首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of the starfish Asterina (= Patiria) pectinifera (Muller et Troschel) from fertilization to metamorphosis took 27–28 days at 22°C and a salinity of 33–33.4‰. The embryonic development was completed by the release of swimming ciliary blastula from egg envelopes 13 h after fertilization. The larvae passed into the stage of gastrula and reached the stage of dipleurula in 35 h and the stage of bipinnaria in 3.5 days. At the stage of brachiolaria, by the 12th day of development, two lateral brachioles and one medioventral brachiole with papillae developed in the larvae. The attachment disk and the primordia of five radial canals of the juvenile starfish became visible by the 15th and 18th days, respectively. By the 24th–25th day, a differentiated primordium of a juvenile starfish had developed in the brachiolaria. The size of the larvae prior to settlement was 1765.4 ± 51.5 µm. Metamorphosis was completed one day after settlement.Original Russian Text Copyright ¢ 2005 by Biologiya Morya, Kashenko.  相似文献   

2.
The gastric-brooding asterinid sea star, Smilasterias multipara, broods from late August to early November in the shallow sublittoral zone of southeastern Australia. We observed males and females spawning in the laboratory. They shed gametes through gonopores on the sides of the arms. The eggs were orange, about 1.0 mm in diameter, and heavier than seawater. They were externally fertilized by sperm, and placed into the stomach of the female by the tube feet. Twenty-four hours after fertilization, the first cleavage occurred. Cleavage was equal, total, and radial. Development via a non-feeding lecithotrophic brachiolaria was direct, there being no planktrotrophic bipinnaria or brachiolaria larva. Embryos developed, through wrinkled blastula and gastrula stages, into brachiolariae with arms. All of the surfaces of the brachiolaria were covered by cilia. At metamorphosis, a starfish rudiment appeared on the posterior portion of the larval body, while the anterior portion of the larval body was absorbed. Two months after fertilization, metamorphosis was complete. After metamorphosis, juveniles in the stomach grew six pairs of tube feet in each arm. Juveniles, 3 mm in diameter, emerged from the mouth of the mother in early November. Developmental evidence suggests that this asteroid has evolved mechanisms for the protection of larvae and juveniles from gastric digestion.  相似文献   

3.
Under laboratory conditions the development of the starfish Asterias amurensis Lütken from Vostok Bay (Sea of Japan) was studied at 14 and 17°C. At 14°C and a salinity of 31.6–32.6, ciliated coeloblastulae hatched from egg envelopes 19 h after fertilization. At this temperature the development proceeded slowly and stopped at the stage of bipinnaria. At 17°C and normal salinity of seawater, the development of A. amurensis was successful. The swimming blastula appeared in 14 h. It took 30.5 h for the embryos to reach the gastrula stage. The larvae began swimming in a horizontal position with the apical tip ahead. The dipleurula appeared at 60 h. These larvae began feeding. At 71 h after the beginning of development, the early bipinnaria has developed. In the larva, the edged ciliated band, the preoral plate, and the anal plate were already formed. At the age of 4.2 days, the larvae reached the stage of bipinnaria and the brachiolaria stage developed by 26–28 days after fertilization. The larvae had three identical brachiolar arms with attachment papillae on their tips and an attachment disk. In 37–44 days (at 17°C) the pelagic phase of A. amurensis development was completed by the attachment of larvae to the bottom plates and termination of metamorphosis. Most likely, the specificity to a substrate is not expressed in the brachiolaria of A. amurensis. They can settle on almost any hard substrate which is coated with a bacterial film. The newly settled juvenile starfish had five well-developed arms and moved using their ambulacral podia.Original Russian Text Copyright © 2005 by Biologiya Morya, Kashenko.  相似文献   

4.
Using natural spawning and artificial fertilization, the entire process of development from eggs to juveniles was observed in the sea-star, Asterina batheri Goto.
The breeding season of this animal in Tsukumo Bay and Toyama Bay is estimated to be late summer. The spawned eggs are approximately 430 μm in diameter and float near the surface of sea water. They develop, through a wrinkled blastula stage by holoblastic. radial cleavage, into a pear-shaped brachiolaria bearing 3 blunt brachiolar arms. Metamorphosis takes place while the brachiolariae are swimming. Ten days after fertilization, metamorphosis is complete; the resulting juveniles are about 800 μm in diameter and colored pale brown with a green tint. They bear 2 pairs of tube-feet and a terminal tentacle in each arm.
Development of this species is thus of the direct type, and very similar in every respect to that of Asterina coronata japonica , which is closely related to the present species.  相似文献   

5.
The origin of germ cells of Asterina pectinifera was traced back to the posterior enterocoel (PE) of 2-day bipinnaria by two steps. First, the cellular cluster, composed of presumptive germ cells in the coelomic epithelium at brachiolaria stage, was confirmed to be the origin of the aboral haemal sinus located near the hydroporic canal (HC-AHS) by continuous observation of the formation process of HC-AHS. Second, the origin of the cluster was traced back to the PE of 2-day bipinnaria by comparison of the number of the presumptive germ cells in microsurgically PE-removed bipinnariae with that of non-operated control larvae. A summary of the differentiation of germ cells in Asterina pectinifera is given/presented.  相似文献   

6.
The organization of the peptidergic system in the larvae of Patiriella species with divergent ontogenies was compared to determine which aspects of neurogenesis are conserved and which are altered in the evolution of development in these sea stars. P. regularis has ancestral-type feeding bipinnaria and brachiolaria larvae and the organization of the nervous system, in association with feeding structures, paralleled the bilateral larval body plan. P. calcar and P. exigua have non-feeding planktonic and benthic brachiolariae, respectively, and there was no trace of the neuronal architecture involved with feeding. The nervous system in the attachment stage brachiolaria was similar in all three species and neuronal organization reflected larval symmetry. Delayed expression of peptidergic lineages to the brachiolaria stage in the lecithotrophs indicates heterochronic change in the timing of neurogenesis or deletion of the ancestral early neurogenic program. The bipinnarial program is suggested to be a developmental module autonomous from the brachiolar one. With a divergence time of less than 10 Ma, the evolution of development in Patiriella has resulted in extensive reduction in the complexity of the larval nervous system in parallel with simplification in larval form. There is, however, strong conservation in the morphology and neuronal architecture of structures involved with settlement.  相似文献   

7.
In the family Asterinidae, development through a planktonic lecithotrophic brachiolaria larva is common and has evolved independently several times. Here, we describe the lecithotrophic development of the asterinid Stegnaster inflatus, a species endemic to New Zealand. Early development through the blastula and gastrula stages is short, with hatching at the brachiolaria stage occurring within 48 hr. After hatching, larvae are negatively buoyant, and without aeration remain near the bottom of the culture containers. The settled benthic juvenile stage was reached in ~2 weeks. The brachiolaria of S. inflatus shares common characteristics with the planktonic brachiolaria of other asterinids in that the brachiolar attachment apparatus comprises three brachia and a central adhesive disc, although the latter is thin and appears to be reduced. Mortensen (1925, Videns kabelige Meddelelser fra Dansk naturhistorisk Forening i København, 79 (15), 261‐420) had hypothesized that individuals of S. inflatus might brood within the “cave” formed in the interambulacral space between the arms. We found no evidence for brooding, but hypothesize that S. inflatus may have demersal development, on or near the bottom, which has implications for larval dispersal and population structure.  相似文献   

8.
The effect of various combinations of temperature, which increases from 14°C up to 25°C in the summer season, and salinity, which varies from 34 to 12‰ in the early stages of development of the sea star Asterina (= Patiria) pectinifera (Müller et Troschel) from Vostok Bay, Sea of Japan, was studied. The most vulnerable process in the early ontogenesis of A. pectinifera is its embryonal development, which is completed successfully within narrow ranges of temperature (20–22°C) and salinity (34–26‰). The ability of gametes to fertilize was retained in wider ranges of temperature and salinity. The dipleurula was the most responsive of the larval stages; the resistance of blastula, bipinnaria, and brachiolaria at ages of 12.5 and 15.5 days was almost the same for fluctuations of temperature from 14 up to 25°C and salinity from 34 to 18 and 16‰ Settling of the brachiolaria and completion of metamorphosis were also responsive to variations in the environmental factors. Settling of the larvae was faster at 17°C without illumination (on the 22nd–24th days of development) than at 22°C with the day-night mode (27th–28th day of development). The lack of light apparently had a positive effect on the settling of the brachiolaria.  相似文献   

9.
In a previous study, we described complete body regeneration (with organogenesis) following surgical bisection in the planktotrophic larvae of the asteroids Luidia foliolata and Pisaster ochraceus. Here we present further detailed observations of these unique regenerative processes not presented in the previous paper. Furthermore, we describe for the first time complete regeneration following surgical bisection of planktotrophic larvae of the regular echinoid Lytechinus variegatus and the irregular echinoid Dendraster excentricus. Larvae of both asteroids and echinoids displayed a capacity for rapid regeneration regardless of their developmental stage. Within 48 h after bisection, aggregations of mesenchyme cells with pseudopodia were observed at the site of surgical bisection. These cellular aggregations were similar in appearance to the mesenchymal blastemas that form in adult echinoderms prior to their arm regeneration, and to those described in other deuterostomes that undergo regeneration. When asteroid larvae were surgically bisected in the early stages of their development, clusters of mesenchyme cells developed into completely new pairs of coelomic pouches located anterior to the newly regenerated digestive tract. This indicates that cell fate in regenerating asteroid larvae remains indeterminate during early development. In the larvae of P. ochraceus, regardless of the developmental stage at the time of bisection, both the anterior and posterior portions regenerated all their missing organs and tissues. However, the larvae of L. foliolata displayed differential regenerative capacity in bisected larval halves at the late bipinnaria stage. The differences observed may be due to differences in larval development (L. foliolata has no brachiolaria stage), and may have evolutionary implications. In the regular echinoid L. variegatus, both larval portions regenerated into morphologically and functionally normal larvae that were indistinguishable from non-bisected control larvae. The regenerative processes were similar to those we observed in planktotrophic asteroid larvae. Regenerating larvae readily metamorphosed into normal juveniles. In the irregular echinoid D. excentricus, posterior portions of larvae completed regeneration and metamorphosis, but anterior portions regenerated only partially during the 2-week study. Our observations confirm that asteroid and echinoid larvae provide excellent models for studies of regeneration in deuterostomes.  相似文献   

10.
11.
Abstract. The highly modified development of the brittle star Amphiodia occidentalis is described from post-fertilization to the juvenile stage. Fertilized eggs are negatively buoyant, ∼190 μm in diameter, surrounded by a thick hyaline layer and a tough fertilization envelope. After gastrulation, embryos flatten into a bilaterally symmetrical disk with a U-shaped ridge surrounding an indented stomodeum on the oral surface. Internally, a ring of ∼22 calcitic ossicles grows at the edge of the disk. Vestigial ophiopluteal structures such as a ciliated band, paired larval spicules, or larval arms are not expressed during development. Although the fertilization envelope disintegrates on day 3, developmental stages remain immotile for five more days until they move with podia. At hatching, five hydrocoelic lobes are evident on the left side of the post-gastrula, and these migrate clockwise around the stomodeum, establishing pentamerous radial symmetry. Central and radial plates originate on the right side and migrate to a dorsocentral location as pentamerous symmetry is established. Development of the juvenile oral skeletal frame follows closely that described by Hendler (1978) for Amphioplus abditus except that A. occidentalis did not form buccal scales. The juvenile mouth opened by day 12. Fifty-five days after fertilization, juveniles had not added their first arm segments, although the first lateral arm plates had appeared. Developmental stages identical to those described here have been found in plankton tows taken in Oregon usually after storms that bring high waves. The unusual development of this species probably occurs in both benthic and pelagic environments.  相似文献   

12.
13.
Larvae of sea stars are surrounded by an extracellular matrix called the hyaline layer. The lectin-binding properties of this matrix were investigated in an ultrastructural study of Patiriella species having different modes of development. The planktonic bipinnaria and brachiolaria of P. regularis and the planktonic brachiolaria of P. calcar demonstrated the same labeling of the hyaline layer for three lectins: Con A, SBA, and WGA. In both species the outer coarse meshwork stained for all three lectins, whereas the intervillous layer displayed patchy labeling. In the benthic brachiolaria of P. exigua, the outer coarse meshwork displayed heavy labeling for all three lectins. The heavy labeling of the outer coarse meshwork of P. exigua compared with that of the other species suggests an increased number of lectin binding sites in the hyaline layer of this species. The similar ultrastructure and histochemistry of the hyaline layer of P. regularis and P. calcar may reflect similar requirements of their extracellular cover in their planktonic environment. Lectin labeling shows that hypertrophy of the hyaline layer of P. exigua, in particular the outer coarse meshwork, involves elaboration of the carbohydrate composition of the matrix. Modifications seen in the ultrastructure and histochemistry of the hyaline layer of P. exigua appear to be associated with the evolution of benthic development.  相似文献   

14.
15.
A complex ECM layer called the hyaline layer (HL) surrounds embryos and larvae of the starfish Pisaster ochraceus. When preserved by freeze substitution, the HL of a bipinnaria larva consists of six sublayers. From the plasmalemma outwards these are the intervillous layer (iv), the H3, H2, H1 sublayers that make up the supporting layer, a boundary layer (b) and the coarse outer meshwork (cm). HL development begins at fertilization when exocytosis of the cortical granules releases ECM into the perivitelline space and elevates the fertilization membrane. Over the course of early development the layers are added in a sequential manner and by hatching the embryo is surrounded by a thin HL containing most if not all of the layers. The layers thicken over the next few days. By the bipinnaria stage the larvae are surrounded by a thick six-layered HL. HL1 is a monoclonal antibody that reacts against an epitope found in all regions of the HL of the bipinnaria larva except the H2 sublayer. Western blots show that it is present on several molecules during HL development. The number and pattern of the HL1-labeled molecules change during development, suggesting that either new molecules are being produced or that some molecules are precursors of others. Light (immunofluorescence) and TEM (immunogold) studies using HL1 in the early stages of development show that HL1-positive material is not present in the corticle granules and that it only begins to be manufactured and secreted in quantity in the blastula stage at 18-20 h. Following this it continues to be secreted at least as far as the bipinnaria stage. Molecules containing the HL1 antigen therefore do not appear to play a major role in early development of the HL but are necessary for later events. The results suggest that, like the sea urchin HL, the starfish HL undergoes a sequential organization of the different HL layers from ECM components, which are released into the perivitelline space.  相似文献   

16.
The development of Ophiothrix fragilis was documented using light microscopy, and the allometry of larval growth was quantified. Larval development to the suspended juvenile stage took 21 days under conditions that were probably optimal compared to those in the plankton. Larval shape changed through development as the larval body and arms grew. Growth of the posterolateral larval arms was continuous throughout development, even during metamorphosis when the larva became endotrophic. During this period, these larval arms function as locomotory organs, and their continuous growth is probably essential to support the juvenile as it increases in density through development of its calcareous plates. In induction assays using adult conspecifics, initiation of metamorphosis was spontaneous. Release of the posterolateral arms was induced by the presence of adults. This response is likely to enhance a juvenile's chance of recruiting to a suitable habitat in the Ophiothrix fragilis beds of the North Sea.  相似文献   

17.
Ultrastructural observations and glyoxilic acid-induced fluorescence of catecholamines indicate that tracts of axons lie at the base of the ciliary bands and run throughout their length in bipinnaria and brachiolaria larvae of Pisaster ochraceus. Two types of nerve cells occur at regular intervals within the ciliary bands. Type I nerve cells are associated with the axonal tracts, and type II nerve cells, which are ciliated, occur along the edge of the ciliary bands. Two prominent ganglia, which appear as accumulations of nerve cells and neuropile, occur on the lower lip of the larval mouth. Smaller ganglia occur irregularly throughout the ciliary band. Synapses were never clearly identified and were assumed to be unspecialized. Nervous tissues were also found associated with the esophageal muscles, the attachment organ, and the larval arms. Organization of the nervous system and its association with effectors suggest it controls swimming and feeding. Several similarities exist between the nervous systems of larval asteroids, larval echinoids, and adult echinoderms.  相似文献   

18.
The heterogeneity of the egg surface with respect to receptivity to sperm was investigated in Discoglossus pictus; in this species fertilization occurs only in an indentation called the dimple, at the center of the animal hemisphere. Following insemination sperm are seen in the outermost jelly layers and in the lens-shaped jelly plug, converging to the dimple center, D1. A fertilization potential (FP) is recorded 30 sec following insemination. About 30 min after fertilization, when fertilization cones can be detected easily, immotile sperm are found at the center of the cone, where 10 min later they accomplish penetration. After 15 min the cone regresses and the second polar body is extruded. In eggs where the plug was experimentally displaced with respect to the dimple, spermatozoa contacted the sides of the dimple and simple protrusions formed but not cones. Spermatozoa do not elicit a normal FP in these regions but small step depolarizations which may be followed by a gradual rise to a positive plateau potential. Such eggs do not develop. In the protrusions, sperm may be only partially incorporated and the unpenetrated portion appears to degenerate. We conclude that at least two regions exist in the dimple: D1, where the FP is triggered, cones are formed, sperm penetration is fully accomplished and development is initiated; and D2 + D3 where the electrical response is not a normal FP, cones do not form, total sperm penetration does not occur, and development is not initiated.  相似文献   

19.
I. Mine  K. Okuda  D. Menzel 《Protoplasma》2001,216(1-2):56-65
Summary In the juvenile stage, the diploid giant-celled green algae Acetabularia spp. are differentiated into an upright stalk and an irregularly branched rhizoid. Early amputation and grafting experiments as well as biochemical and molecular analyses have shown that mRNA (as poly(A)+ RNA) is continuously supplied from the primary nucleus in the rhizoid and accumulates in the stalk apex. In the present study, localization of poly(A)+ RNA in the juvenile stage of theAcetabularia peniculus was investigated by fluorescent in situ hybridization using oligo(dT) as a probe. The signal was localized in the apical cytoplasm and, in addition, multiple longitudinal striations throughout the stalk and rhizoid cytoplasm. A large portion of the poly(A)+ RNA striations exhibited structural polarity, broadened at one end and gradually thinned toward the other end. Some of the striations in the rhizoid cytoplasm were continuous with a zone of signal in the area of the perinuclear rim. The poly(A)+ RNA striations were associated with thick bands of longitudinal actin bundles which run through the entire length of the stalk. Cytochalasin D caused fragmentation of the actin bundles and irregular distribution of the fluorescent signal. We suggest that the poly(A)+ RNA striations constitute a hitherto unknown form of packaged mRNA that is transported over large distances along the actin cytoskeleton to be stored and expressed in the growing apex.  相似文献   

20.
Histological observations of okra Abelomoschus esculentus ''Clemson Spineless'' and ridgeseed spurge Euphorbia glyptosperma (a common weed) infected with Meloidodera charis Hopper, indicated that the juvenile nematode penetrated the roots intercellularly. Within 5 days after plant emergence the nematode positioned its body in the cortical tissue parallel to the vascular system. By 10 days after plant emergence the juvenile had extended its head into the vascular system and initiated giant cell formation, generally in protophloem tissue. Giant cells were one celled and usually multi-nucleate. Eggs were observed in the female body 30 days after plants emerged and juveniles were found within the female body by 40 days. Nematode development progressed equally in the root system of either host plant. Generally, throughout the nematode''s life cycle its entire body remained inside the cortical tissue of okra. In ridgeseed spurge, however, the posterior portion of the female erupted through the host epidermis as early as 15 days after plant emergence; only the head and neck remained embedded in the host. The nematode caused extensive tissue disruption in the cortical and vascular system of both plant species. Corn, Zea mays, was another host of the nematode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号