首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA relaxation catalysed by topoisomerase I is based on the reversible DNA cleavage. The reaction is inhibited by binding of splicing protein SF2/ASF, a substrate for the kinase activity of topoisomerase I. In this paper, we show a novel binding site for SF2/ASF in the cap region of topoisomerase I (amino acids 215-433) which interacts with the region containing two closely spaced RRM domains of SF2/ASF (amino acids 1-194). The sites were defined by a set of pull-down experiments with isolated recombinant polypeptides. We also indicate that the novel site is responsible for the inhibition of DNA cleavage. The polypeptide containing tandem RRM domains inhibited DNA cleavage by topoisomerase I similarly as the complete SF2/ASF. Moreover, interaction between the tandem RRM domains and the cap region was not possible in the presence of DNA.  相似文献   

2.
3.
The human alternative splicing factor ASF/SF2, an SR (serine-arginine-rich) protein involved in mRNA splicing control, is activated by the multisite phosphorylation of its C-terminal RS domain, a segment containing numerous arginine-serine dipeptide repeats. The protein kinase responsible for this modification, SR-specific protein kinase 1 (SRPK1), catalyzes the selective phosphorylation of approximately a dozen serines in only the N-terminal portion of the RS domain (RS1). To gain insights into the nature of selective phosphate incorporation in ASF/SF2, region-specific phosphorylation in the RS domain was monitored as a function of reaction progress. Arg-to-Lys mutations were made at several positions to produce unique protease cleavage sites that separate the RS domain into identifiable N- and C-terminal phosphopeptides upon treatment with lysyl endoproteinase. These studies reveal that SRPK1 docks near the C-terminus of the RS1 segment and then moves in an N-terminal direction along the RS domain. Multiple quadruple Ser-to-Ala and deletion mutations did not disrupt the phosphorylation of other sites regardless of position, suggesting that the active site of SRPK1 docks in a flexible manner at the center of the RS domain. Taken together, these data suggest that SRPK1 uses a unique ‘grab-and-pull’ mechanism to control the regiospecific phosphorylation of its protein substrate.  相似文献   

4.
Crovato TE  Egebjerg J 《FEBS letters》2005,579(19):4138-4144
The properties of the glutamate receptor subunits 1-4 (GluR1-4) are influenced by the alternative splicing of two homologous and mutually exclusive exons flip and flop. The flip form is most abundant during early development, while the flop form is dominant in adults. From transfections with a GluR2 mini-gene we show that flip is the preferred splice form in all tested cell lines, but coexpression of the SR-proteins ASF/SF2 and SC35 increases the flop to flip splice ratio. The increased flop incorporation depends on ASF/SF2- and SC35-dependent enhancer elements located in the flop exon, which stimulate the splicing between the flop exon and the preceding exon 13.  相似文献   

5.
A splicing factor SF2/ASF is a natural substrate for the kinase activity of human topoisomerase I. This study demonstrates that SF2/ASF inhibits DNA cleavage by human topoisomerase I induced by the anti-cancer agent camptothecin. The inhibition is independent of the phosphorylation status of SF2/ASF. We show that the inhibition did not result from binding of SF2/ASF to DNA that would hinder interactions between topoisomerase I and DNA. Neither it was a consequence of a loss of sensitivity of the enzyme to camptothecin. We provide evidence pointing to reduced formation of the cleavable complex in the presence of SF2/ASF as a primary reason for the inhibition. This effect of SF2/ASF is reflected by inhibition of DNA relaxation catalysed by topoisomerase I.  相似文献   

6.
Post‐splicing activities have been described for a subset of shuttling serine/arginine‐rich splicing regulatory proteins, among them SF2/ASF. We showed that growth factors activate a Ras‐PI 3‐kinase‐Akt/PKB signaling pathway that not only modifies alternative splicing of the fibronectin EDA exon, but also alters in vivo translation of reporter mRNAs containing the EDA binding motif for SF2/ASF, providing two co‐regulated levels of isoform‐specific amplification. Translation of most eukaryotic mRNAs is initiated via the scanning mechanism, which implicates recognition of the m7G cap at the mRNA 5′‐terminus by the eIF4F protein complex. Several viral and cellular mRNAs are translated in a cap‐independent manner by the action of cis‐acting mRNA elements named internal ribosome entry sites that direct internal ribosome binding to the mRNA. Here we use bicistronic reporters that generate mRNAs carrying two open reading frames, one translated in a cap‐dependent manner while the other by internal ribosome entry site‐dependent initiation, to show that in vivo over‐expression of SF2/ASF increases the ratio between cap‐dependent and internal ribosome entry site‐dependent translation. Consistently, knocking‐down of SF2/ASF causes the opposite effect. Changes in expression levels of SF2/ASF also affect alternative translation of an endogenous mRNA, that one coding for fibroblast growth factor‐2. These results strongly suggest a role for SF2/ASF as a regulator of alternative translation, meaning the generation of different proteins by the balance among these two translation initiation mechanisms, and expand the known potential of SF2/ASF to regulate proteomic diversity to the translation field. J. Cell. Biochem. 107: 826–833, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
8.
The induction by interleukin-2 of DNA topoisomerase I and DNA topoisomerase II activities in the human T cell line HuT 78 was investigated. HuT 78 cells were treated with 1000 U of interleukin-2/ml, and extracts of the HuT 78 nuclei were prepared over a 24 h period. The extracts were assayed quantitatively for the activities of DNA topoisomerase I and DNA topoisomerase II. Three concomitant, transient increases of 3- to 11-fold in the specific activities of both DNA topoisomerase I and DNA topoisomerase II were observed following treatment with IL-2 at 0.5, 4, and 10 h after treatment with interleukin-2. The specific activities of both enzymes returned to base-line values after each of these transient increases. These results reveal that the activities of DNA topoisomerase I and DNA topoisomerase II are highly regulated in HuT 78 cells upon treatment with IL-2.  相似文献   

9.
Aberration of eukaryotic topoisomerase I catalysis leads to potentially recombinogenic pathways by allowing the joining of heterologous DNA strands. Recently, a new ligation pathway (flap ligation) was presented for vaccinia virus topoisomerase I, in which blunt end cleavage complexes ligate the recessed end of duplex acceptors having a single-stranded 3'-tail. This reaction was suggested to play an important role in the repair of topoisomerase I-induced DNA double-strand breaks. Here, we characterize flap ligation mediated by human topoisomerase I. We demonstrate that cleavage complexes containing the enzyme at a blunt end allow invasion of a 3'-acceptor tail matching the scissile strand of the donor, which facilitates ligation of the recessed 5'-hydroxyl end. However, the reaction was strictly dependent on the length of double-stranded DNA of the donor complexes, and longer stretches of base-pairing inhibited strand invasion. The stabilization of the DNA helix was most probably provided by the covalently bound enzyme itself, since deleting the N-terminal domain of human topoisomerase I stimulated flap ligation. We suggest that stabilization of the DNA duplex upon enzyme binding may play an important role during normal topoisomerase I catalysis by preventing undesired strand transfer reactions. For flap ligation to function in a repair pathway, factors other than topoisomerase I, such as helicases, would be necessary to unwind the DNA duplex and allow strand invasion.  相似文献   

10.
11.
12.
The enzymatic studies were performed to reveal a mode of activation of human topoisomerase I by a direct interaction with protein kinase CK2. In the absence of ATP CK2 kinase activated DNA relaxation about twofold. CK2 subunit was identified as solely responsible for the stimulation of relaxing activity by CK2 kinase. CK2 activated the relaxation only at the excess of the substrate over topoisomerase I. At the equimolar ratio of the substrate DNA and topoisomerase I the activation was not observed. There was also no effect of CK2 on camptothecin-induced cleavage of DNA by htopo I. These results identify an accelerated movement of topoisomerase I between substrate molecules as a cause of the activation of DNA relaxation by CK2 kinase.  相似文献   

13.
Functional domains of the human splicing factor ASF/SF2.   总被引:27,自引:9,他引:27       下载免费PDF全文
P Zuo  J L Manley 《The EMBO journal》1993,12(12):4727-4737
The human splicing factor ASF/SF2 displays two predominant activities in in vitro splicing assays: (i) it is an essential factor apparently required for all splices and (ii) it is able to switch utilization of alternative 5' splice sites in a concentration-dependent manner. ASF/SF2 is the prototype of a family of proteins typified by the presence of one or two RNP-type RNA binding domains (RBDs) and a region highly enriched in repeating arginine-serine dipeptides (RS regions). Here we describe a functional analysis of ASF/SF2, which defines several regions essential for one, or both, of its two principal activities, and provides insights into how this type of protein functions in splicing. Two isoforms of the protein, which arise from alternative splicing, are by themselves inactive, but each can block the activity of ASF/SF2, thereby functioning as splicing repressors. Some, but not all, mutations in the RS region prevent ASF/SF2 from functioning as an essential splicing factor. However, the entire RS region can be deleted without reducing splice site switching activity, indicating that it is not absolutely required for interaction with other splicing factors. Experiments with deletion and substitution mutants reveal that the protein contains two related, but highly diverged, RBDs, and that both are essential for activity. Each RBD by itself retains the ability to bind RNA, although optimal binding requires both domains.  相似文献   

14.
The role of DNA topoisomerases in plant cell metabolism is currently under investigation in our laboratory. Using a purified type I topoisomerase from cultured tobacco, we have carried out a biochemical characterization of enzymatic behavior. The enzyme relaxes negatively supercoiled DNA in the presence of MgCl2, and to a lesser extent in the presence of KCl. Phosphorylation of the topoisomerase does not influence its activity and it is not stimulated by the presence of histones H1 or H5. The enzyme may act in either a processive or distributive manner depending on reaction conditions. The anti-tumor drug, camptothecin, induces significant breakage by the enzyme on purified DNA molecules unless destabilized by the addition of KCl. The tobacco topoisomerase I can catalyze the formation of stable nucleosomes on circular DNA templates, suggesting a role for the enzyme in chromatin assembly.  相似文献   

15.
Human DNA topoisomerase I, known for its DNA-relaxing activity, is possibly one of the kinases phosphorylating members of the SR protein family of splicing factors, in vivo. Little is known about the mechanism of action of this novel kinase. Using the prototypical SR protein SF2/ASF (SRp30a) as model substrate, we demonstrate that serine residues phosphorylated by topo I/kinase exclusively located within the most extended arginine-serine repeats of the SF2/ASF RS domain. Unlike other kinases such as cdc2 and SRPK1, which also phosphorylated serines at the RS domain, topo I/kinase required several SR dipeptide repeats. These repeats possibly contribute to a versatile structure in the RS domain thereby facilitating phosphorylation. Furthermore, far-western, fluorescence spectroscopy and kinase assays using the SF2/ASF mutants, demonstrated that kinase activity and binding were tightly coupled. Since the deletion of N-terminal 174 amino acids of Topo I destroys SF2/ASF binding and kinase activity but not ATP binding, we conclude that at least two distinct domains of Topo I are necessary for kinase activity: one in the C-terminal region contributing to the ATP binding site and the other one in the N-terminal region that allows binding of SF2/ASF.  相似文献   

16.
17.
DNA topoisomerase is involved in DNA repair and replication. In this study, a novel ATP-independent 30-kDa type I DNA topoisomerase was purified and characterized from a marine methylotroph, Methylophaga sp. strain 3. The purified enzyme composed of a single polypeptide was active over a broad range of temperature and pH. The enzyme was able to relax only negatively supercoiled DNA. Mg(2+) was required for its relaxation activity, while ATP gave no effect. The enzyme was clearly inhibited by camptothecin, ethidium bromide, and single-stranded DNA, but not by nalidixic acid and etoposide. Interestingly, the purified enzyme showed Mn(2+)-activated endonuclease activity on supercoiled DNA. The N-terminal sequence of the purified enzyme showed no homology with those of other type I enzymes. These results suggest that the purified enzyme is an ATP-independent type I DNA topoisomerase that has, for the first time, been characterized from a marine methylotroph.  相似文献   

18.
The gene encoding the splicing factor SF2/ASF is a proto-oncogene   总被引:8,自引:0,他引:8  
Alternative splicing modulates the expression of many oncogene and tumor-suppressor isoforms. We have tested whether some alternative splicing factors are involved in cancer. We found that the splicing factor SF2/ASF is upregulated in various human tumors, in part due to amplification of its gene, SFRS1. Moreover, slight overexpression of SF2/ASF is sufficient to transform immortal rodent fibroblasts, which form sarcomas in nude mice. We further show that SF2/ASF controls alternative splicing of the tumor suppressor BIN1 and the kinases MNK2 and S6K1. The resulting BIN1 isoforms lack tumor-suppressor activity; an isoform of MNK2 promotes MAP kinase-independent eIF4E phosphorylation; and an unusual oncogenic isoform of S6K1 recapitulates the transforming activity of SF2/ASF. Knockdown of either SF2/ASF or isoform-2 of S6K1 is sufficient to reverse transformation caused by the overexpression of SF2/ASF in vitro and in vivo. Thus, SF2/ASF can act as an oncoprotein and is a potential target for cancer therapy.  相似文献   

19.
Abundance of pseudo splice sites in introns can potentially give rise to innumerable pseudoexons, outnumbering the real ones. Nonetheless, these are efficiently ignored by the splicing machinery, a process yet to be understood completely. Although numerous 5′ splice site‐like sequences functioning as splicing silencers have been found to be enriched in predicted human pseudoexons, the lack of active pseudoexons pose a fundamental challenge to how these U1snRNP‐binding sites function in splicing inhibition. Here, we address this issue by focusing on a previously described pathological ATM pseudoexon whose inhibition is mediated by U1snRNP binding at intronic splicing processing element (ISPE), composed of a consensus donor splice site. Spliceosomal complex assembly demonstrates inefficient A complex formation when ISPE is intact, implying U1snRNP‐mediated unproductive U2snRNP recruitment. Furthermore, interaction of SF2/ASF with its motif seems to be dependent on RNA structure and U1snRNP interaction. Our results suggest a complex combinatorial interplay of RNA structure and trans‐acting factors in determining the splicing outcome and contribute to understanding the intronic splicing code for the ATM pseudoexon.  相似文献   

20.
Research on exonic coding sequences has demonstrated that many substitutions at the amino acid level may also reflect profound changes at the level of splicing regulatory regions. These results have revealed that, for many alternatively spliced exons, there is considerable pressure to strike a balance between two different and sometimes conflicting forces: the drive to improve the quality and production efficiency of proteins and the maintenance of proper exon recognition by the splicing machinery. Up to now, the systems used to investigate these connections have mostly focused on short alternatively spliced exons that contain a high density of splicing regulatory elements. Although this is obviously a desirable feature in order to maximize the chances of spotting connections, it also complicates the process of drawing straightforward evolutionary pathways between different species (because of the numerous alternative pathways through which the same end point can be achieved). The alternatively spliced fibronectin extra domain A exon (also referred to as EDI or EIIIA) does not have these limitations, as its inclusion is already known to depend on a single exonic splicing enhancer element within its sequence. In this study, we have compared the rat and human fibronectin EDA exons with regard to RNA structure, exonic splicing enhancer strengths, and SR protein occupancy. The results gained from these analyses have then been used to perform an accurate evaluation of EDA sequences observed in a wide range of animal species. This comparison strongly suggests the existence of an evolutionary connection between changes at the nucleotide levels and the need to maintain efficient EDA recognition in different species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号