首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The ability of glucagon and of adrenaline to affect the concentration of fructose 2,6-bisphosphate in isolated hepatocytes was re-investigated because of important discrepancies existing in the literature. We were unable to detect a significant difference in the sensitivity of the hepatocytes with regard to the effect of glucagon to initiate the interconversion of phosphorylase, pyruvate kinase, 6-phosphofructo-2-kinase and fructose 2,6-bisphosphatase, and also to cause the disappearance of fructose 2,6-bisphosphate. In contrast, we have observed differences in the time-course of these various changes, since the interconversions of phosphorylase and of pyruvate kinase were at least twice as fast as those of 6-phosphofructo-2-kinase and of fructose 2,6-bisphosphatase. When measured in a cell-free system in the presence of MgATP, the cyclic AMP-dependent interconversion of pyruvate kinase was 5-10-fold more rapid than those of 6-phosphofructo-2-kinase and of fructose 2,6-bisphosphatase. These data indicate that 6-phosphofructo-2-kinase and fructose 2,6-bisphosphatase are relatively poor substrates for cyclic AMP-dependent protein kinase; they also support the hypothesis that the two catalytic activities belong to a single protein. Adrenaline had only a slight effect on the several parameters under investigation, except for the activation of phosphorylase. In the absence of Ca2+ ions from the incubation medium, however, adrenaline had an effect similar to that of glucagon.  相似文献   

2.
Regulation of fructose 2,6-P2 concentration in isolated hepatocytes   总被引:6,自引:0,他引:6  
The effect of hormones on fructose-2,6-P2 level and fructose-6-P,2-kinase activity was examined using rat hepatocytes. The dose response curve shows the half-maximal effect of glucagon on fructose-2,6-P2 occurs at 3 X 10?13 M glucagon, whereas the half-maximal effect on cyclic AMP occurs at 3 × 10?0 M. The decrease in fructose-2,6-P2 parallels the decrease in fructose-6-P,2-kinase activity. Incubation of cells with dibutryl cyclic AMP and cyclic AMP results in a 2- to 3-fold decrease in fructose-2,6-P2. Epinephrine (10?5 M) mediates a 2-fold decrease in fructose-2,6-P2; isoproterenol has no effect. These results suggest that regulation of fructose-6-P,2-kinase is complex, involving cyclic AMP-dependent and -independent mechanisms.  相似文献   

3.
1. Incubation of hepatocytes from fed or starved rats with increasing glucose concentrations caused a stimulation of lactate production, which was further increased under anaerobic conditions. 2. When glycolysis was stimulated by anoxia, [fructose 2,6-bis-phosphate] was decreased, indicating that this ester could not be responsible for the onset of anaerobic glycolysis. In addition, the effect of glucose in increasing [fructose 2,6-bisphosphate] under aerobic conditions was greatly impaired in anoxic hepatocytes. [Fructose 2,6-bisphosphate] was also diminished in ischaemic liver, skeletal muscle and heart. 3. The following changes in metabolite concentration were observed in anaerobic hepatocytes: AMP, ADP, lactate and L-glycerol 3-phosphate were increased; ATP, citrate and pyruvate were decreased: phosphoenolpyruvate and hexose 6-phosphates were little affected. Concentrations of adenine nucleotides were, however, little changed by anoxia when hepatocytes from fed rats were incubated with 50 mM-glucose. 4. The activity of ATP:fructose 6-phosphate 2-phosphotransferase was not affected by anoxia but decreased by cyclic AMP. 5. The role of fructose 2,6-bisphosphate in the regulation of glycolysis is discussed.  相似文献   

4.
Fructose 2,6-bisphosphate in isolated foetal hepatocytes   总被引:3,自引:0,他引:3  
Fru 2,6-P2 was present in isolated foetal hepatocytes at a concentration of 1.6 nmol per g cells. When foetal hepatocytes were exposed to glucagon no changes were observed either in the concentration of Fru 2,6-P2 and lactate release or in the activities of 6-phosphofructo-2-kinase and pyruvate kinase. Incubation of purified 6-phosphofructo-2-kinase with the catalytic subunit of protein kinase did not change the enzyme activity. The inhibition by sn-glycerol 3-phosphate was much lower for the foetal than for adult enzyme. These results suggest that an isoenzyme of 6-phosphofructo-2-kinase in foetal hepatocytes different from that of adult hepatocytes may be present.  相似文献   

5.
Regulation of fructose 2,6-bisphosphate concentration in spinach leaves   总被引:8,自引:0,他引:8  
Fructose-6-phosphate 2-kinase and fructose-2,6-bisphosphatase have been partially purified from spinach leaves and their regulatory properties studied. Fructose-6-phosphate 2-kinase was activated by phosphate and fructose 6-phosphate, and inhibited by 3-phosphoglycerate and dihydroxyacetone phosphate. Fructose-2,6-bisphosphatase was inhibited by fructose 6-phosphate and phosphate. The interaction between these effectors was studied when they were varied, alone or in combination, over a range of concentrations representative of those in the cytosol of spinach leaf cells. In conditions when dihydroxyacetone phosphate or 3-phosphoglycerate rise, as is typical during photosynthesis, the fructose 2,6-bisphosphate level will decrease, which will favour sucrose synthesis. In conditions when fructose 6-phosphate accumulates, fructose 2,6-bisphosphate should rise, which will favour a restriction of sucrose synthesis and promotion of starch synthesis.  相似文献   

6.
Injection of insulin to fed rats diminished the concentration of fructose 2,6-bisphosphate in white adipose tissue. Incubation of epididymal fat-pads or adipocytes with insulin stimulated lactate release and sugar detritiation and also decreased fructose 2,6-bisphosphate concentration. Such a decrease was, however, not observed in fat-pads from starved or alloxan-diabetic rats. Incubation of adipocytes from fed rats with various concentrations of glucose or fructose led to a dose-dependent rise in fructose 2,6-bisphosphate which correlated with lactate output and detritiation of 3-3H-labelled sugar. In adipocytes from fed rats, palmitate stimulated the detritiation of [3-3H]glucose without affecting lactate production and fructose 2,6-bisphosphate concentration. Incubation of epididymal fat-pads from fed rats in the presence of antimycin stimulated lactate output but decreased fructose 2,6-bisphosphate concentration. Changes in lipolytic rates brought about by noradrenaline, insulin, adenosine and corticotropin in adipocytes from fed rats were not related to changes in fructose 2,6-bisphosphate or to rates of lactate output. In fed rats, the activity of 6-phosphofructo-2-kinase was not changed after treatment of adipocytes with insulin, noradrenaline or adenosine. It is suggested that the decrease in fructose 2,6-bisphosphate concentration observed after insulin treatment can be explained by the increase in sn-glycerol 3-phosphate, an inhibitor of 6-phosphofructo-2-kinase.  相似文献   

7.
In rat hepatocytes, vanadate increases fructose 2,6-bisphosphate (Fru-2,6-P2) in a time- and dose-dependent manner, and counteracts the decrease in this metabolite caused by glucagon, forskolin or exogenous cyclic AMP. Vanadate does not directly modify the activity of 6-phosphofructo-2-kinase, even though it can counteract the inactivation of this enzyme caused by glucagon. Furthermore, vanadate raises the yield of 3H2O from [3-3H]glucose, indicating that it increases the flux through 6-phosphofructo-1-kinase. Moreover, vanadate in hepatocytes incubated in the presence of glucose increases the production of both lactate and CO2. Therefore vanadate has insulin-like effects on the glycolytic pathway in rat hepatocytes. These results clearly contrast with our previous observation that vanadate exerts glycogenolytic non-insulin-like effects on glycogen synthase and phosphorylase.  相似文献   

8.
Hepatocytes from overnight-starved rats were incubated with 1-20 mM-fructose, -dihydroxyacetone, -glycerol, -alanine or -lactate and -pyruvate with or without 0.1 microM-glucagon. The production of glucose and lactate was measured, as was the content of fructose 2,6-bisphosphate. The concentrations of fructose (below 5 mM) and dihydroxyacetone (above 1 mM) that gave rise to an increase in fructose 2,6-bisphosphate were those at which a glucagon effect on the production of glucose and lactate could be observed. Glycerol had no effect on fructose 2,6-bisphosphate content or on production of lactate, and glucagon did not stimulate the production of glucose from this precursor. With alanine or lactate/pyruvate as substrates, glucagon stimulated glucose production whether the concentration of fructose 2,6-bisphosphate was increased or not. The extent of inactivation of pyruvate kinase by glucagon was not affected by the presence of the various gluconeogenic precursors. The role of fructose 2,6-bisphosphate in the effect of glucagon on gluconeogenesis from precursors entering the pathway at the level of triose phosphates or pyruvate is discussed.  相似文献   

9.
Following endotoxin administration to fasted rats, the liver fructose 2,6-bisphosphate level is significantly increased within 1 hr, is elevated 2.3-fold by 3 hrs, and remains elevated 2 to 3-fold for at least 24 hrs. This increase in the potent allosteric activator of phosphofructokinase occurs when there is no change in the liver Glc 6-P, glycogen or cAMP concentrations, or in the activities of phosphoenolpyruvate carboxykinase or pyruvate kinase. The increase in fructose 2,6-bisphosphate concentration accounts for the increased phosphofructokinase activity previously observed in hepatocytes isolated 18 hours following endotoxin administration to rats (1). By stimulating the phosphofructokinase/Fru 1,6-bisphosphate cycle in the direction of glycolysis, fructose 2,6-bisphosphate is likely the factor responsible for decreased gluconeogenesis in endotoxemia.  相似文献   

10.
The intragastric administration of ethanol to fed rats caused in their liver, within about 1 h, a 20-fold decrease in the concentration of fructose 2,6-bisphosphate, an activation of fructose 2,6-bisphosphatase, an inactivation of phosphofructo-2-kinase but no change in the concentration of cyclic AMP. Incubation of isolated hepatocytes in the presence of ethanol caused a rapid increase in the concentration of sn-glycerol 3-phosphate and a slower and continuous decrease in the concentration of fructose 2,6-bisphosphate with no change in that of hexose 6-phosphates. There was also a relatively slow activation of fructose 2,6-bisphosphatase and inactivation of phosphofructo-2-kinase. Glycerol and acetaldehyde had effects similar to those of ethanol on the concentration of phosphoric esters in the isolated liver cells. 4-Methylpyrazole cancelled the effect of ethanol but reinforced those of acetaldehyde. High concentrations of glucose or of dihydroxyacetone caused an increase in the concentration of hexose 6-phosphates and counteracted the effect of ethanol to decrease the concentration of fructose 2,6-bisphosphate. As a rule, hexose 6-phosphates had a positive effect and sn-glycerol 3-phosphate had a negative effect on the concentration of fructose 2,6-bisphosphate in the liver, so that, at a given concentration of hexose 6-phosphates, there was an inverse relationship between the concentration of fructose 2,6-bisphosphate and that of sn-glycerol 3-phosphate. These effects could be explained by the ability of sn-glycerol 3-phosphate to inhibit phosphofructo-2-kinase and to counteract the inhibition of fructose 2,6-bisphosphatase by fructose 6-phosphate. sn-Glycerol 3-phosphate had also the property to accelerate the inactivation of phosphofructo-2-kinase by cyclic AMP-dependent protein kinase whereas fructose 2,6-bisphosphate had the opposite effect. The changes in the activity of phosphofructo-2-kinase and fructose 2,6-bisphosphatase appear therefore to be the result rather than the cause of the decrease in the concentration of fructose 2,6-bisphosphate.  相似文献   

11.
12.
Glucose caused a sustained and dose-related increase in the fructose 2,6-bisphosphate content of isolated pancreatic islets, as well as of purified pancreatic B-cells. With isolated B-cells, the glucose saturation curve was sigmoidal and superimposable on that obtained with hepatocytes isolated from unfed rats. However, the response to glucose was notably faster in purified B-cells than in isolated hepatocytes. In contrast again with the situation prevailing in the liver, glucagon failed to decrease significantly the concentration of fructose 2,6-bisphosphate in either islets or purified B-cells. It is proposed that, in the process of glucose-stimulated insulin secretion, an early increase in fructose 2,6-bisphosphate formation may, by causing activation of 6-phosphofructo-1-kinase, allow glycolysis to keep pace with the rate of glucose phosphorylation.  相似文献   

13.
The concentration of fructose 2,6-bisphosphate found in freshly isolated erythrocytes was below the limit of detection (20 pmol/ml of packed cells). However, it increased to about 250 pmol/ml of cells when erythrocytes were incubated with glucose at pH 6.9, but not at pH 7.4 or 8.2. This could be explained by variations in the content of glycerate 2,3-bisphosphate, which was found to inhibit 6-phosphofructo-2-kinase, the enzyme responsible for fructose 2,6-bisphosphate synthesis. Glycerate 2,3-bisphosphate was also found to inhibit the potato enzyme (pyrophosphate:fructose-6-phosphate 1-phosphotransferase) used for the measurement of fructose 2,6-bisphosphate.  相似文献   

14.
Rat and rabbit muscle fructose 1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) are inhibited by fructose 2,6-bisphosphate. In contrast with the liver isozyme, the inhibition of muscle fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate is not synergistic with that of AMP. Activation of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate has been observed at high concentrations of substrate. An attempt is made to correlate changes in concentrations of hexose monophosphate, fructose 1,6-bisphosphate and fructose 2,6-bisphosphate with changes in fluxes through 6-phosphofructokinase and fructose-1,6-bisphosphatase in isolated epitrochlearis muscle challenged with insulin and adrenaline.  相似文献   

15.
16.
When glucose was added to a suspension of Saccharomyces cerevisiae in stationary phase, it caused a transient increase in the concentration of cyclic AMP and a more persistent increase in the concentration of hexose 6-phosphate and of fructose 2,6-bisphosphate. These effects of glucose on cyclic AMP and fructose 2,6-bisphosphate but not that on hexose 6-phosphate were greatly decreased in the presence of 0.15 mM acridine orange or when a temperature-sensitive mutant deficient in adenylate cyclase was used at the restrictive temperature. Incubation of the cells in the presence of dinitrophenol and in the absence of glucose increased the concentration of both cyclic AMP and fructose 2,6-bisphosphate, but with a minimal change in that of hexose 6-phosphate. Glucose induced also in less than 3 min a severalfold increase in the activity of 6-phosphofructo-2-kinase and this effect was counteracted by the presence of acridine orange. When a cell-free extract of yeast in the stationary phase was incubated with ATP-Mg and cyclic AMP, there was a 10-fold activation of 6-phosphofructo-2-kinase. Finally, the latter enzyme was purified 150-fold and its activity could then be increased about 10-fold upon incubation with ATP-Mg and the catalytic subunit of cyclic-AMP-dependent protein kinase. This activation resulted from a 4.3-fold increase in V and a 2-fold decrease in Km. Both forms of the enzyme were inhibited by sn-glycerol 3-phosphate. From these results it is concluded that the effect of glucose in increasing the concentration of fructose 2,6-bisphosphate in S. cerevisiae is mediated by the successive activation of adenylate cyclase and of cyclic-AMP-dependent protein kinase and by the phosphorylation of 6-phosphofructo-2-kinase by the latter enzyme. In deep contrast with what is known of the liver enzyme, yeast 6-phosphofructo-2-kinase is activated by phosphorylation instead of being inactivated.  相似文献   

17.
The sensitivity of 6-phosphofructo-2-kinase to glucagon and cyclic AMP was studied during the perinatal period. In liver homogenates from foetal and neonatal rats, incubation with cyclic AMP produced inactivation of 6-phosphofructo-2-kinase 3 h after birth. The maximal effect was obtained 12 h after birth. In primary cultures of hepatocytes from 22-day-old foetuses, glucogon induced an inhibition of 6-phosphofructo-2-kinase that required 45 min to reach the half-maximal effect. Cycloheximide prevented the glucagon-induced changes in this activity from cultured foetal hepatocytes. These results suggest that the adult form of 6-phosphofructo-2-kinase is rapidly induced after birth, probably by the hormonal changes that occur in this period.  相似文献   

18.
19.
20.
The content of fructose 2,6-bisphosphate (Fru(2,6)P2) and lactate production in triamcinolone acetonide-treated rats thymocytes was studied. The effect in vitro of corticosterone and dexamethasone on normal thymocytes was also examined. Glucocorticoids produced a marked decrease in Fru(2,5)P2 content and lactate production. The largest effect was observed with triamcinolone acetonide (7.5 mg per kg body weight), which after 20 h of treatment produced over 90% of inhibition. This change was accompanied by the decrease of both phosphofructokinase-1 and -2 activities and ATP levels, without modifications of hexoses phosphate content. The inhibitory actions of glucocorticoids were abolished by cycloheximide, an inhibitor of protein synthesis. Furthermore this drug, by itself, increased Fru(2,6)P2 content by more than 50% compared with the controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号