首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hong CB  Kim YJ  Moon S  Shin YA  Cho YS  Lee JY 《BMB reports》2012,45(1):47-50
The International HapMap Project and the Human Genome Diversity Project (HGDP) provide plentiful resources on human genome information to the public. However, this kind of information is limited because of the small sample size in both databases. A Genome-Wide Association Study has been conducted with 8,842 Korean subjects as a part of the Korea Association Resource (KARE) project. In an effort to build a publicly available browsing system for genome data resulted from large scale KARE GWAS, we developed the KARE browser. This browser provides users with a large amount of single nucleotide polymorphisms (SNPs) information comprising 1.5 million SNPs from population-based cohorts of 8,842 samples. KAREBrowser was based on the generic genome browser (GBrowse), a webbased application tool developed for users to navigate and visualize the genomic features and annotations in an interactive manner. All SNP information and related functions are available at the web site http://ksnp.cdc. go.kr/karebrowser/.  相似文献   

2.
The large number of ESTs generated for Arabidopsis and rice in recent years now act as an important complement to whole genome sequencing projects. The Arabidopsis Genome Initiative has begun a coordinated effort to sequence the entire genome and, as a result, increasing numbers of large sequence entries can be found in the public databases. In addition, the mitochondrial genome of Arabidopsis has been completely sequenced. Genome sequencing studies and the public sequence databases have begun to influence the direction of diverse areas of research from physiology to evolution.  相似文献   

3.

Background  

Single nucleotide polymorphisms (SNPs) are important tools in studying complex genetic traits and genome evolution. Computational strategies for SNP discovery make use of the large number of sequences present in public databases (in most cases as expressed sequence tags (ESTs)) and are considered to be faster and more cost-effective than experimental procedures. A major challenge in computational SNP discovery is distinguishing allelic variation from sequence variation between paralogous sequences, in addition to recognizing sequencing errors. For the majority of the public EST sequences, trace or quality files are lacking which makes detection of reliable SNPs even more difficult because it has to rely on sequence comparisons only.  相似文献   

4.

Background

Public SNP databases are frequently used to choose SNPs for candidate genes in the association and linkage studies of complex disorders. However, their utility for such studies of diseases with ethnic-dependent background has never been evaluated.

Results

To estimate the accuracy and completeness of SNP public databases, we analyzed the allele frequencies of 41 SNPs in 10 candidate genes for obesity and/or osteoporosis in a large American-Caucasian sample (1,873 individuals from 405 nuclear families) by PCR-invader assay. We compared our results with those from the databases and other published studies. Of the 41 SNPs, 8 were monomorphic in our sample. Twelve were reported for the first time for Caucasians and the other 29 SNPs in our sample essentially confirmed the respective allele frequencies for Caucasians in the databases and previous studies. The comparison of our data with other ethnic groups showed significant differentiation between the three major world ethnic groups at some SNPs (Caucasians and Africans differed at 3 of the 18 shared SNPs, and Caucasians and Asians differed at 13 of the 22 shared SNPs). This genetic differentiation may have an important implication for studying the well-known ethnic differences in the prevalence of obesity and osteoporosis, and complex disorders in general.

Conclusion

A comparative analysis of the SNP data of the candidate genes obtained in the present study, as well as those retrieved from the public domain, suggests that the databases may currently have serious limitations for studying complex disorders with an ethnic-dependent background due to the incomplete and uneven representation of the candidate SNPs in the databases for the major ethnic groups. This conclusion attests to the imperative necessity of large-scale and accurate characterization of these SNPs in different ethnic groups.  相似文献   

5.
MOTIVATION: Single nucleotide polymorphisms (SNPs) analysis is an important means to study genetic variation. A fast and cost-efficient approach to identify large numbers of novel candidates is the SNP mining of large scale sequencing projects. The increasing availability of sequence trace data in public repositories makes it feasible to evaluate SNP predictions on the DNA chromatogram level. MAVIANT, a platform-independent Multipurpose Alignment VIewing and Annotation Tool, provides DNA chromatogram and alignment views and facilitates evaluation of predictions. In addition, it supports direct manual annotation, which is immediately accessible and can be easily shared with external collaborators. RESULTS: Large-scale SNP mining of polymorphisms bases on porcine EST sequences yielded more than 7900 candidate SNPs in coding regions (cSNPs), which were annotated relative to the human genome. Non-synonymous SNPs were analyzed for their potential effect on the protein structure/function using the PolyPhen and SIFT prediction programs. Predicted SNPs and annotations are stored in a web-based database. Using MAVIANT SNPs can visually be verified based on the DNA sequencing traces. A subset of candidate SNPs was selected for experimental validation by resequencing and genotyping. This study provides a web-based DNA chromatogram and contig browser that facilitates the evaluation and selection of candidate SNPs, which can be applied as genetic markers for genome wide genetic studies. AVAILABILITY: The stand-alone version of MAVIANT program for local use is freely available under GPL license terms at http://snp.agrsci.dk/maviant. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

6.
Plant genome databases play an important role in the archiving and dissemination of data arising from the international genome projects. Recent developments in bioinformatics, such as new software tools, programming languages and standards, have produced better access across the Internet to the data held within them.An increasing emphasis is placed on data analysis and indeed many resources now provide tools allied to the databases, to aid in the analysis and interpretation of the data. However, a considerable wealth of information lies untapped by considering the databases as single entities and will only be exploited by linking them with a wide range of data sources. Data from research programs such as comparative mapping and germplasm studies may be used as tools, to gain additional knowledge but without additional experimentation. To date, the current plant genome databases are not yet linked comprehensively with each other or with these additional resources, although they are clearly moving toward this. Here, the current wealth of public plant genome databases is reviewed, together with an overview of initiatives underway to bind them to form a single plant genome infrastructure.  相似文献   

7.
The increase in availability of resequencing data is greatly accelerating SNP discovery and has facilitated the development of SNP genotyping assays. This, in turn, is increasing interest in annotation of individual SNPs. Currently, these data are only available through curation, or comparison to a reference genome. Many species lack a reference genome, but are still important genetic models or are significant species in agricultural production or natural ecosystems. For these species, it is possible to annotate SNPs through comparison with cDNA, or data from well‐annotated genes in public repositories. We present SNPMeta, a tool which gathers information about SNPs by comparison with sequences present in GenBank databases. SNPMeta is able to annotate SNPs from contextual sequence in SNP assay designs, and SNPs discovered through genotyping by sequencing (GBS) approaches. However, SNPs discovered through GBS occur throughout the genome, rather than only in gene space, and therefore do not annotate at high rates. SNPMeta can therefore be used to annotate SNPs in nonmodel species or species that lack a reference genome. Annotations generated by SNPMeta are highly concordant with annotations that would be obtained from a reference genome.  相似文献   

8.
SUMMARY: Investigators conducting studies of the molecular genetics of complex traits in humans often need rationally to select a set of single nucleotide polymorphisms (SNPs) from the hundreds or thousands available for a candidate gene. Accomplishing this requires integration of genomic data from distributed databases and is both time-consuming and error-prone. We developed the TAMAL (Technology And Money Are Limiting) web site to help identify promising SNPs for further investigation. For a given list of genes, TAMAL identifies SNPs that meet user-specified criteria (e.g. haplotype tagging SNPs or SNP predicted to lead to amino acid changes) from current versions of online resources (i.e. HapMap, Perlegen, Affymetrix, dbSNP and the UCSC genome browser). AVAILABILITY: TAMAL is a platform independent web-based application available free of charge at http://neoref.ils.unc.edu/tamal. SUPPLEMENTARY INFORMATION: http://neoref.ils.unc.edu/tamal/.  相似文献   

9.
Sequencing the human genome has allowed the discovery of millions of DNA sequence variants. Sequence variations in human DNA are mainly present asSingle Nucleotide Polymorphisms (SNPs); this common form of variation is found about once every 1,000 bases in the human genome and 1.8 million SNPs have now been identified and located. The accessibility of databases of SNPs opens the possibility of studying the influence of these polymorphisms on disease risks as well as on drug responses. Numerous approaches have been set up for the identification of SNPs. In this review we describe the main techniques used for the identification of these polymorphisms. They rely on two major consequences of sequence variations: the apparition or the disappearance of restriction enzyme sites or the alteration of DNA strand hybridization due to the presence of a mismatch. Southern blotting and restriction endonucleases have allowed the development of the technique ofrestriction fragment length polymorphisms (RFLPs), now performed on PCR products. Several other approaches such as denaturing high-performance liquid chromatography or real-time PCR can detect allele differences upon re-hybridization and heteroduplex formation. However, DNA sequencing remains the obligate step for the positive identification of known or unknown SNPs. At last, the development of high-throughput methods allows a large increase in the rate of discovery of SNPs likely.  相似文献   

10.
单核苷酸多态性(SNPs)是人类基因组中最常见的变异形式。作为第三代遗传标记,SNP在基因定位、克隆、遗传多态性方面具有广泛应用,特别是作为基因诊断标记在预防医学中具有十分重要的作用。近年来,随着人类基因组计划的发展,数以百万计的SNP被陆续发现,并可在公共数据库中免费获得。SNP数量的快速增加和SNP检测方法的发展,为其在肿瘤易感性领城的应用提供了可能。在本综述中,我们介绍了几种高通量检测SNP的分析方法,总结了大规模SNP分析技术在肿瘤易感性中的应用,介绍了目前人们对于不同人群中的SNP分析、肿瘤易感基因、个体肿瘤易感性的理解,以及研究SNP标记与肿瘤易感性关系时存在的难点。  相似文献   

11.
Discovery of single nucleotide polymorphisms (SNPs) requires analysis of redundant sequences such as those available in large public databases. The ability to detect SNPs, especially those of low frequency, is dependent on the depth and scale of the discovery effort. Large numbers of SNPs have been identified by mining large-scale EST surveys and whole genome sequencing projects. These surveys however are subject to ascertainment bias and the inherent errors in large-scale single pass sequencing efforts. For example, the number of steps involved in the construction and sequencing of cDNA libraries make ESTs highly error prone, resulting in an increased frequency of nonvalid SNPs obtained in these surveys. Sequences of mtDNA genes are often incorporated into cDNA libraries as an artifact of the library construction process and are typically either subtracted from cDNA libraries or are considered superfluous when evaluating the information content of EST datasets. Sequences of mtDNA genes provide a unique resource for the analysis of SNP parameters in EST projects. This study uses sequences from four turkey muscle cDNA libraries to demonstrate how mtDNA sequences gleaned from collections of ESTs can be used to estimate SNP parameters and thus help predict the validity of SNPs.  相似文献   

12.
Discovery of single nucleotide polymorphisms (SNPs) requires analysis of redundant sequences such as those available in large public databases. The ability to detect SNPs, especially those of low frequency, is dependent on the depth and scale of the discovery effort. Large numbers of SNPs have been identified by mining large-scale EST surveys and whole genome sequencing projects. These surveys however are subject to ascertainment bias and the inherent errors in large-scale single pass sequencing efforts. For example, the number of steps involved in the construction and sequencing of cDNA libraries make ESTs highly error prone, resulting in an increased frequency of nonvalid SNPs obtained in these surveys. Sequences of mtDNA genes are often incorporated into cDNA libraries as an artifact of the library construction process and are typically either subtracted from cDNA libraries or are considered superfluous when evaluating the information content of EST datasets. Sequences of mtDNA genes provide a unique resource for the analysis of SNP parameters in EST projects. This study uses sequences from four turkey muscle cDNA libraries to demonstrate how mtDNA sequences gleaned from collections of ESTs can be used to estimate SNP parameters and thus help predict the validity of SNPs.  相似文献   

13.
14.
The public EST (expressed sequence tag) databases represent an enormous but heterogeneous repository of sequences, including many from a broad selection of plant species and a wide range of distinct varieties. The significant redundancy within large EST collections makes them an attractive resource for rapid pre-selection of candidate sequence polymorphisms. Here we present a strategy that allows rapid identification of candidate SNPs in barley (Hordeum vulgare L.) using publicly available EST databases. Analysis of 271,630 EST sequences from different cDNA libraries, representing 23 different barley varieties, resulted in the generation of 56,302 tentative consensus sequences. In all, 8171 of these unigene sequences are members of clusters with six or more ESTs. By applying a novel SNP detection algorithm (SNiPpER) to these sequences, we identified 3069 candidate inter-varietal SNPs. In order to verify these candidate SNPs, we selected a small subset of 63 present in 36 ESTs. Of the 63 SNPs selected, we were able to validate 54 (86%) using a direct sequencing approach. For further verification, 28 ESTs were mapped to distinct loci within the barley genome. The polymorphism information content (PIC) and nucleotide diversity () values of the SNPs identified by the SNiPpER algorithm are significantly higher than those that were obtained by random sequencing. This demonstrates the efficiency of our strategy for SNP identification and the cost-efficient development of EST-based SNP-markers.The first two authors contributed equally to this work  相似文献   

15.
Technology and genetics have advanced to the point where genotyping thousands of individuals at thousands of marker locations around the whole human genome is possible. The whole-genome scan for detection of complex disease genes is a widely discussed topic. We review some of the recent high-density genotyping experiments and discuss related details, particularly the extent and variability of linkage disequilibrium. We also discuss the quality of single nucleotide polymorphisms (SNPs) in public databases and its consequences to the number of SNPs required for large-scale genotyping projects.  相似文献   

16.
The immense volume and rapid growth of human genomic data, especially single nucleotide polymorphisms (SNPs), present special challenges for both biomedical researchers and automatic algorithms. One such challenge is to select an optimal subset of SNPs, commonly referred as "haplotype tagging SNPs" (htSNPs), to capture most of the haplotype diversity of each haplotype block or gene-specific region. This information-reduction process facilitates cost-effective genotyping and, subsequently, genotype-phenotype association studies. It also has implications for assessing the risk of identifying research subjects on the basis of SNP information deposited in public domain databases. We have investigated methods for selecting htSNPs by use of principal components analysis (PCA). These methods first identify eigenSNPs and then map them to actual SNPs. We evaluated two mapping strategies, greedy discard and varimax rotation, by assessing the ability of the selected htSNPs to reconstruct genotypes of non-htSNPs. We also compared these methods with two other htSNP finders, one of which is PCA based. We applied these methods to three experimental data sets and found that the PCA-based methods tend to select the smallest set of htSNPs to achieve a 90% reconstruction precision.  相似文献   

17.
Publicly available single nucleotide polymorphism (SNP) allele frequencies are an important resource for the selection of genetic markers that may be most useful for gene mapping and association studies. Data mining these allele frequencies through disparate public databases and Websites is time consuming and can result in inconsistent findings. We have developed a web-based software tool, Frequency Finder, to acquire SNP allele frequencies from multiple public data sources and return a summarized result to the user. Our software optimizes and automates the search of candidate markers, decreasing the amount of time it would take to extract pertinent data manually. We have included several methods to output the data, including on-screen and as a compressed text file. We show that Frequency Finder accurately retrieves available frequency data from the available sources. Using this tool, we detect significant differences between Asian, African and Caucasian populations in the allele frequency spectra of 246 097 SNPs. While limited to public databases that provide web-based access to allele frequencies, Frequency Finder provides a single, user-friendly interface for retrieving allele frequencies for large batches of SNPs from multiple data sources.  相似文献   

18.
The advent of complete-genome genotyping across phenotype cohorts has provided a rich source of information for bioinformaticians. However the search for SNPs from this data is generally performed on a study-by-study case without any specific hypothesis of the location for SNPs that are predictive for the phenotype. We have designed a method whereby very large SNP lists (several gigabytes in size), combining several genotyping studies at once, can be sorted and traced back to their ultimate consequence in protein structure. Given a working hypothesis, researchers are able to easily search whole genome genotyping data for SNPs that link genetic locations to phenotypes. This allows a targeted search for correlations between phenotypes and potentially relevant systems, rather than utilizing statistical methods only. HyDn-SNP-S returns results that are less data dense, allowing more thorough analysis, including haplotype analysis. We have applied our method to correlate DNA polymerases to cancer phenotypes using four of the available cancer databases in dbGaP. Logistic regression and derived haplotype analysis indicates that ~80 SNPs, previously overlooked, are statistically significant. Derived haplotypes from this work link POLL to breast cancer and POLG to prostate cancer with an increase in incidence of 3.01- and 9.6-fold, respectively. Molecular dynamics simulations on wild-type and one of the SNP mutants from the haplotype of POLL provide insights at the atomic level on the functional impact of this cancer related SNP. Furthermore, HyDn-SNP-S has been designed to allow application to any system. The program is available upon request from the authors.  相似文献   

19.
The use of single-nucleotide polymorphism maps in pharmacogenomics   总被引:27,自引:0,他引:27  
Single-nucleotide polymorphisms (SNPs), common variations among the DNA of individuals, are being uncovered and assembled into large SNP databases that promise to enable the dissection of the genetic basis of disease and drug response (i.e., pharmacogenomics). Although great strides have been made in understanding the diversity of the human genome, such as the frequency, distribution, and type of genetic variation that exists, the feasibility of applying this information to uncover useful pharmacogenomic markers is uncertain. The health care industry is clamoring for access to SNP databases for use in research in the hope of revolutionizing the drug development process. As the reality of using SNPs to uncover drug response markers is rarely addressed, this review discusses practical issues, such as patient sample size, SNP density and genome coverage, and data interpretation, that will be important for determining the applicability of pharmacogenomic information to medical practice.  相似文献   

20.
MOTIVATION: A high density of single nucleotide polymorphism (SNP) coverage on the genome is desirable and often an essential requirement for population genetics studies. Region-specific or chromosome-specific linkage studies also benefit from the availability of as many high quality SNPs as possible. The availability of millions of SNPs from both Perlegen and the public domain and the development of an efficient microarray-based assay for genotyping SNPs has brought up some interesting analytical challenges. Effective methods for the selection of optimal subsets of SNPs spanning the genome and methods for accurately calling genotypes from probe hybridization patterns have enabled the development of a new microarray-based system for robustly genotyping over 100,000 SNPs per sample. RESULTS: We introduce a new dynamic model-based algorithm (DM) for screening over 3 million SNPs and genotyping over 100,000 SNPs. The model is based on four possible underlying states: Null, A, AB and B for each probe quartet. We calculate a probe-level log likelihood for each model and then select between the four competing models with an SNP-level statistical aggregation across multiple probe quartets to provide a high-quality genotype call along with a quality measure of the call. We assess performance with HapMap reference genotypes, informative Mendelian inheritance relationship in families, and consistency between DM and another genotype classification method. At a call rate of 95.91% the concordance with reference genotypes from the HapMap Project is 99.81% based on over 1.5 million genotypes, the Mendelian error rate is 0.018% based on 10 trios, and the consistency between DM and MPAM is 99.90% at a comparable rate of 97.18%. We also develop methods for SNP selection and optimal probe selection. AVAILABILITY: The DM algorithm is available in Affymetrix's Genotyping Tools software package and in Affymetrix's GDAS software package. See http://www.affymetrix.com for further information. 10 K and 100 K mapping array data are available on the Affymetrix website.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号