首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ge X  Rao G 《Biotechnology progress》2012,28(3):872-877
Bioprocess development is a data-driven process requiring a large number of experiments to be conducted under varying conditions. Small-scale upstream bioprocess development is often performed in shake flasks because they are inexpensive and can be operated in parallel. However, shake flasks are often not equipped to accurately monitor critical process parameters such as pH, dissolved oxygen, and CO2 concentrations. Therefore, there is no definitive information on oxygen supply of growing cells, CO2 formation, and pH changes. Here we describe several shake flask fermentations where all three parameters are monitored by disposable noninvasive optical sensors. The sensitive element of these sensors is a thin, luminescent patch affixed inside the flask. Small electronic devices for excitation and fluorescence detection are positioned outside the shake flask for noninvasive monitoring. By measuring the process parameters throughout the course of the E. coli fermentations, we obtain information that is not routinely available in shake flask fermentations. For example, for cultures with only a few millimeters liquid depth, oxygen limitation can occur at relatively low agitation speeds. Under certain conditions oscillations in dissolved oxygen can occur. An increase in shaker speed and a decrease in culture volume can increase the oxygen availability and reduce the duration of oxygen limitation.  相似文献   

2.
溶氧水平对红豆杉细胞悬浮培养的影响研究   总被引:4,自引:0,他引:4  
紫杉醇 (Taxol)是源自红豆杉提取物的一种高度衍生化的二萜类化合物 ,临床实验结果表明紫杉醇对于卵巢癌、乳腺癌、胃肠道癌等具有明显的抗肿瘤活性[1] ,因而受到世界各国的广泛关注 ,并已被美国食品与药品管理局 (FDA)批准用于卵巢癌与乳腺癌的治疗[2 ] 。到目前为止紫杉醇仍然主要从树皮中提取 ,但由于红豆杉生长缓慢 ,天然资源非常有限 ,加快其替代来源的研究势在必行。利用植物细胞悬浮培养生产紫杉醇作为一种可行的选择 ,近年来取得了较大的进展[3 ,4 ] 。本文研究了摇瓶及 2 0 L反应器培养过程的溶氧水平对细胞生长及紫杉醇…  相似文献   

3.
While wave‐mixed and stirred bag bioreactors are common devices for rapid, safe insect cell culture‐based production at liter‐scale, orbitally shaken disposable flasks are mainly used for screening studies at milliliter‐scale. In contrast to the two aforementioned bag bioreactor types, which can be operated with standard or disposable sensors, shaker flasks have not been instrumented until recently. The combination of 250 mL disposable shake flasks with PreSens's Shake Flask Reader enables both pH and dissolved oxygen to be measured, as well as allowing characterization of oxygen mass transfer. Volumetric oxygen transfer coefficients (kLa‐values) for PreSens 250 mL disposable shake flasks, which were determined for the first time in insect cell culture medium at varying culture volumes and shaker frequencies, ranged between 4.4 and 37.9/h. Moreover, it was demonstrated that online monitoring of dissolved oxygen in shake flasks is relevant for limitation‐free growth of insect cells up to high cell densities in batch mode (1.6×107 cells/mL) and for the efficient expression of an intracellular model protein.  相似文献   

4.
A new online monitoring technique to measure the physiological parameters, dissolved oxygen (DO) and pH of microbial cultures in continuously shaken 24-well microtiter plates (MTP) is introduced. The new technology is based on immobilised fluorophores at the bottom of standard 24-well MTPs. The sensor MTP is installed in a sensor dish reader, which can be fixed on an orbital shaker. This approach allows real online measurements of physiological parameters during continuous shaking of cultures without interrupting mixing and mass transfer like currently available technologies do. The oxygen transfer conditions at one constant shaking frequency (250 1/min) and diameter (25 mm) was examined with the chemical sulphite oxidation method. Varied filling volumes (600–1,200 μL) of Escherichia coli cultures demonstrated the importance of sufficient oxygen transfer to the culture. Cultures with higher filling volumes were subjected to an oxygen limitation, which influenced the cell metabolism and prolongated the cultivation time. The effects could be clearly monitored by online DO and pH measurements. A further study of different media in an E. coli fermentation elucidated the different growth behaviour in response to the medium composition. The MTP fermentations correlated very well with parallel fermentations in shake flasks. The new technique gives valuable new insights into biological processes at a very small scale, thus enabling parallel experimentation and shorter development times in bioprocessing.  相似文献   

5.
Oxygen and nutrient limitation was investigated in order to identify the origin of a lower specific ajmalicine production in Catharanthus roseus cultures at high cell densities in an induction medium. The effect of oxygen limitation was explored by comparing two identically aerated and agitated high cell density bioreactor cultures with dissolved oxygen (DO) concentration of 15% and 85% of air saturation, with respect to alkaloid formation and related enzymes activities. Oxygen had an evident effect on ajmalicine production: in the high DO cultures production was more than 5 times higher than in the low DO cultures. The difference in ajmalicine production between high and low DO could not be explained by the enzyme activity profiles. Moreover, the productivity in the high density culture could not restored to the level of a low density culture (at a high DO) by increasing the DO alone. The effect of nutrient limitation was studied with response surface methodology in shake flask cultures. Nutrient limitation could not be demonstrated to be responsible for the productivity loss. Alkaloid and enzyme measurements in the shake flask cultures supported previous findings that the tryptamine pathway may regulate alkaloid production, provided that the terpenoid pathway is sufficiently active. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.

Background  

Shake flasks are widely used because of their low price and simple handling. Many researcher are, however, not aware of the physiological consequences of oxygen limitation and substrate overflow metabolism that occur in shake flasks. Availability of a wireless measuring system brings the possibilities for quality control and design of cultivation conditions.  相似文献   

7.
Mass transfer is known to play a critical role in bioprocess performance and henceforth monitoring dissolved O2 (DO) and dissolved CO2 (dCO2) is of paramount importance. At bioreactor level these parameters can be monitored online and can be controlled by sparging air/oxygen or stirrer speed. However, traditional small-scale systems such as shake flasks lack real time monitoring and also employ only surface aeration with additional diffusion limitations imposed by the culture plug. Here we present implementation of intensifying surface aeration by sparging air in the headspace of the reaction vessel and real-time monitoring of DO and dCO2 in the bioprocesses to evaluate the impact of intensified surface aeration. We observed that sparging air in the headspace allowed us to keep dCO2 at low level, which significantly improved not only biomass growth but also protein yield. We expect that implementing such controlled smart shake flasks can minimize the process development gap which currently exists in shake flask level and bioreactor level results.  相似文献   

8.
在摇瓶和5 L发酵罐中研究了溶氧 (DO) 对Blakeslea trispora分批发酵生产β-胡萝卜素的影响,总结了5 L发酵罐中β-胡萝卜素发酵过程中溶氧的变化规律.结果表明,当500 mL摇瓶装液量为50 mL,转速为240 r/min条件下发酵生产β-胡萝卜素产量最大,达到3.416 g/L; 5 L发酵罐中,在搅拌转速为1 000 r/min,通气量为1.5 vvm的条件下,β-胡萝卜素的产量可达到3.712 g/L,略高于摇瓶,这可能是由于5 L发酵罐中的气液传递和混合状况好于摇瓶,促进了产物的合成.  相似文献   

9.
We describe a new device with parallel optical measurement of dissolved oxygen (DO) and pH in up to nine shake flasks applicable in any conventional shaking incubator. Measurement ranges are 0–500% of air saturation for oxygen and 5.5–8.5 for pH. It was used to characterize growth profiles of different l-lysine producing strains of Corynebacterium glutamicum, of Saccharomyces cerevisiae and of Escherichia coli. Cultures in unbaffled flasks were highly reproducible. Oxygen limitation was indicated online which is particularly important when cultivating fast growing cells as E. coli. C. glutamicum strains showed distinct characteristic patterns of DO and pH indicating biological events. During the cultivation of S. cerevisiae on glucose, fructose and galactose, oxygen uptake rate was determined using the predetermined value of k L a. pH measurement was used to determine the minimum buffer requirement for a culture of C. glutamicum.  相似文献   

10.
Oxygen mass transfer in shake flasks is an important aspect limiting the culture of aerobic microorganisms. In this work, mass transfer of oxygen through a closure and headspace of shake flasks is investigated. New equations for prediction of kGa in shake flasks with closures are introduced. Using Pseudomonas putida, microbial growth on glucose (fast metabolism) and phenol (slow metabolism) in shake flasks with closures were studied, considering both substrate and oxygen restrictions. A combined model for oxygen mass transfer and microbial growth is shown to accurately predict experimental oxygen concentrations and oxygen yield factors during growth experiments more accurately than previous models.  相似文献   

11.

Background

Here we describe a novel cultivation method, called EnBase?, or enzyme-based-substrate-delivery, for the growth of microorganisms in millilitre and sub-millilitre scale which yields 5 to 20 times higher cell densities compared to standard methods. The novel method can be directly applied in microwell plates and shake flasks without any requirements for additional sensors or liquid supply systems. EnBase is therefore readily applicable for many high throughput applications, such as DNA production for genome sequencing, optimisation of protein expression, production of proteins for structural genomics, bioprocess development, and screening of enzyme and metagenomic libraries.

Results

High cell densities with EnBase are obtained by applying the concept of glucose-limited fed-batch cultivation which is commonly used in industrial processes. The major difference of the novel method is that no external glucose feed is required, but glucose is released into the growth medium by enzymatic degradation of starch. To cope with the high levels of starch necessary for high cell density cultivation, starch is supplied to the growing culture suspension by continuous diffusion from a storage gel. Our results show that the controlled enzyme-based supply of glucose allows a glucose-limited growth to high cell densities of OD600 = 20 to 30 (corresponding to 6 to 9 g l-1 cell dry weight) without the external feed of additional compounds in shake flasks and 96-well plates. The final cell density can be further increased by addition of extra nitrogen during the cultivation. Production of a heterologous triosphosphate isomerase in E. coli BL21(DE3) resulted in 10 times higher volumetric product yield and a higher ratio of soluble to insoluble product when compared to the conventional production method.

Conclusion

The novel EnBase method is robust and simple-to-apply for high cell density cultivation in shake flasks and microwell plates. The potential of the system is that the microbial growth rate and oxygen consumption can be simply controlled by the amount (and principally also by the activity) of the starch-degrading enzyme. This solves the problems of uncontrolled growth, oxygen limitation, and severe pH drop in shaken cultures. In parallel the method provides the basis for enhanced cell densities. The feasibility of the new method has been shown for 96-well plates and shake flasks and we believe that it can easily be adapted to different microwell and deepwell plate formats and shake flasks. Therefore EnBase will be a helpful tool especially in high throughput applications.  相似文献   

12.
The entomopathogenic fungus Isaria fumosorosea is capable of dimorphic growth (hyphal or yeast-like) in submerged culture. Using 250-mL baffled flasks, culture volumes of 50, 100, 150, and 200 mL were grown in a shaker incubator at 350 rpm and 28°C. Dissolved oxygen (DO) was continuously monitored using a non-invasive oxygen monitoring system. Culture volumes of 50 mL maintained DO concentrations above 10% throughout the 3-day growth period and accumulated biomass and produced blastospores more rapidly (1.2×109 blastospores mL?1 in 2 days) than the other culture volumes tested. Dissolved oxygen was depleted in culture volumes of 100, 150, and 200 mL after 20.5, 16.8, and 13.5 h, respectively. The DO in 150 and 200 mL cultures remained exhausted (<3%) throughout the growth period resulting in significantly lower blastospore yields and increased hyphal growth. These results were used to establish oxygen levels (>20% DO) for I. fumosorosea growth in 100-L bioreactors resulting in blastospore production (1.1×109 blastospores mL?1 in 2 days) comparable to highly aerated, low volume shake flask cultures. In addition, maintaining higher DO levels resulted in increased blastospore production by cultures of I. fumosorosea grown on low-cost nitrogen sources (cottonseed meal and soy flour) that previously elicited excessive hyphal growth. These studies showed that oxygen availability is essential for significant yeast-like growth by I. fumosorosea cultures and that continuous monitoring of oxygen concentrations in shake flask cultures can be used to establish aeration conditions for bioreactors.  相似文献   

13.
In recent years, several automated scale-down bioreactor systems have been developed to increase efficiency in cell culture process development. ambr™ is an automated workstation that provides individual monitoring and control of culture dissolved oxygen and pH in single-use, stirred-tank bioreactors at a working volume of 10–15 mL. To evaluate the ambr™ system, we compared the performance of four recombinant Chinese hamster ovary cell lines in a fed-batch process in parallel ambr™, 2-L bench-top bioreactors, and shake flasks. Cultures in ambr™ matched 2-L bioreactors in controlling the environment (temperature, dissolved oxygen, and pH) and in culture performance (growth, viability, glucose, lactate, Na+, osmolality, titer, and product quality). However, cultures in shake flasks did not show comparable performance to the ambr™ and 2-L bioreactors.  相似文献   

14.
Disposable orbitally shaken TubeSpin bioreactor 600 tubes (TS600s) were recently developed for the bench-scale cultivation of animal cells in suspension. Here we compared batch cultures of Sf9 insect cells in TS600s, spinner flasks, and shake flasks. Superior cell growth was observed in TS600s and shake flasks as compared with spinner flasks, and more favorable oxygen-enriched cell culture conditions were observed in TS600s as compared with either spinner or shake flasks. The results demonstrated the suitability of TS600s as a disposable vessel for the cultivation of Sf9 cells in suspension.  相似文献   

15.
Summary A culture of Bacillus subtilis, in which the relative production of acetoin (Ac) and butanediol (Bu) is highly sensitive to oxygen tension as well as to mixing conditions, was used to evaluate several culture conditions in 500-ml shake flasks. The concentration ratio of these metabolites (Ac/Bu) produced in a defined period of culture time was used as a parameter for comparative purposes. The influence of working volume, shaking speed, broth viscosity and the presence of baffles were evaluated. Using unbaffled flasks it was found that working volume had the most influence on oxygenation in shake flasks, especially below 10%, where differences in Ac/Bu ratios up to ten times could be measured. Shaking speed played an important role only at values higher than 400 rpm or when small working volumes were used. The addition of xanthan gum decreased the Ac/Bu ratio nearly four times under equivalent working conditions and also diminished the influence of shaking speed. In general, Ac/Bu was higher when sulphite oxygen transfer rate (OTR) values were higher. However, the test culture was able to detect differences which were not evident using the OTR method. Comparing Ac/Bu ratios in stirred fermentors from the literature, it seems that similar oxygenation conditions can be reached in non-baffled shake flasks only at very high shaking speeds using small working volumes. With baffled flasks, our data suggest that better oxygenation and mixing can be achieved in shake flasks if compared with those obtained in stirred fermentors at conventional power inputs.  相似文献   

16.
The transient growth of Artemisia annua hairy roots was compared for cultures grown in shake flasks and in bubble column and mist reactors. Instantaneous growth rates were obtained by numerically differentiating the transient biomass measurements. Specific sugar consumption rates showed good agreement with literature values. From the growth rate and sugar consumption rate, the specific yield and maintenance coefficient for sugar were determined for all three culture systems. These values were statistically indistinguishable for roots grown in shake flasks and bubble columns. In contrast, the values for roots grown in bubble columns and mist reactors were statistically different, suggesting that sugar utilization by roots grown in these two systems may be different. By measuring respiration rates in the bubble column reactor we also determined the actual biomass yield and maintenance coefficient for O(2) and CO(2). Together with an elemental analysis of the roots, this allowed us to obtain a reasonable carbon balance.  相似文献   

17.
We describe a study of oxygen transfer in shake flasks using a non-invasive optical sensor. This study investigates the effect of different plugs, presence of baffles, and the type of media on the dissolved oxygen profiles during Escherichia coli fermentation. We measured the volumetric mass transfer coefficient (k(L)a) under various conditions and also the resistances of the various plugs. Finally, we compared shake flask k(L)a with that from a stirred tank fermentor. By matching k(L)a's we were able to obtain similar growth and recombinant protein product formation kinetics in both a fermentor and a shake flask. These results provide a quantitative comparison of fermentations in a shake flask vs. a bench-scale fermentor and should be valuable in guiding scale-up efforts.  相似文献   

18.
溶氧对变溶菌素发酵的影响   总被引:7,自引:0,他引:7  
变溶菌素是由球孢链霉菌产生的一种胞外溶菌酶群。它包括几种不同类型的溶菌酶,有着广阔的用途和良好的应用前景。许多研究结果[1,2]表明,它比卵清溶菌酶有更为广泛的溶菌谱,应用范围更广,尤其是在预防和治疗龋齿[3]方面有其独特的优点。在医药上可用作灭菌剂,也可用其作?..  相似文献   

19.
Batch cultivations of the nikkomycin Z producer Streptomyces tendae were performed in three different parallel bioreactor systems (milliliter-scale stirred-tank reactors, shake flasks and shaken microtiter plate) in comparison to a standard liter-scale stirred-tank reactor as reference. Similar dry cell weight concentrations were measured as function of process time in stirred-tank reactors and shake flasks, whereas only poor growth was observed in the shaken microtiter plate. In contrast, the nikkomycin Z production differed significantly between the stirred and shaken bioreactors. The measured product concentrations and product formation kinetics were almost the same in the stirred-tank bioreactors of different scale. Much less nikkomycin Z was formed in the shake flasks and MTP cultivations, most probably due to oxygen limitations. To investigate the non-Newtonian shear-thinning behavior of the culture broth in small-scale bioreactors, a new and simple method was applied to estimate the rheological behavior. The apparent viscosities were found to be very similar in the stirred-tank bioreactors, whereas the apparent viscosity was up to two times increased in the shake flask cultivations due to a lower average shear rate of this reactor system. These data illustrate that different engineering characteristics of parallel bioreactors applied for process development can have major implications for scale-up of bioprocesses with non-Newtonian viscous culture broths.  相似文献   

20.
Small-scale upstream bioprocess development often occurs in flasks and multi-well plates. These culturing platforms are often not equipped to accurately monitor and control critical process parameters; thus they may not yield conditions representative of manufacturing. In response, we and others have developed optical sensors that enable small-scale process monitoring. Here we have compared two parameters critical to control in industrial cell culture, pH and dissolved oxygen (DO), measured with our optical sensors versus industrially accepted electrochemical probes. For both optical sensors, agreement with the corresponding electrochemical probe was excellent. The Pearson Correlations between the optical sensors and electrochemical probes were 98.7% and 99.7%, for DO and pH, respectively. Also, we have compared optical pH sensor performance in regular (320 mOsm/kg) and high-osmolality (450 mOsm/kg) cell culture media to simulate the increase in osmolality in pH-controlled cultures. Over a pH range of 6.38-7.98 the average difference in pH readings in the two media was 0.04 pH units. In summary, we have demonstrated that these optical sensors agree well with standard electrochemical probes. The accuracy of the optical probes demonstrates their ability to detect potential parameter drift that could have significant impact on growth, production kinetics, and protein product quality. We have also shown that an increase in osmolality that could result from controlling pH or operating the reactor in fed-batch mode has an insignificant impact on the functionality of the pH patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号