首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Association of fibrin with the platelet cytoskeleton   总被引:2,自引:0,他引:2  
We have previously postulated that surface membrane proteins become specifically associated with the internal platelet cytoskeleton upon platelet activation (Tuszynski, G.P., Walsh, P.N., Piperno, J., and Koshy, A. (1982) J. Biol. Chem. 257, 4557-4563). Four lines of evidence are in support of this general hypothesis since we now show that platelet surface receptors for fibrin become specifically associated with the platelet Triton-insoluble cytoskeleton. 1) Fibrin was detected immunologically in the washed Triton-insoluble cytoskeletons of thrombin-activated platelets under conditions where fibrin polymerization and resultant precipitation was blocked with Gly-Pro-Arg-Pro, a synthetic peptide that inhibits polymerization of fibrin monomer. 2) Radiolabeled fibrin bound to thrombin-activated platelets and became associated with the cytoskeleton. 3) The amount of radiolabeled fibrin bound to thrombin-activated thrombasthenic platelets and their cytoskeletons amounted to about 20% of the fibrin bound to thrombin-activated control platelets and their cytoskeletons. 4) The association of fibrin with cytoskeletons and with the platelet surface was nearly quantitatively blocked by an antibody prepared against cytoskeletons (anti-C), an antibody against isolated membranes of Pronase-treated platelets (anti-M1), and a monoclonal antibody to the platelet surface glycoprotein complex, GPIIb-GPIII (anti-GPIII). These antibodies blocked ADP and thrombin-induced platelet aggregation as well as thrombin-induced clot retraction. Analysis of the immunoprecipitates obtained with anti-C, anti-M1, and anti-GPIII from detergent extracts of 125I-surface labeled platelets revealed that these antibodies recognized GPIIb-GPIII. These data suggest that thrombin activation of platelets results in the specific association of fibrin with the platelet cytoskeleton, that this association may be mediated by the GPIIb-GPIII complex, and that these mechanisms may play an important role in platelet aggregation and clot retraction induced by thrombin.  相似文献   

2.
The platelet cytoskeleton contains elements of the prothrombinase complex   总被引:1,自引:0,他引:1  
Triton-insoluble cytoskeletons prepared from thrombin-activated platelets were found to potentiate the activation of prothrombin (prothrombinase activity). Cytoskeletons prepared from red cells or lymphoblasts contained no prothrombinase activity. The platelet prothrombinase activity was dependent on cytoskeletal-associated Factor Va, and exogenously added Factor Xa and prothrombin. Cytoskeletons contained 38% of the total platelet prothrombinase activity. Both platelets and cytoskeletons displayed half-maximal activities at similar prothrombin concentrations. The role of lipids in the cytoskeletal prothrombinase activity was investigated. Cytoskeletons were found to contain 3.8% of the total platelet phospholipids, consisting of the following lipids expressed as percentage of total present in platelets: 6.0% sphingomyelin, 3.8% phosphatidylcholine, 2.9% phosphatidyl-ethanolamine, 4.4% phosphatidylinositol, and 2.2% phosphatidylserine. The cytoskeletal prothrombinase activity and the lipid phosphorus content of cytoskeletons decreased after treatment of cytoskeletons with various doses of phospholipase C. Incubation of cytoskeletons with the highest concentrations tested (10 micrograms/ml) resulted in a 72% loss of phosphatidylserine and 84% loss of cytoskeletal prothrombinase activity. Cytoskeletal prothrombinase activity destroyed by phospholipase C treatment could be restored to control levels by treatment of hydrolyzed cytoskeletons with total cytoskeletal lipid or mixtures of phosphatidylserine/phosphatidylcholine (25:75% by weight). These results suggest that the cytoskeletal prothrombinase complex in addition to containing Factor Va, as has been previously shown (15), contains a lipid cofactor activity consisting in part of phosphatidylserine.  相似文献   

3.
The molecular basis of platelet-fibrin binding has been elucidated by studying interactions between platelets and protofibrils, soluble two-stranded polymers of fibrin which are intermediates on the fibrin assembly pathway. The fibrinogen degradation product, fragment D, has been used to block fibrin assembly, thus enabling the preparation of stable solutions of short protofibrils, composed of fewer than twenty fibrin monomer molecules per polymer. Fibrin protofibrils bound to ADP-activated platelets in a time- and concentration-dependent process which was effectively blocked by excess unlabelled fibrinogen, i.e., the binding was specific and appeared to involve a common receptor. ADP-stimulated cells bound approx. 3 micrograms of fibrin protofibrils/10(8) platelets, compared to 4 micrograms of fibrinogen/10(8) cells, following a 30-min incubation period at room temperature. Binding of both ligands was inhibited by high concentrations of fragment D, further indicating a similar mechanism. The kinetic data obtained were well described by an apparent first-order mechanism in which the rate constant for fibrin protofibril binding was found to be 5-fold slower than that measured for fibrinogen. Two monoclonal antibodies, each directed against the platelet glycoprotein IIb-IIIa complex, inhibited the binding of fibrin protofibrils and fibrinogen in a similar, concentration-dependent manner, providing strong evidence for a common receptor. Binding of GPRP-fibrin (soluble fibrin oligomers formed in the presence of 1 mM Gly-Pro-Arg-Pro) to ADP-stimulated platelets was also inhibited by a monoclonal antibody directed against the GPIIb-IIIa complex. Neither fibrin protofibrils nor fibrinogen bound to Glanzmann's thrombasthenic platelets, which lack normal quantities of functional glycoprotein IIb-IIIa complex, further supporting the hypothesis that fibrinogen and fibrin bind to a common platelet receptor present on the glycoprotein IIb-IIIa complex.  相似文献   

4.
Integrin-mediated interactions between cytoskeletal proteins and extracellular fibrinogen are required for platelet adhesion. We have previously demonstrated that the major platelet integrin, alpha(IIb)beta(3), becomes incorporated into the actin cytoskeleton of platelets in an activation-dependent, aggregation-independent manner. To determine if regulatory molecules are also associated with these integrin-rich cytoskeletal complexes, we examined actin cytoskeletons for the presence of kinases and phosphoproteins. Western immunoblot analysis revealed that the tyrosine kinases Src, Fyn, and Lyn are specifically associated with actin cytoskeletons of activated, nonaggregated platelets. However, as noted by others, the cytoskeletal association of focal adhesion kinase depends on platelet aggregation. Actin cytoskeletons isolated from (32)P-labeled platelets also contain a number of phosphorylated proteins. Interestingly, an approximately 18-kDa phosphoprotein was uniquely present in activated platelet cytoskeletons. Collectively, our results demonstrate that actin cytoskeletons of activated, nonaggregated platelets contain not only integrins, but also kinases and phosphoproteins that could regulate platelet adhesion and transmembrane communication.  相似文献   

5.
Binding of fibronectin to alpha-granule-deficient platelets   总被引:3,自引:0,他引:3       下载免费PDF全文
Most of the proposed functions for fibronectin involve its interaction with cells, yet the molecular nature of cellular fibronectin binding site(s) has remained obscure. Thrombin induces saturable platelet binding sites for plasma fibronectin and concurrently stimulates surface expression of a number of platelet alpha-granule constituents including thrombospondin and fibrin which are known to interact with fibronectin. To test the hypothesis that these (or other alpha-granule proteins) mediate plasma fibronectin binding, we used platelets of patients with the Gray Platelet Syndrome. These cells were deficient in thrombospondin, beta-thromboglobulin, platelet factor 4, fibronectin, and fibrinogen as measured in radioimmunoassay. They also had reduced von Willebrand factor content as judged by immunofluorescence. At plasma fibronectin inputs from 0.03 to 3 times the apparent kilodalton, these Gray platelets bound virtually identical quantities of fibronectin as normal cells. Thus, platelets containing 1,500 molecules of thrombospondin per platelet could bind more than 100,000 molecules of plasma fibronectin per cell following thrombin stimulation. These data preclude any simple model in which newly surface expressed thrombospondin (or other alpha-granule protein) functions as the major thrombin-stimulated plasma fibronectin receptor in this cell type.  相似文献   

6.
The platelet integrin, glycoprotein IIb-IIIa (GPIIb-IIIa), serves as the receptor for fibrinogen. This study examined what effect GPIIb-IIIa receptor occupancy had on the cytoskeleton of resting and activated platelets. Triton X-100-insoluble residues (cytoskeletons) were isolated from resting washed platelets incubated with either 500 microM RGDS or 500 microM RGES and examined for protein content. RGDS did not increase the amount of GPIIb-IIIa associated with the cytoskeletal residues which sedimented at either 15,800 x g or 100,000 x g. To determine the effect of receptor occupancy on the formation of the activated platelet cytoskeleton, stirred and nonstirred RGDS-treated platelets in plasma were activated with ADP. Triton X-100-insoluble residues were isolated and examined for both protein content and retention of GPIIb-IIIa. Further, morphological studies were performed on the RGDS-ADP-stimulated platelets. The results of this study suggest that 1) RGDS peptide receptor occupancy does not lead to GPIIb-IIIa linkage to the cytoskeleton, 2) ADP-stimulated platelet shape change, polymerization of actin, and association of myosin with the cytoskeleton are unaffected by RGDS peptide receptor occupancy. 3) RGDS inhibits an aggregation-dependent incorporation of ABP, alpha-actinin, talin, and GPIIb-IIIa into the Triton-insoluble residue.  相似文献   

7.
Receptor-mediated activation of many cells, including blood platelets, leads to changes at the cytoplasmic side of the membrane. In platelets, phospholipases, such as phospholipase C and phospholipase A2, have been shown to become activated. From phospholipids they generate the second messengers diacylglycerol and inositol phosphate(s) and fatty acids, respectively. At the same time, actin polymerization and reorganization of actin filaments into bundles and networks occurs. Here, the association of lipids, radiolabeled either with saturated (palmitic acid) or unsaturated (arachidonic acid) fatty acids, with the cytoskeletons of resting and activated human blood platelets was studied. The relative binding of lipid components to the cytoskeleton of activated platelets labeled with palmitic acid is six times higher than that of platelets labeled with arachidonic acid. Analysis of lipids associated with isolated cytoskeletons of resting and activated platelets (labeled with palmitic acid) showed a 30-fold increase in the binding of labeled lipids to the cytoskeletal structures during activation. Both diacylglycerol and fatty acids were found to be associated with the cytoskeleton of activated platelets. Gel filtration, chromatofocusing, and immunoprecipitation studies demonstrated tight binding of these lipids to alpha-actinin. alpha-Actinin is one of the proteins that rapidly becomes associated with the cytoskeleton during platelet aggregation; it is also one of the molecules proposed to act as an actin-membrane linker. The results reported indicate a possible participation of alpha-actinin, fatty acids, and the phosphoinositide-derived second messenger diacylglycerol in the regulation of cytoskeleton-membrane interactions. Together with the results of others they suggest a possible involvement of the phosphatidylinositol cycle in the assembly of actin filaments and their anchoring to membranes.  相似文献   

8.
We investigated the assembly of soluble fibronectin by lysophosphatidic acid-activated platelets adherent to fibrinogen or fibrin. More fibronectin was assembled by activated platelets spread on fibrin matrices than by platelets spread on adsorbed fibrinogen. The difference between platelets adherent to fibrinogen and fibrin occurred under both static and flow conditions. Similar differences were seen in binding of the 70-kDa N-terminal fragment of fibronectin that recognizes fibronectin assembly sites on adherent cells. Antibody and peptide blocking studies demonstrated that alphaIIb beta3 integrin mediates platelet adhesion to fibrinogen, whereas both alphav beta3 and alphaIIb beta3 mediate platelet adhesion to fibrin. The hypothesis that engagement of the C-terminal QAGDV sequence of the fibrinogen gamma-chain by alphaIIb beta3 inhibits the ability of the platelet to assemble fibronectin was tested by several experiments. Activated platelets adherent to adsorbed mutant fibrinogen lacking the QAGDV sequence (gammadelta5FG) were assembly-competent, as were platelets adherent to adsorbed normal fibrinogen that had been pretreated with the 7E9 antibody to the C terminus of the gamma-chain. Moreover, adsorbed normal fibrinogen but not gammadelta5FG suppressed the ability of co-adsorbed fibronectin to direct assembly of soluble fibronectin by spread platelets. The suppressive effect was lost when a surface of co-adsorbed fibronectin and fibrinogen was pretreated with 7E9. These results support a model in which the engagement of alphaIIb beta3 by the C-terminal sequence of the fibrinogen gamma-chain initiates signals that suppress subsequent fibronectin assembly by spread platelets. This interaction is less dominant when platelets adhere to fibrin, resulting in enhanced fibronectin assembly.  相似文献   

9.
Triton-insoluble cytoskeleton of nonpigment cells has bound protein kinase that phosphorylates, with or without added cAMP, tubulins and the intermediate filament proteins p60, p56, p53, and p45a to give multiple charge variants. In the absence of 8-Br-cAMP, Triton-insoluble cytoskeletons from xanthophores also phosphorylate p60, p56, and p45a, but not p53; tubulin phosphorylation may also be reduced. In the presence of 8-Br-cAMP, p53, as well as several other peptides, are phosphorylated. One of these latter peptides was identified as the carotenoid droplet (pigment organelle) protein p57, whose phosphorylation and dephosphorylation precede pigment dispersion and aggregation respectively (Lynch et al.: J. Biol. Chem. 261:4204-4211, 1986). The amount of pp57 produced depends on the state of pigment distribution in the xanthophores used to prepare the cytoskeletons for labeling. With cytoskeletons from xanthophores with aggregated pigment, pp57 is a major labeled phosphoprotein seen in two-dimensional gels. With cytoskeletons prepared from xanthophores with dispersed pigment, the yield of labeled pp57 is greatly reduced (by at least 90%). Together with earlier results, we propose that, in the aggregated state, p57 serves to bind carotenoid droplets to the cytoskeletons, most likely the microtubules. The significance of other cAMP-dependent phosphorylation reactions is unknown but may be related to cAMP-induced cytoskeleton rearrangement in intact xanthophores.  相似文献   

10.
Characterization of the platelet agglutinating activity of thrombospondin   总被引:6,自引:0,他引:6  
Thrombospondin (TSP) is a glycoprotein secreted from the alpha-granules of platelets upon activation. In the presence of divalent cations, the secreted protein binds to the surface of the activated platelets and is responsible for the endogenous lectin-like activity associated with activated platelets. Platelets fixed with formaldehyde following activation by thrombin are agglutinated by exogenously added TSP. Fixed, nonactivated platelets are not agglutinated. The platelet agglutinating activity of TSP is optimally expressed in the presence of 2 mM each of Mg2+ and Ca2+. Reduction of the disulfide bonds within the TSP molecule inhibits its platelet agglutinating activity. TSP bound to the surface of fixed, activated platelets can be eluted by the addition of disodium ethylenediaminetetraacetate. This approach was exploited to identify the region of the TSP molecule containing the platelet binding site. The binding site resides within a thermolytic fragment of TSP with Mr 140 000 but is not present in the Mr 120 000 fragment derived from the polypeptide of Mr 140 000. Since both the Mr 140 000 and 120 000 fragments contain fibrinogen binding sites, this finding suggests that the binding of TSP to the platelet surface requires interaction with other platelet surface components in addition to fibrinogen. The observation that fibrinogen only partially inhibits the TSP-mediated agglutination of fixed, activated platelets is consistent with this interpretation.  相似文献   

11.
We studied the binding of 125I-platelet and plasma Factor XIII (125I-Factor XIII) to human platelets. When 125I-Factor XIII was incubated with gel-filtered platelets, calcium chloride (5 mM) and thrombin (1 unit/ml) at 37 degrees C, saturable binding was observed. Half-maximal binding occurred at 1 min. Binding was inhibited 93% by a 100-fold molar excess of unlabeled ligand but not by other purified proteins. Greater than 87% of platelet-bound radioactivity migrated as thrombin-cleaved a-chains (a'-chains) in sodium dodecyl sulfate-polyacrylamide gels indicating that Factor XIIIa but not Factor XIII binds to platelets. 125I-Factor XIIIa does not bind to unstimulated platelets. When platelet secretion was blocked, binding was markedly inhibited. 125I-Factor XIIIa bound minimally to platelets stimulated with agonists other than thrombin. Thus, binding is dependent on platelet activation, as well as modification of platelets by thrombin. 125I-Factor XIIIa bound to gamma-thrombin-stimulated platelets, at concentrations which did not clot fibrinogen. Therefore, Factor XIIIa is not bound to fibrin associated with platelets. Binding was only partially reversible. Approximately 12,000 molecules of Factor XIIIa were bound per platelet. 125I-Factor XIIIa bound normally to platelets from patients with severe Glanzmann's thrombasthenia indicating that 125I-Factor XIIIa does not bind to platelet glycoproteins IIb or IIIa, or platelet-bound fibrinogen. Chymotrypsin treatment of platelets inhibited 125I-Factor XIIIa binding by 78% without inhibiting secretion. Methylamine and putrescine, Factor XIIIa substrates, and N-ethylmaleimide, an active site inhibitor, did not inhibit binding. Factor XIIIa bound to platelets was enzymatically active and catalyzed [3H]putrescine incorporation into platelet proteins. The specific binding of Factor XIIIa to platelets suggests it may play a role in physiologic reactions involving platelets.  相似文献   

12.
We found that a small, reproducible amount of calmodulin is present in the cytoskeleton of human platelets. Triton-insoluble materials (cytoskeletons), which were prepared by cetrifugation at 1000 × g for 10 min of platelets after lysis by Triton X-100, stimulated cyclic AMP phosphodiesterase activity in the presence of Ca2+ but not in the presence of the calcium chelator, EGTA, or the calmodulin antagonist, trifluoperazine. The activation of the enzyme was also obtained after heating Triton-insoluble materials. An alkaline glycerol polyacrylamide gel electrophoresis of fractions obtained after gel fitration of solubilized Triton residues showed a protein band which had a faster electrophoretic mobility in the absence than in the presence of Ca2+. Upon thrombin activation of platelets, calmodulin in the Triton-insoluble cytoskeletons increased rapidly parallel to actin, actin-binding protein and myosin. With other stimulants such as collagen, epinephrine and ADP, similar results were obtained but with slower association of these proteins with cytoskeletons. However, after treatment with the Ca2+-inophore A23187, calmodulin, actin and actin-binding protein in Triton residues decreased rapidly, whereas the association of myosin increased. Thus, calmodulin seems to be associated with actin filaments rather than myosin filaments, and may be involved in the generation of contractile force in the cell.  相似文献   

13.
Stimulation of platelets by thrombin causes an increase in the amount of cytoskeleton proteins insoluble in 1% Triton X-100, i.e. myosin, actin, actin-binding protein, an alpha-actinin-like protein of Mr = 105,000, unidentified polypeptides of Mr = 150,000, 31,00, and under some conditions, 56,000. Concurrently the Mr = 20,000 light chains of myosin and a cytoplasmic Mr = 42,000 polypeptide are phosphorylated, presumably by calmodulin-Ca2+-dependent myosin light chain kinase and a phospholipid-Ca2+-dependent kinase, respectively. The adenylate cyclase stimulators prostaglandin D2 (PGD2) and forskolin increased platelet cyclic AMP and prevented the phosphorylation of these polypeptides and the increase in Triton-insoluble cytoskeleton proteins. When added to platelets after stimulation by thrombin they caused rapid complete reversal of myosin light chain and Mr = 42,000 polypeptide phosphorylation; simultaneously the association of myosin with the cytoskeleton proteins and the increase in the content of each of the Triton-insoluble cytoskeleton proteins (except the Mr = 56,000 polypeptide) was reversed. The amount of Triton-insoluble myosin was affected more readily by PGD2 or forskolin than were the other proteins. Increasing thrombin from 0.1 to 1.0 unit/ml inhibited all the responses to PGD2 and forskolin possibly due to concentration-dependent effects of thrombin that inhibit adenylate cyclase. These results suggest that cytoskeleton assembly and activation of the contractile apparatus in intact platelets are readily reversible by cyclic AMP-dependent reactions.  相似文献   

14.
Fibronectin is a large dimeric glycoprotein found in plasma, on cell surfaces and as a component of the extracellular matrix which has been implicated in a variety of adhesive processes. The role of fibronectin in platelet function has not been clarified. The present investigation demonstrates that an excess of exogenously added fibronectin inhibits platelet aggregation induced by either thrombin or A23187 at a step subsequent to platelet activation and secretion. Similar concentrations of fibrinogen or von Willebrand factor, both of which also bind to the surface of activated platelets, are not inhibitory. These results are consistent with the concept that fibronectin is one of the important mediators of platelet aggregation.  相似文献   

15.
Binding experiments were performed to demonstrate a direct interaction between cytoskeletons from human blood platelets and phosphatidylserine. A centrifugation technique using radiolabeled phosphatidylserine-vesicles and Triton X-100 insoluble residues from unstimulated human platelets was used to assess the binding. Interaction between cytoskeleton and phospholipid is demonstrated to be specific for phosphatidylserine. No binding was observed for phosphatidylcholine. The binding of phosphatidylserine was saturable and dependent on the concentration of cytoskeleton used. The interaction between phosphatidylserine and the cytoskeleton appeared to be completely reversible. The existence of a reversible and specific interaction between phosphatidylserine and the cytoskeleton of unstimulated platelets would suggest a role for the cytoskeleton in the maintenance of the asymmetric distribution of this lipid in the plasma membrane. We have previously shown (Comfurius et al. (1985) Biochim. Biophys. Acta 815, 143-148) that in activated platelets a strong correlation exists between degradation of platelet cytoskeletal proteins by the endogenous calcium-dependent proteinase (calpain) and exposure of phosphatidylserine at their outer surface. Nevertheless, hydrolysis of the isolated cytoskeleton by calpain did not result in a change in the parameters of the binding between phosphatidylserine and cytoskeleton. Also, sulfhydryl oxidation of the cytoskeleton by diamide did not affect its binding properties for phosphatidylserine, in spite of the fact that diamide treatment of platelets results in exposure of phosphatidylserine at the outer surface. Exposition of phosphatidylserine upon activation of platelets cannot be directly ascribed to a change in affinity or number of binding sites of the modified cytoskeleton as measured in model systems. However, it cannot be excluded that topological rearrangements of the cytoskeleton as occur within the cell during platelet activation lead to a decreased contact between cytoskeleton and lipid, irrespective of the binding parameters.  相似文献   

16.
Mechanisms of actin rearrangements mediating platelet activation.   总被引:22,自引:6,他引:16       下载免费PDF全文
The detergent-insoluble cytoskeleton of the resting human blood platelet contains approximately 2,000 actin filaments approximately 1 micron in length crosslinked at high angles by actin-binding protein and which bind to a spectrin-rich submembrane lamina (Fox, J., J. Boyles, M. Berndt, P. Steffen, and L. Anderson. 1988. J. Cell Biol. 106:1525-1538; Hartwig, J., and M. DeSisto. 1991. J. Cell Biol. 112:407-425). Activation of the platelets by contact with glass results within 30 s in a doubling of the polymerized actin content of the cytoskeleton and the appearance of two distinct new actin structures: bundles of long filaments within filopodia that end at the filopodial tips (filopodial bundles) and a circumferential zone of orthogonally arrayed short filaments within lamellipodia (lamellipodial network). Neither of these structures appears in cells exposed to glass with cytochalasin B present; instead the cytoskeletons have numerous 0.1-0.3-microns-long actin filament fragments attached to the membrane lamina. With the same time course as the glass-induced morphological changes, cytochalasin-sensitive actin nucleating activity, initially low in cytoskeletons of resting platelets, increases 10-fold in cytoskeletons of thrombin-activated platelets. This activity decays with a time course consistent with depolymerization of 0.1-0.3-microns-long actin filaments, and phalloidin inhibits this decay. Cytochalasin-insensitive and calcium-dependent nucleation activity also increases markedly in platelet extracts after thrombin activation of the cells. Prevention of the rise in cytosolic Ca2+ normally associated with platelet activation with the permeant Ca2+ chelator, Quin-2, inhibits formation of lamellipodial networks but not filopodial bundles after glass contact and reduces the cytochalasin B-sensitive nucleation activity by 60% after thrombin treatment. The filopodial bundles, however, are abnormal in that they do not end at the filopodial tips but form loops and return to the cell body. Addition of calcium to chelated cells restores lamellipodial networks, and calcium plus A23187 results in cytoskeletons with highly fragmented actin filaments within seconds. Immunogold labeling with antibodies against gelsolin reveals gelsolin molecules at the ends of filaments attached to the submembrane lamina of resting cytoskeletons and at the ends of some filaments in the lamellipodial networks and filopodial bundles of activated cytoskeletons. Addition of monomeric actin to myosin subfragment 1-labeled activated cytoskeletons leads to new (undecorated) filament growth off the ends of filaments in the filopodial bundles and the lamellipodial network. The simplest explanation for these findings is that gelsolin caps the barbed ends of the filaments in the resting platelet. Uncapping some of these filaments after activation leads to filopodial bundles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Collagen stimulation of platelets induced an increase in the specific activity of pp60c-src immunoprecipitated from the Triton-soluble fraction. The earliest time after collagen stimulation that an increase in pp60c-src activity was observed was 30 s. However, the maximum activity of pp60c-src in the Triton-soluble fraction was observed 60 s after collagen stimulation. At this time an approximately twofold increase of pp60c-src activity towards phosphorylation of KVEKIGEGTYGVVKK specific peptide and enolase and a 4.5-fold increase towards phosphorylation of pp60c-src itself was measured. Furthermore, the majority of pp60c-src as well as pp54/58lyn, pp60fyn, and pp72syk were found in the Triton-soluble fraction in resting platelets. Collagen induced, to different extents and velocities, translocation of all of these proteins from the Triton-soluble fraction to the Triton-insoluble, cytoskeleton-rich, platelets fraction. These results provide direct evidence that collagen stimulation of platelets increases the tyrosine kinase activity of pp60c-src and suggest that the platelet cytoskeleton plays an important role in collagen-induced signal transduction by localizing signaling molecules.  相似文献   

18.
Stimulation of human or rabbit platelets with thrombin in the presence of fibrinogen caused a large decrease, compared with unstimulated controls, in the amount of phosphatidylinositol 4,5-bisphosphate (PIP2) that could be extracted with acidified chloroform/methanol (60% at 60 s). In contrast, stimulation in the absence of added fibrinogen increased the amount of PIP2. The decrease was specific for PIP2, because similar decreases could not be demonstrated for other phosphoinositides or phospholipids. The interaction of polymerizing fibrin with stimulated platelets was required for the decrease in PIP2, since polymerized fibrin formed by reptilase did not cause the decrease in the amount of extractable PIP2, and inhibition by glycyl-L-prolyl-L-arginyl-L-proline of polymerization of fibrin formed by the action of thrombin prevented the large decrease in extractable PIP2. The decrease in extractable PIP2 could not be explained by increased degradation of PIP2, since sufficient degradation products were not formed. Thus, when platelets are stimulated with thrombin in the presence of fibrinogen, an association of polymerizing fibrin with the stimulated platelets occurs that leads to decreased extractability of PIP2. This may mean that PIP2 forms a specific association with platelet proteins that are involved in clot retraction.  相似文献   

19.
Attachment of platelets from the circulation onto a growing thrombus is a process involving multiple platelet receptors, endothelial matrix components, and coagulation factors. It has been indicated previously that during a transglutaminase reaction activated factor XIII (FXIIIa) covalently cross-links von Willebrand factor (VWF) to polymerizing fibrin. Bound VWF further recruits and activates platelets via interactions with the platelet receptor complex glycoprotein Ib (GPIb). In the present study we found proof for binding of VWF to a fibrin monomer layer during the process of fibrinogen-to-fibrin conversion in the presence of thrombin, arvin, or a snake venom from Crotalus atrox. Using a domain deletion mutant we demonstrated the involvement of the C domains of VWF in this binding. Substantial binding of VWF to fibrin monomers persisted in the presence of the FXIIIa inhibitor K9-DON, illustrating that cross-linking via factor XIII is not essential for this phenomenon and suggesting the identification of a second mechanism through which VWF multimers incorporate into a fibrin network. Under high shear conditions, platelets were shown to adhere to fibrin only if VWF had been incorporated. In conclusion, our experiments show that the C domains of VWF and the E domain of fibrin monomers are involved in the incorporation of VWF during the polymerization of fibrin and that this incorporation fosters binding and activation of platelets. Fibrin thus is not an inert end product but partakes in further thrombus growth. Our findings help to elucidate the mechanism of thrombus growth and platelet adhesion under conditions of arterial shear rate.  相似文献   

20.
Platelet surface glycoproteins IIb-IIIa are considered to function as the binding site for fibrinogen. Fibrinogen binding is essential for platelet aggregation and several amines have been shown to inhibit this binding. The present study compares the binding properties of 125I-fibrinogen and [3H]lysine with platelets activated by the Ca2+ ionophore A23187. Many lines of similarities in the binding properties are apparent; however, several differences were also found. The similarities are listed below and the differences are pointed out in parentheses. Marked enhancement by platelet activation; deficiency of binding by thrombasthenic platelets lacking the glycoproteins IIb-IIIa; saturability (fibrinogen binding approaches saturation at more than 12 microM, within 10 min; lysine binding at more than 100 mM within 1 min); Ca2+-dependence (at 1 mM Ca2+ lysine binding is minute and fibrinogen binding is half-saturated); reversibility; the binding achieved within 10 min is exchangeable; dissociation depends upon time and external ligand concentration; inhibition by the oligoamines His-Lys and Lys4; inhibition by serum from a thrombasthenic patient who developed anti-glycoproteins IIb-IIIa antibodies; specificity; alanine neither binds to activated platelets nor inhibits fibrinogen binding; it thus appears that the lysine which associates with activated platelets is mostly bound onto the surface of the cells rather than being incorporated. Moreover, the major site of lysine binding seems to be the complexed glycoproteins IIb-IIIa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号