共查询到20条相似文献,搜索用时 0 毫秒
1.
Laminins are a major component of basement membranes. Each laminin molecule is a heterotrimeric glycoprotein composed of one alpha, one beta, and one gamma chain. Fifteen laminin isoforms exist, assembled from various combinations of 5alpha, 3beta, and 3gamma chains. The embryonic lung has abundant laminin isoforms. Increasing evidence suggests that different laminin isoforms have unique functions in lung development. Studies of embryonic lung explants and organotypic co-cultures show that laminin alpha1 and laminin 111 are important for epithelial branching morphogenesis and that laminin alpha2 and laminin 211 have a role in smooth muscle cell differentiation. In vivo studies of laminin alpha5-deficient mice indicate that this laminin chain, found in laminins 511 and 521, is essential for normal lobar septation in early lung development and normal alveolization and distal epithelial cell differentiation and maturation in late lung development. However, not all of the laminin chains present in the developing lung appear to be necessary for normal lung development since laminin alpha4 null mice do not have obvious lung abnormalities and laminin gamma2 null mice have only minimal changes in lung development. The mechanisms responsible for the lung phenotypes in mice with laminin mutations are unknown, but it is clear that multiple laminin isoforms are crucial for lung development and that different laminin isoforms exhibit specific, non-overlapping functions. 相似文献
2.
Kikkawa Y Yu H Genersch E Sanzen N Sekiguchi K Fässler R Campbell KP Talts JF Ekblom P 《Experimental cell research》2004,300(1):94-108
The presence of many laminin receptors of the beta1 integrin family on most cells makes it difficult to define the biological functions of other major laminin receptors such as integrin alpha6beta4 and dystroglycan. We therefore tested the binding of a beta1 integrin-null cell line GD25 to four different laminin variants. The cells were shown to produce dystroglycan, which based on affinity chromatography bound to laminin-1, -2/4, and -10/11, but not to laminin-5. The cells also expressed the integrin alpha6Abeta4A variant. GD25 beta1 integrin-null cells are known to bind poorly to laminin-1, but we demonstrate here that these cells bind avidly to laminin-2/4, -5, and -10/11. The initial binding at 20 min to each of these laminins could be inhibited by an integrin alpha6 antibody, but not by a dystroglycan antibody. Hence, integrin alpha6Abeta4A of GD25 cells was identified as a major receptor for initial GD25 cell adhesion to three out of four tested laminin isoforms. Remarkably, cell adhesion to laminin-5 failed to promote cell spreading, proliferation, and extracellular signal-regulated kinase (ERK) activation, whereas all these responses occurred in response to adhesion to laminin-2/4 or -10/11. The data establish GD25 cells as useful tools to define the role integrin alpha6Abeta4A and suggest that laminin isoforms have distinctly different capacities to promote cell adhesion and signaling via integrin alpha6Abeta4A. 相似文献
3.
Epithelial laminin alpha5 is necessary for distal epithelial cell maturation, VEGF production, and alveolization in the developing murine lung 总被引:1,自引:0,他引:1
Nguyen NM Kelley DG Schlueter JA Meyer MJ Senior RM Miner JH 《Developmental biology》2005,282(1):111-125
Laminin alpha5 is prominent in the basement membrane of alveolar walls, airways, and pleura in developing and adult lung. Targeted deletion of laminin alpha5 in mice causes developmental defects in multiple organs, but embryonic lethality has precluded examination of the latter stages of lung development. To identify roles for laminin alpha5 in lung development, we have generated an inducible lung epithelial cell-specific Lama5 null (SP-CLama5(fl/-)) mouse through use of the Cre/loxP system, the human surfactant protein C promoter, and the reverse tetracycline transactivator. SP-CLama5(fl/-) embryos exposed to doxycycline from E6.5 died a few hours after birth. Compared to control littermates, SP-CLama5(fl/-) lungs had dilated, enlarged distal airspaces, but basement membrane ultrastructure was preserved. Distal epithelial cell differentiation was perturbed, with a marked reduction of alveolar type II cells and a virtual absence of type I cells. Cell proliferation was reduced and apoptosis was increased. Capillary density was diminished, and this was associated with a decrease in total lung VEGF production. Overall, these findings indicate that epithelial laminin alpha5, independent of its structural function, is necessary for murine lung development, and suggest a role for laminin alpha5 in signaling pathways that promote alveolar epithelial cell differentiation and VEGF expression. 相似文献
4.
Mechanisms of endothelin-1-induced MAP kinase activation in adrenal glomerulosa cells 总被引:1,自引:0,他引:1
Shah BH Baukal AJ Chen HD Shah AB Catt KJ 《The Journal of steroid biochemistry and molecular biology》2006,102(1-5):79-88
G protein-coupled receptors (GPCRs) such as angiotensin II, bradykinin and endothelin-1 (ET-1) are critically involved in the regulation of adrenal function, including aldosterone production from zona glomerulosa cells. Whereas, substantial data are available on the signaling mechanisms of ET-1 in cardiovascular tissues, such information in adrenal glomerulosa cells is lacking. Bovine adrenal glomerulosa (BAG) cells express receptors for endothelin-1 (ET-1) and their stimulation caused phosphorylation of Src (at Tyr416), proline-rich tyrosine kinase (Pyk2 at Tyr402), extracellularly regulated signal kinases (ERK1/2), and their dependent proteins, p90 ribosomal S6 kinase (RSK-1) and CREB. ET-1 elicited these responses predominantly through activation of a Gi-linked cascade with a minor contribution from the Gq/PKC pathway. Whereas, selective inhibition of EGF-R kinase with AG1478 caused complete inhibition of EGF-induced ERK/RSK-1/CREB activation, it caused only partial reduction (30–40%) of such ET-1-induced responses. Consistent with this, inhibition of matrix metalloproteinases (MMPs) with GM6001 reduced ERK1/2 activation by ET-1, consistent with partial involvement of the MMP-dependent EGF-R activation in this cascade. Activation of ERK/RSK-1/CREB by both ET-1 and EGF was abolished by inhibition of Src, indicating its central role in ET-1 signaling in BAG cells. Moreover, the signaling characteristics of ET-1 in cultured BAG cells closely resembled those observed in clonal adrenocortical H295R cells. The ET-1-induced proliferation of BAG and H295 R cells was much smaller than that induced by Ang II or FGF. These data demonstrate that ET-1 causes ERK/RSK-1/CREB phosphorylation predominantly through activation of Gi and Src, with a minor contribution from MMP-dependent EGF-R transactivation. 相似文献
5.
The cdc2 kinases are important cell cycle regulators in all eukaryotes. MAP kinases, a closely related family of protein kinases, are involved in cell cycle regulation in yeasts and vertebrates, but previously have not been documented in plants. We used PCR to amplify Brassica napus DNA sequences using primers corresponding to amino sequences that are common to all known protein kinases. One sequence was highly similar to KSS1, a MAP kinase from Saccharomyces cerevisiae. This sequence was used to isolate a full-length MAP kinase-like clone from a pea cDNA library. The pea clone, called D5, shared approximately 50% amino acid identity with MAP kinases from yeasts and vertebrates and about 41% identity with plant cdc2 kinases. An expression protein encoded by D5 was recognized by an antiserum specific to human MAP kinases (ERKs). Messenger RNA corresponding to D5 was present at similar levels in all tissues examined, without regard to whether cell division or elongation were occurring in those tissues. 相似文献
6.
7.
Laminins are components of basement membranes that are required for morphogenesis, organizing cell adhesions and cell signaling. Studies have suggested that laminins function as alpha(x) beta(y) gamma(z) heterotrimers in vivo. In C. elegans, there is only one laminin beta gene, suggesting that it is required for all laminin functions. Our analysis is consistent with the role of the laminin beta as a subunit of laminin heterotrimers; the same cells express the laminin alpha, beta, and gamma subunits, the laminin beta subunit localizes to all basement membranes throughout development, and secretion of the beta subunit requires an alpha subunit. RNAi inhibition of the beta subunit gene or of the other subunit genes causes an embryonic lethality phenotype. Furthermore, a distinctive set of phenotypes is caused by both viable laminin alpha and beta partial loss-of-function mutations. These results show developmental roles for the laminin beta subunit, and they provide further genetic evidence for the importance of heterotrimer assembly in vivo. 相似文献
8.
Yang SR Cho SD Ahn NS Jung JW Park JS Jo EH Hwang JW Kim SH Lee BH Kang KS Lee YS 《Mutation research》2005,579(1-2):47-57
The two distinct members of the mitogen-activated protein (MAP) kinase family c-Jun N-terminal protein kinase (JNK) and p38 MAP kinase, play an important role in central nervous system (CNS) development and differentiation. However, their role and functions are not completely understood in CNS. To facilitate in vitro study, we have established an immortal stem cell line using SV40 from fetal rat embryonic day 17. In these cells, MAP kinase inhibitors (SP600125, SB202190, and PD98059) were treated for 1, 24, 48, and 72 h to examine the roles of protein kinases. Early inhibition of JNK did not alter phenotypic or morphological changes of immortalized cells, however overexpression of Bax and decrease of phosphorylated AKT was observed. The prolonged inhibition of JNK induced polyploidization of immortalized cells, and resulted in differentiation and inhibition of cell proliferation. Moreover, JNK and p38 MAP kinase but not ERK1/2 was activated, and p21, p53, and Bax were overexpressed by prolonged inhibition of JNK.
These results indicate that JNK and p38 MAP kinase could play dual roles on cell survival and apoptosis. Furthermore, this established cell line could facilitate study of the role of JNK and p38 MAP kinase on CNS development or differentiation/apoptosis. 相似文献
9.
Tokuda H Takai S Hanai Y Matsushima-Nishiwaki R Hosoi T Harada A Ohta T Kozawa O 《FEBS letters》2007,581(7):1311-1316
We previously showed that endothelin-1 (ET-1) stimulates the synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, in osteoblast-like MC3T3-E1 cells, and that protein kinase C (PKC)-dependent p44/p42 mitogen-activated protein (MAP) kinase plays a part in the IL-6 synthesis. In the present study, we investigated the effect of (-)-epigallocatechin gallate (EGCG), one of the major flavonoids containing in green tea, on ET-1-induced IL-6 synthesis in osteoblasts and the underlying mechanism. EGCG significantly reduced the synthesis of IL-6 stimulated by ET-1 in MC3T3-E1 cells as well primary cultured mouse osteoblasts. SB203580, a specific inhibitor of p38 MAP kinase, but not SP600125, a specific SAPK/JNK inhibitor, suppressed ET-1-stimulated IL-6 synthesis. ET-1-induced phosphorylation of p38 MAP kinase was not affected by EGCG. On the other hand, EGCG suppressed the phosphorylation of p44/p42 MAP kinase induced by ET-1. Both the IL-6 synthesis and the phosphorylation of p44/p42 MAP kinase stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA), a direct activator of PKC, were markedly suppressed by EGCG. The phosphorylation of MEK1/2 and Raf-1 induced by ET-1 or TPA were also inhibited by EGCG. These results strongly suggest that EGCG inhibits ET-1-stimulated synthesis of IL-6 via suppression of p44/p42 MAP kinase pathway in osteoblasts, and the inhibitory effect is exerted at a point between PKC and Raf-1 in the ET-1 signaling cascade. 相似文献
10.
Yonghui Jin Moritoshi Furu Yoichiro Kajita Hiroto Mitsui Michiko Ueda Tomitaka Nakayama Junya Toguchida 《Biochemical and biophysical research communications》2010,391(3):1471-2685
Hypoxia has been considered to affect the properties of tissue stem cells including mesenchymal stem cells (MSCs). Effects of long periods of exposure to hypoxia on human MSCs, however, have not been clearly demonstrated. MSCs cultured under normoxic conditions (20% pO2) ceased to proliferate after 15-25 population doublings, while MSCs cultured under hypoxic conditions (1% pO2) retained the ability to proliferate with an additional 8-20 population doublings. Most of the MSCs cultured under normoxic conditions were in a senescent state after 100 days, while few senescent cells were found in the hypoxic culture, which was associated with a down-regulation of p16 gene expression. MSCs cultured for 100 days under hypoxic conditions were superior to those cultured under normoxic conditions in the ability to differentiate into the chondro- and adipogenic, but not osteogenic, lineage. Among the molecules related to mitogen-activated protein kinase (MAPK) signaling pathways, extracellular signal regulated kinase (ERK) was significantly down-regulated by hypoxia, which helped to inhibit the up-regulation of p16 gene expression. Therefore, the hypoxic culture retained MSCs in an undifferentiated and senescence-free state through the down-regulation of p16 and ERK. 相似文献
11.
12.
p38 MAP kinase plays a role in G2 checkpoint activation and inhibits apoptosis of human B cell lymphoma cells treated with etoposide 总被引:2,自引:0,他引:2
Kurosu T Takahashi Y Fukuda T Koyama T Miki T Miura O 《Apoptosis : an international journal on programmed cell death》2005,10(5):1111-1120
p38 MAPK is mainly activated by stress stimuli and mediates signals that regulate various cellular responses, including cell-cycle progression and apoptosis, depending on cell types and stimuli. Here we examine the role of p38 in regulation of apoptosis and cell cycle checkpoint in Daudi B-cell lymphoma cells treated with the topoisomerase II inhibitor etoposide. Etoposide activated p38, inhibited the G2/M transition with the persistent inhibitory phosphorylation of Cdc2 on Tyr15, and caused apoptosis of Daudi cells. Inducible expression of a dominant negative p38α mutant in Daudi cells reduced the inhibition of Cdc2 as well as G2/M arrest and augmented apoptosis induced by etoposide. SB203580, a specific inhibitor of p38α and p38β, similarly reduced the inhibitory phosphorylation of Cdc2 as well as G2/M arrest and augmented apoptosis of Daudi cells treated with etoposide. These results suggest that p38 plays a role in G2/M checkpoint activation through induction of the persistent inhibitory phosphorylation of Cdc2 and, thereby, inhibits apoptosis of Daudi cells treated with etoposide. The present study, thus, raises the possibility that p38 may represent a new target for sensitization of lymphoma cells to DNA-damaging chemotherapeutic agents. 相似文献
13.
Mona is an SH3 and SH2 domain-containing adapter molecule that is induced during monocytic differentiation. Here we have first shown that M-CSFR is the major Mona partner in M-CSF signaling, the interaction being mediated through tyrosine 697 of the receptor. Next we asked whether Mona expression would alter the Ras/MAP kinase pathway since Mona is a likely competitor of Grb2 for binding to M-CSFR. We found that M-CSF induced late and massive phosphorylation of ERK molecules in Mona-expressing myeloid cells compared to non-expressing cells. These results suggest that Mona expression might modify M-CSF signaling during monocytic differentiation. 相似文献
14.
John T. Benjamin David C. Gaston Brian A. Halloran Lynn M. Schnapp Roy Zent Lawrence S. Prince 《Developmental biology》2009,335(2):407-417
Prenatal inflammation prevents normal lung morphogenesis and leads to bronchopulmonary dysplasia (BPD), a common complication of preterm birth. We previously demonstrated in a bacterial endotoxin mouse model of BPD that disrupting fibronectin localization in the fetal lung mesenchyme causes arrested saccular airway branching. In this study we show that expression of the fibronectin receptor, integrin α8β1 is decreased in the lung mesenchyme in the same inflammation model suggesting it is required for normal lung development. We verified a role for integrin α8β1 in lung development using integrin α8-null mice, which develop fusion of the medial and caudal lobes as well as abnormalities in airway division. We further show in vivo and in vitro that α8-null fetal lung mesenchymal cells fail to form stable adhesions and have increased migration. Thus we propose that integrin α8β1 plays a critical role in lung morphogenesis by regulating mesenchymal cell adhesion and migration. Furthermore, our data suggest that disruption of the interactions between extracellular matrix and integrin α8β1 may contribute to the pathogenesis of BPD. 相似文献
15.
16.
The present study was to determine the effects of the heme oxygenase-1 (HO-1) modified mesenchymal stem cells (MSCs) transplantation into acute MI hearts on normalizing the ratio of MMPs/TIMPs and remodeling in infarcted myocardium. HO-1 was transfected into cultured MSCs using an adenoviral vector. 1 × 106 Ad-HO-1-transfected MSCs (HO-1-MSCs) or Ad-Null-transfected MSCs (Null-MSCs) or PBS was respectively injected into rat hearts 1 h intramyocardially after myocardial infarction. The cardiac performance was significantly improved and left ventricular dilatation was significantly attenuated in HO-1-MSCs transplanted hearts. Moreover, a significant increase in microvessel density was observed in HO-1-MSCs transplanted hearts. TIMP2,3 expression in HO-1-MSCs transplanted hearts was significantly increased, and MMP2,9 expression in HO-1-MSCs transplanted hearts was significantly lower than Null-MSCs transplanted and PBS-treated hearts. TIMP1 expression did not vary significantly. Null-MSCs transplantation did not decrease the expression of MMP2,9 significantly compared with PBS-treated hearts. The ratio of TIMP2 to MMP2, and TIMP3 to MMP9 in cell-grafted hearts was increased significantly. HO-1-MSCs transplantation normalize the ratio of MMPs/TIMPs, contributing to the reversion of myocardial extracellular remodeling. 相似文献
17.
Jukka Westermarck Tim Holmstrm Matti Ahonen John E. Eriksson Veli-Matti Khri 《Matrix biology》1998,17(8-9)
Collagenase-1 (matrix metalloproteinase-1, MMP-1) is expressed by several types of cells, including fibroblasts, and apparently plays an important role in the remodeling of collagenous extracellular matrix in various physiologic and pathologic situations. Here, we have examined the molecular mechanisms of the activation of fibroblast MMP-1 gene expression by a naturally occurring non-phorbol ester type tumor promoter okadaic acid (OA), a potent inhibitor of serine/threonine protein phosphatase 2A. We show that in fibroblasts OA activates three distinct subgroups of mitogen activated protein kinases (MAPKs): extracellular signal-regulated kinase 1,2 (ERK 1,2), c-Jun N-terminal-kinase/stress-activated protein kinase (JNK/SAPK) and p38. Activation of MMP-1 promoter by OA is entirely blocked by overexpression of dual-specificity MAPK phosphatase CL100. In addition, expression of kinase-deficient forms of ERK 1,2, SAPKβ, p38, or JNK/SAPK kinase SEK1 strongly inhibited OA-elicited activation of MMP-1 promoter. OA-elicited enhancement of MMP-1 mRNA abundance was also strongly prevented by two chemical MAPK inhibitors: PD 98059, a specific inhibitor of the activation of ERK1,2 kinases MEK1,2; and SB 203580, a selective inhibitor of p38 activity. Results of this study show that MMP-1 gene expression in fibroblasts is coordinately regulated by ERK1,2, JNK/SAPK, and p38 MAPKs and suggest an important role for the stress-activated MAPKs JNK/SAPK and p38 in the activation of MMP-1 gene expression. Based on these observations, it is conceivable that specific inhibition of stress-activated MAPK pathways may serve as a novel therapeutic target for inhibiting degradation of collagenous extracellular matrix. 相似文献
18.
The mitogen-activated protein (MAP) kinases (p44mapk and p42mapk), also known as extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), are activated in response to a variety of extracellular signals, including growth factors, hormones and, neurotransmitters. We have investigated MAP kinase signal transduction pathways in normal human osteoblastic cells. Normal human bone marrow stromal (HBMS), osteoblastic (HOB), and human (TE85, MG-63, SaOS-2), rat (ROS 17/2.8, UMR-106) and mouse (MC3T3-E1) osteoblastic cell lines contained immunodetectable p44mapk/ERK1 and p42mapk/ERK2. MAP kinase activity was measured by 'in-gel' assay myelin basic protein as the substrate. Mainly ERK2 was rapidly activated (within 10 min) by bFGF, IGF-I and PDGF-BB in normal HOB, HBMS and human osteosarcoma cells, whereas both ERK1 and ERK2 were activated by growth factors in rat osteoblast-like cell lines, ROS 17/2.8 and UMR-106. The ERK1 activation was greater than the ERK2 in ROS 17/2.8 cells. Furthermore, ERK2 was also activated by bFGF and PDGF-BB in the mouse osteoblastic cell line, MC3T3-E1. This is the first demonstration of inter-species differences in the activation of MAP kinases in osteoblastic cells. Cyclic AMP derivatives or cAMP generating agents such as PTH and forskolin inhibited ERK2 activation by bFGF and PDGF-BB suggesting a 'cross-talk' between the two different signalling pathways activated by receptor tyrosine kinases and cAMP-dependent protein kinase. The accumulated results also suggest that the MAP kinases may be involved in mediating mitogenic and other biological actions of bFGF, IGF-I and PDGF-BB in normal human osteoblastic and bone marrow stromal cells. 相似文献
19.
Kim SJ Kang HS Lee MY Lee SJ Seol JW Park SY Kim IS Kim NS Kim SZ Kwak YG Kim JS 《Biochemical and biophysical research communications》2006,349(2):716-722
This study investigated the signaling pathways responsible for ketamine-induced cardiac depression in guinea pigs. The left ventricular development pressure (LVDP), velocity of the change in pressure (dP/dt), and heart rate (HR) accompanied with the total magnesium efflux ([Mg]e) were measured simultaneously in perfused hearts. The level of activation of the extracellular signal-regulated kinases 1/2 (ERK 1/2) and p38 mitogen-activated protein (MAP) kinase. The intracellular ionized magnesium concentration ([Mg2+]i) was measured using Mag-fura 2 AM in a single cardiomyocyte. Ketamine produced reversible decreases in the LVDP, dP/dt, and HR accompanied by increases in the [Mg]e. Ketamine also produced significant activation of p38 MAP kinase and ERK 1/2, and produced a dose-dependent increase in the [Mg2+]i, which was inhibited SB203580 and PD98059. These results suggest that ketamine-induced cardiac depression can be partly responsible for the increase in [Mg2+]i and [Mg]e, accompanied by the activation of p38 MAP kinase and ERK 1/2 in guinea pigs. 相似文献
20.
cAMP targeting of p38 MAP kinase inhibits thrombin-induced NF-kappaB activation and ICAM-1 expression in endothelial cells 总被引:1,自引:0,他引:1
Rahman A Anwar KN Minhajuddin M Bijli KM Javaid K True AL Malik AB 《American journal of physiology. Lung cellular and molecular physiology》2004,287(5):L1017-L1024