首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Xu Z  Jablons DM  Gruenert DC 《Gene》2001,263(1-2):265-272
Current strategies for cDNA cloning are based on construction of cDNA libraries and colony screening. The process of obtaining a full-length cDNA clone can be highly time and labor intensive. Using the human actin gene as a model target cDNA, we have developed an RNA-capture method for rapid cloning of full-length cDNAs. The approach involves the capture of mRNA with expressed sequence tag (EST)-derived, biotin labeled antisense "capture" primers and streptavidin-coated magnetic beads. Full-length cDNA is then synthesized from purified EST-specific mRNA and cloned directly into plasmid vectors. The results of using beta-actin-based capture primers on cytoplasmic RNA were the isolation of both beta- and gamma-actin cDNA clones. Of the 16 actin-specific cDNA clones analyzed, 15 (93%) were full-length. This approach for cloning full-length cDNAs from available ESTs or partial cDNA sequences will facilitate a more rapid and efficient characterization of gene structure and function.  相似文献   

2.
3.
The expression of beta-actin, gamma-actin, alpha-tubulin, and beta-tubulin mRNA during the lectin activation of human peripheral blood lymphocytes was examined with specific cDNA clones. The resting lymphocyte has a low level of both alpha- and beta-tubulin mRNAs, and these increase 10-fold after 72 h of lectin stimulation in which maximum cell transformation is achieved. Although there is a slight increase in tubulin mRNA during the first 6 h, most of the increase occurs between 6 and 24 h as the cells start to increase their RNA content and progress from G0 into G1. Both beta- and gamma-actin mRNAs are more abundant than the tubulin mRNAs in resting cells, with beta-actin mRNA being the major species. Upon activation, beta-actin mRNA increases threefold, whereas gamma-actin mRNA increases almost sixfold. Both beta- and gamma-actin mRNA are elevated 2.5-fold as early as 6 h, the gamma-actin mRNA level then increasing more than beta-actin between 6 and 24 h, resulting in the reduced beta-actin/gamma-actin mRNA ratio. The lectin-stimulated lymphocyte has a similar beta-actin/gamma-actin mRNA ratio as that of the human leukemic T-lymphoblast cell line CCRF-CEM. These increases are over and above the general increase in polyadenylated RNA content upon lectin activation. On returning to a noncycling state, the levels of these cytoskeletal mRNAs decrease. There were two beta-tubulin mRNAs present in lymphocyte cytoplasm, one of 1.8 kilobases and one of 2.8 kilobases in length. The nongrowing lymphocytes had relatively lower levels of the larger sized mRNA. Upon stimulation, the relative level of the larger mRNA was increased, and at 72 h the cells had approximately equal levels of both mRNAs as did the leukemic lymphoblasts.  相似文献   

4.
cDNA clones encoding three classes of human actins have been isolated and characterized. The first two classes (gamma and beta, cytoplasmic actins) were obtained from a cDNA library constructed from simian virus 40-transformed human fibroblast mRNA, and the third class (alpha, muscle actin) was obtained from a cDNA library constructed from adult human muscle mRNA. A new approach was developed to enrich for full-length cDNAs. The human fibroblast cDNA plasmid library was linearized with restriction enzymes that did not cut the inserts of interest; it was then size-fractionated on gels, and the chimeric molecules of optimal length were selected for retransformation of bacteria. When the resulting clones were screened for actin-coding sequences it was found that some full-length cDNAs were enriched as much as 50- to 100-fold relative to the original frequency of full-length clones in the total library. Two types of clones were distinguished. One of these clones encodes gamma actin and contains 100 base pairs of 5' untranslated region, the entire protein coding region, and the 3' untranslated region. The second class encodes beta actin, and the longest such clone contains 45 base pairs of 5' untranslated region plus the remainder of the mRNA extending to the polyadenylic acid tail. A third class, obtained from the human muscle cDNA library, encodes alpha actin and contains 100 base pairs of 5' untranslated region, the entire coding region, and the 3' untranslated region. Analysis of the DNA sequences of the 5' end of the clones demonstrated that although beta- and gamma-actin genes start with a methionine codon (MET-Asp-Asp-Asp and MET-Glu-Glu-Glu, respectively), the alpha-actin gene starts with a methionine codon followed by a cysteine codon (MET-CYS-Asp-Glu-Asp-Glu). Since no known actin proteins start with a cysteine, it is likely that post-translational removal of cysteine in addition to methionine accompanies alpha-actin synthesis but not beta- and gamma-actin synthesis. This observation has interesting implications both for actin function and actin gene regulation and evolution.  相似文献   

5.
We have addressed the question of whether two highly conserved noncoding regions of the gamma-actin gene are of functional importance. Human gamma-actin gene constructs deleted for either the entire 3' untranslated region (UTR) and 3' flank or intron III sequences were transfected into mouse myoblasts and the resulting clones were analyzed for cell morphology and actin protein expression. Transfectants carrying the gamma-actin gene deleted for the 3' end (gamma 22) exhibited numerous long pseudopods and increased surface area. In contrast, transfectants expressing the gamma-actin gene deleted for intron III (gamma 156) were rounded with blebs over the cell surface and showed decreased surface area. The relative expression of beta- to gamma-actin protein decreased for both transfectant types. The total actin protein levels remained constant for the gamma 22 cells but decreased for the gamma 156 cells. The results indicate that alterations to transfectant cell morphology can be influenced by the presence or absence of different noncoding regions in the transfected gamma-actin gene. The mechanisms by which noncoding regions of the gamma-actin gene influence the impact of the gene are unknown. Nevertheless, these noncoding regions are isoform specific and highly conserved in evolution. We propose that the functional significance of the different actin isoforms may involve the properties of these noncoding regions in addition to the differences in protein sequence.  相似文献   

6.
7.
The stability of mRNA has been measured in 3T3 cells in the resting and the growing states, and also during the transition from the resting to the growing state. Pulse labeled poly(A)+ mRNA chased with uridine and cytidine supplemented growth medium decayed with a half-life of 6.5 hr in the resting state, 26 hr during the transition from the resting to the growing condition, and 18 hr during serum-stimulated growth. The half-life of poly(A)+ mRNA determined by steady state labeling yielded similar results in resting and serum-stimulated 3T3 cells. Thus during the transition from resting to serum-stimulated growth in 3T3 cells poly(A)+ mRNA becomes more stable.  相似文献   

8.
Human cytoplasmic actin proteins are encoded by a multigene family   总被引:21,自引:13,他引:8       下载免费PDF全文
We characterized nine human actin genes that we isolated (Engel et al., Proc. Natl. Acad. Sci. U.S.A. 78:4674-4678, 1981) from a library of cloned human DNA. Measurements of the thermal stability of hybrids formed between each cloned actin gene and alpha-, beta-, and gamma-actin mRNA demonstrated that only one of the clones is most homologous to sarcomeric actin mRNA, whereas the remaining eight clones are most homologous to cytoplasmic actin mRNA. By the following criteria we show that these nine clones represent nine different actin gene loci rather than different alleles or different parts of a single gene: (i) the restriction enzyme maps of the coding regions are dissimilar; (ii) each clone contains sufficient coding region to encode all or most of an entire actin gene; and (iii) each clone contains sequences homologous to both the 5' and 3' ends of the coding region of a cloned chicken beta-actin cDNA. We conclude, therefore, that the human cytoplasmic actin proteins are encoded by a multigene family.  相似文献   

9.
10.
11.
We have examined the role of feedback-regulation in the expression of the nonmuscle actin genes. C2 mouse myoblasts were transfected with the human beta- and gamma-actin genes. In gamma-actin transfectants we found that the total actin mRNA and protein pools remained unchanged. Increasing levels of human gamma-actin expression resulted in a progressive down-regulation of mouse beta- and gamma-actin mRNAs. Transfection of the beta-actin gene resulted in an increase in the total actin mRNA and protein pools and induced an increase in the levels of mouse beta-actin mRNA. In contrast, transfection of a beta-actin gene carrying a single-point mutation (beta sm) produced a feedback-regulatory response similar to that of the gamma-actin gene. Expression of a beta-actin gene encoding an unstable actin protein had no impact on the endogenous mouse actin genes. This suggests that the nature of the encoded actin protein determines the feedback-regulatory response of the mouse genes. The role of the actin cytoskeleton in mediating this feedback-regulation was evaluated by disruption of the actin network with Cytochalasin D. We found that treatment with Cytochalasin D abolished the down-regulation of mouse gamma-actin in both the gamma- and beta sm-actin transfectants. In contrast, a similar level of increase was observed for the mouse beta-actin mRNA in both control and transfected cells. These experiments suggest that the down-regulation of mouse gamma-actin mRNA is dependent on the organization of the actin cytoskeleton. In addition, the mechanism responsible for the down-regulation of beta-actin may be distinct from that governing gamma-actin. We conclude that actin feedback-regulation provides a biochemical assay for differences between the two nonmuscle actin genes.  相似文献   

12.
We have examined the control of actin isoform synthesis by pituitary-derived fibroblast growth factor and serum in BC3H1 cells, a tumor-derived nonfusing muscle cell line. Under differentiating conditions in BC3H1 cells, the synthesis of beta- and gamma-actin ceases, and the rate of alpha-actin synthesis is increased concomitant with cessation of cell growth. Addition of fetal calf serum to differentiated cells reverses the process, whereas the addition of pituitary-derived fibroblast growth factor inhibits synthesis of alpha-actin but fails to induce the synthesis of beta- and gamma-actin. Analysis of RNA from differentiated BC3H1 cells after the addition of fetal calf serum indicated that the serum-induced increase in beta- and gamma-actin synthesis reflected an increase in their mRNA levels. In contrast, the repression of alpha-actin synthesis by fetal calf serum or fibroblast growth factor appears to reflect the translation efficiency of alpha-actin mRNA. Fibroblast growth factor is a competence factor for BC3H1 cells which allows them to progress from G0 4 h into the G1 phase of the cell cycle. In order to understand the nature of the intracellular signals responsible for the effect of fibroblast growth factor, we treated cells with vanadate, a known inhibitor of tyrosine-specific protein phosphatases. Vanadate fully mimics the action of fibroblast growth on actin synthesis and creatine phosphokinase synthesis and causes BC3H1 cells to exit the G0 portion of the cell cycle, as demonstrated by the induction of the c-fos proto-oncogene following addition of serum, vanadate, or bovine pituitary-derived fibroblast growth factor to these cells. We conclude that repression of alpha-actin synthesis and induction of the synthesis of beta- and gamma-actin are under independent control and that the induction of beta- and gamma-nonmuscle actin synthesis following serum addition is independent from movement into the cell cycle, and dependent on as yet unidentified serum components. The rate of synthesis of alpha-actin can be controlled by a defined mitogenic polypeptide fibroblast growth factor, which in short term experiments primarily affects the rate of translation of alpha-actin mRNA. The repression by fibroblast growth factor is most likely due to activation of a tyrosine specific protein kinase(s).  相似文献   

13.
HuT-14T is a highly tumorigenic fibroblast cell line which exhibits a reduced steady-state level of beta-actin due to coding mutations in one of two beta-actin alleles. The normal rate of total actin synthesis could be restored in some clones of cells following transfection of the functional beta-actin gene but not following transfection of the functional gamma-actin gene. In gamma-actin gene-transfected substrains that have increased rates of gamma-actin synthesis, beta-actin synthesis is further reduced in a manner consistent with an autoregulatory mechanism, resulting in abnormal ratios of actin isoforms. Thus, both beta- and gamma-actin proteins can apparently regulate the synthesis of their coexpressed isoforms. In addition, decreased synthesis of normal beta-actin seems to correlate with a concomitant down-regulation of tropomyosin isoforms.  相似文献   

14.
The impact of the human beta- and gamma-actin genes on myoblast cytoarchitecture was examined by their stable transfection into mouse C2 myoblasts. Transfectant C2 clones expressing high levels of human beta-actin displayed increases in cell surface area. In contrast, C2 clones with high levels of human gamma-actin expression showed decreases in cell surface area. The changes in cell morphology were accompanied by changes in actin stress-fiber organization. The beta-actin transfectants displayed well-defined filamentous organization of actin; whereas the gamma-actin transfectants displayed a more diffuse organization of the actin cables. The role of the beta-actin protein in generating the enlarged cell phenotype was examined by transfecting a mutant form of the human beta-actin gene. Transfectant cells were shown to incorporate the aberrant actin protein into stress-fiber-like structures. High level expression of the mutant beta-actin produced decreases in cell surface area and disruption of the actin microfilament network similar to that seen with transfection of the gamma-actin gene. In contrast, transfection of another mutant form of the beta-actin gene which encodes an unstable protein had no impact on cell morphology or cytoarchitecture. These results strongly suggest that it is the nature of the encoded protein that determines the morphological response of the cell. We conclude that the relative gene expression of beta- and gamma-actin is of relevance to the control of myoblast cytoarchitecture. In particular, we conclude that the beta- and gamma-actin genes encode functionally distinct cytoarchitectural information.  相似文献   

15.
16.
Using several actin isotype-specific cDNA probes, we found actin mRNA of two size classes, 2.1 and 1.5 kilobases (kb), in extracts of polyadenylated and nonpolyadenylated RNA from sexually mature CD-1 mouse testes. Although the 2.1-kb sequence was present in both meiotic and postmeiotic testicular cell types, it decreased manyfold in late haploid cells. The 1.5-kb actin sequence was not detectable in meiotic pachytene spermatocytes (or in liver or kidney cells), but was present in round and elongating spermatids and residual bodies. To differentiate between the beta- and gamma-actin mRNAs, we isolated a cDNA, pMGA, containing the 3' untranslated region of a mouse cytoplasmic actin that has homology to the 3' untranslated region of a human gamma-actin cDNA but not to the 3' untranslated regions of human alpha-, beta-, or cardiac actins. Dot blot hybridizations with pMGA detected high levels of presumptive gamma-actin mRNA in pachytene spermatocytes and round spermatids, with lower amounts found in elongating spermatids. Hybridization with the 3' untranslated region of a rat beta-actin probe revealed that round spermatids contained higher levels of beta-actin mRNA than did pachytene spermatocytes or residual bodies. Both probes hybridized to the 2.1-kb actin mRNA but failed to hybridize to the 1.5-kb mRNA.  相似文献   

17.
18.
19.
20.
Using mRNA from rat liver a cDNA library was constructed in lambda gt11Amp3. Immunochemical screening identified 15 clones producing transferrin. The identity of two clones was confirmed by nucleotide sequencing, which also indicated a presegment rich in hydrophobic amino acids but lack of a prosegment in precursor transferrin. A 920 base pair insert in one clone corresponded to 84% of the N-terminal domain of transferrin, which was synthesized as a hybrid protein with bacterial beta-galactosidase. A 1540 base pair insert in another clone corresponded to the N-terminal plus 50% of the carboxy terminal domain of transferrin. The product of this clone possessed only antigenic properties of transferrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号