacilli were found to occur in geographically distant oil fields.  相似文献   

19.
A rapid, sensitive, inexpensive in situ hybridization technique, using 30-mer 16S rRNA probes, can specifically differentiate two closely related Bacillus spp., B. polymyxa and B. macerans. The 16S rRNA probes were labeled with a rhodamine derivative (Texas Red), and quantitative fluorescence measurements were made on individual bacterial cells. The microscopic fields analyzed were selected by phase-contrast microscopy, and the fluorescence imaging analyses were performed on 16 to 67 individual cells. The labeled 16S rRNA probe, POL, whose sequence was a 100% match with B. polymyxa 16S rRNA but only a 60% match with B. macerans 16S rRNA, gave quantitative fluorescence ratio measurements that were 34.8-fold higher for B. polymyxa cells than for B. macerans cells. Conversely, the labeled probe, MAC, which matched B. polymyxa 16S rRNA in 86.6% of its positions and B. macerans 16S rRNA in 100% of its positions, gave quantitative fluorescence measurements that were 59.3-fold higher in B. macerans cells than in B. polymyxa cells. Control probes, whose 16S rRNA sequence segment (P-M) was present in both B. polymyxa and B. macerans as well as a panprokaryotic probe (16S), having a 100% match with all known bacteria, hybridized equally well with both organisms. These latter hybridizations generated very high fluorescence signals, but their comparative fluorescence ratios (the differences between two organisms) were low. The control paneukaryotic probe (28S), which had less than 30% identity for both B. macerans and B. polymyxa, did not hybridize with either organism.  相似文献   

20.
An oligonucleotide probe was selected from the 16S rRNA gene of Clavibacter michiganensis subsp. sepedonicus for specific in situ hybridization. The rhodamine-labelled oligonucleotide probe was used in conjunction with an indirect immunofluorescence procedure based on a specific monoclonal antibody detected with a fluorescein-labelled conjugate. Simultaneous labelling of bacterial cells with the oligonucleotide and antibody probes allows accurate microscopic identification of single cells when isolation and other methods of confirming bacterial identity are not possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号