首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IL-4 plays a crucial role in the pathogenesis of allergic diseases, such as the induction of IgE synthesis and the development of mast cells. To further understand the effect of IL-4 on mast cells in skin, we utilized a mast cell/fibroblast co-culture system as an in vitro model of dermal mast cells. IL-4 induced mast cell growth in the culture with fibroblasts. Immunoblot analysis revealed that IL-4 activated Stat6 in both mast cells and fibroblasts. The over-expression of dominant-negative Stat6 in fibroblasts in the presence of IL-4 decreased the histamine content per mast cell, but not the number of mast cells. In contrast, the over-expression of constitutively-active Stat6 in fibroblasts increased the histamine content per mast cell, indicating that the activation of Stat6 in fibroblasts supports the maturation of mast cells co-cultured with fibroblasts.  相似文献   

2.
3.
Basic or acidic fibroblast growth factor (FGF), alone, was found to be as potent as alpha-thrombin to reinitiate DNA synthesis in G0-arrested Chinese hamster lung fibroblasts (CCL39). Basic FGF at 50 ng/ml or thrombin at 1 unit/ml rapidly initiated early events such as cytoplasmic alkalinization (0.2-0.3 pH units), rise in cytoplasmic Ca2+, phosphorylation of ribosomal protein S6 and increased c-myc expression, followed by a 30-40-fold increase in labeled nuclei. Whereas thrombin is a potent activator of phospholipase C as judged by the rapid release of inositol trisphosphate, inositol bisphosphate and by the massive accumulation of total inositol phosphate (IP) in the presence of 20 mM Li+, FGF failed to induce the breakdown of polyphosphoinositides in quiescent CCL39 cells. Indeed, no inositol trisphosphate nor inositol bisphosphate could be detected in response to FGF; in presence of Li+ the total IP release never exceeded 8% of the IP released by the action of thrombin. Two additional findings indicated that FGF and thrombin activate different signaling pathways. First, we found that, in contrast to thrombin, the FGF-induced rise in the cytoplasmic free Ca2+ concentration measured by quin-2 fluorescence, is strictly dependent upon the presence of Ca2+ in the external medium. Second, we found that FGF failed to activate protein kinase C as judged by the epidermal growth factor-receptor binding assay. Treatment of the cells with either thrombin or phorbol esters, rapidly inhibited 125I-labeled epidermal growth factor binding (50-60%). Basic or acidic FGF had no effect. We conclude that: the FGF-receptor signaling pathway is not coupled to phospholipase C activation, and early mitogenic events and reinitiation of DNA synthesis can be initiated independently of inositol lipid breakdown and protein kinase C activation.  相似文献   

4.
5.
Adequate differentiation or decidualization of endometrial stromal cells (ESC) is critical for successful pregnancy in humans and rodents. Here, we investigated the role of leukemia inhibitory factor (LIF) in human and murine decidualization. Ex vivo human (H) ESC decidualization was induced by estrogen (E, 10−8 M) plus medroxyprogesterone acetate (MPA, 10−7 M). Exogenous LIF (≥50 ng/ml) induced STAT3 phosphorylation in non-decidualized and decidualized HESC and enhanced E+MPA-induced decidualization (measured by PRL secretion, P<0.05). LIF mRNA in HESC was down-regulated by decidualization treatment (E+MPA) whereas LIF receptor (R) mRNA was up-regulated, suggesting that the decidualization stimulus ‘primed’ HESC for LIF action, but that factors not present in our in vitro model were required to induce LIF expression. Ex vivo first trimester decidual biopsies secreted >100 pg/mg G-CSF, IL6, IL8, and MCP1. Decidualized HESC secreted IL6, IL8, IL15 and MCP1. LIF (50 ng/ml) up-regulated IL6 and IL15 (P<0.05) secretion in decidualized HESC compared to 0.5 ng/ml LIF. In murine endometrium, LIF and LIFR immunolocalized to decidualized stromal cells on day 5 of gestation (day 0 = day of plug detection). Western blotting confirmed that LIF and the LIFR were up-regulated in intra-implantation sites compared to inter-implantation sites on Day 5 of gestation. To determine the role of LIF during in vivo murine decidualization, intra-peritoneal injections of a long-acting LIF antagonist (PEGLA; 900 or 1200 µg) were given just post-attachment, during the initiation of decidualization on day 4. PEGLA treatment reduced implantation site decidual area (P<0.05) and desmin staining immuno-intensity (P<0.05) compared to control on day 6 of gestation. This study demonstrated that LIF was an important regulator of decidualization in humans and mice and data provides insight into the processes underlying decidualization, which are important for understanding implantation and placentation.  相似文献   

6.
《Autophagy》2013,9(4):690-691
The fibroblast growth factor (FGF) signaling axis plays important roles in heart development. Yet, the molecular mechanism by which the FGF regulates cardiogenesis is not fully understood. Using genetically engineered mouse and in vitro cultured embryoid body (EB) models, we demonstrate that FGF signaling suppresses premature differentiation of heart progenitor cells, as well as autophagy in outflow tract (OFT) myocardiac cells. The FGF also promotes mesoderm differentiation in embryonic stem cells (ESCs) but inhibits cardiomyocyte differentiation of the mesoderm cells at later stages. Furthermore, inhibition of FGF signaling increases myocardial differentiation and autophagy in both ex vivo cultured embryos and EBs, whereas activation of autophagy promotes myocardial differentiation. Thus, a link between FGF signals preventing premature differentiation of heart progenitor cells and suppression of autophagy has been established. These findings provide the first evidence that autophagy plays a role in heart progenitor differentiation, and suggest a new venue to regulate stem/progenitor cell differentiation.  相似文献   

7.
Zhang J  Liu J  Liu L  McKeehan WL  Wang F 《Autophagy》2012,8(4):690-691
The fibroblast growth factor (FGF) signaling axis plays important roles in heart development. Yet, the molecular mechanism by which the FGF regulates cardiogenesis is not fully understood. Using genetically engineered mouse and in vitro cultured embryoid body (EB) models, we demonstrate that FGF signaling suppresses premature differentiation of heart progenitor cells, as well as autophagy in outflow tract (OFT) myocardiac cells. The FGF also promotes mesoderm differentiation in embryonic stem cells (ESCs) but inhibits cardiomyocyte differentiation of the mesoderm cells at later stages. Furthermore, inhibition of FGF signaling increases myocardial differentiation and autophagy in both ex vivo cultured embryos and EBs, whereas activation of autophagy promotes myocardial differentiation. Thus, a link between FGF signals preventing premature differentiation of heart progenitor cells and suppression of autophagy has been established. These findings provide the first evidence that autophagy plays a role in heart progenitor differentiation, and suggest a new venue to regulate stem/progenitor cell differentiation.  相似文献   

8.
Spermatogonial stem cells continuously divide in the testis to support spermatogenesis throughout the life of adult male animals. Although very few spermatogonial stem cells are present in vivo, we recently succeeded in expanding these cells in vitro. Germ cells from postnatal testes were able to proliferate in the presence of several types of cytokines, and they formed uniquely shaped colonies of spermatogonia (germline stem or GS cells). These cells reinitiated normal spermatogenesis when transplanted into seminiferous tubules. However, much remains unknown about the contributions of cytokines to successful stem cell culture. In the present study, we examined the role of leukemia inhibitory factor (LIF) in GS cell culture. We found that the addition of LIF to newborn testis cell culture enhances the formation of germ cell colonies. Ciliary neurotrophic factor, but not oncostatin M, had the same effect, although they both bind to the IL-6ST (gp130) receptor. On the other hand, GS cells could be established from pup or adult testes in the absence of LIF. No phenotypic or functional difference was found between GS cells established from different stages, and normal offspring were born from pup-derived GS cells that had been maintained in the absence of LIF, indicating that LIF per se is not involved in the self-renewal of GS cells. These results demonstrate that LIF is useful in the initiation of GS cell culture and suggest that LIF or a related cytokine is involved in the maturation of gonocytes into spermatogonia.  相似文献   

9.
Fibroblast growth factors (FGFs) are a family of heparin-binding growth factors. FGFs exert their pro-angiogenic activity by interacting with various endothelial cell surface receptors, including tyrosine kinase receptors, heparan-sulfate proteoglycans, and integrins. Their activity is modulated by a variety of free and extracellular matrix-associated molecules. Also, the cross-talk among FGFs, vascular endothelial growth factors (VEGFs), and inflammatory cytokines/chemokines may play a role in the modulation of blood vessel growth in different pathological conditions, including cancer. Indeed, several experimental evidences point to a role for FGFs in tumor growth and angiogenesis. This review will focus on the relevance of the FGF/FGF receptor system in adult angiogenesis and its contribution to tumor vascularization.  相似文献   

10.
Bone morphogenetic protein-7 (BMP-7), a member of the transforming growth factor (TGF)-beta superfamily of signaling cytokines, induces dendritic growth in rat sympathetic neurons. In this study, we present evidence that the recently discovered integrative nuclear FGFR1 signaling (INFS) pathway is involved in dendrite outgrowth mediated by BMP-7. Immunocytochemical analysis of expressed fibroblast growth factors (FGFs) showed that little FGF-2 was detected in control neurons, but the expression of this molecule in the cytoplasm and nucleus increased within 6 h after BMP-7 treatment. In contrast, FGF-1 was constitutively present in the peripheral cytoplasm and in neurites under control conditions, and its distribution did not change with BMP-7 exposure. The high-affinity receptor FGFR1 was present in low amounts in control neurons and was associated with the cytoplasm, the plasma membrane, and the nucleus. Twenty-four hours of BMP-7 treatment elicited an increase in FGFR1 nuclear localization. Overexpressed constructs of FGFR1 that lack the tyrosine kinase domain, and have been shown to act in a dominant-negative manner on FGFR1 signaling, inhibited BMP-7 mediated initial dendrite outgrowth in transfected neurons by approximately 50%. However, targeted inhibition of extracellular FGF-2 by overexpression of a secreted receptor mutant FGFR1(TM-) lacking the transmembrane domain failed to affect BMP-7 induced dendritic growth, as did treatment with the extracellular FGFR antagonist inositol hexakisphosphate. These results suggest that the INFS, which has already been implicated in a broad range of activities in other cell types, may also be required for BMP-7 to stimulate dendritic development.  相似文献   

11.
12.
13.
14.
Hepatocyte growth factor (HGF) is a potent mitogen for a variety of cells including hepatocytes. While rat oval cells are supposed to be one of hepatic stem cells, biological effects of HGF on oval cells and their relevant signal transduction pathways remain to be determined. We sought to investigate them on OC/CDE22 rat oval cells, which are established from the liver of rats fed a choline-deficient/DL-ethionine-supplemented diet. The oval cells were cultured on fibronectin-coated dishes and stimulated with recombinant HGF, transforming growth factor-alpha (TGF-alpha), and thrombopoietin (TPO) under the serum-free medium condition. HGF treatment enhanced [3H]thymidine incorporation into oval cells in a dose-dependent manner. On the contrary, treatment with TGF-alpha or TPO had no significant effects on [3H]thymidine incorporation into the oval cells. c-Met protein was phosphorylated at the tyrosine residues after the HGF treatment. AKT, extracellular signal-regulated kinase 1/2 (ERK1/2), and p70(s6k) were simultaneously activated after the HGF stimulation, peaking at 30min after the treatment. The activation of AKT, p70(s6k), and ERK1/2 induced by HGF was abolished by pre-treatment with LY294002, a phosphoinositide 3-OH kinase (PI3K) inhibitor, and U0126, a mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, respectively. When the cells were pre-treated with LY294002 prior to the HGF stimulation, the proliferative action of HGF was completely abrogated, implying that the PI3K/AKT signaling pathway is responsible for the biological effect of HGF. These in vitro data indicate that HGF exerts a proliferative action on hepatic oval cells via activation of the PI3K/AKT signaling pathway.  相似文献   

15.
We previously showed that basic fibroblast growth factor (bFGF) stimulates release of vascular endothelial growth factor (VEGF) and synthesis of interleukin-6 (IL-6) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effects of leukemia inhibitory factor (LIF) on the release of VEGF and IL-6 in these cells. LIF did not affect the bFGF-stimulated VEGF release. On the contrary, LIF, which alone had little effect on IL-6 release, significantly enhanced the bFGF-stimulated IL-6 release. The amplifying effect of LIF on the IL-6 release was dose dependent in the range between 0.01 and 10 ng/ml. AG490, an inhibitor of JAK2, suppressed the amplifying effect of LIF. LIF induced the phosphorylation of STAT3. AG490 inhibited the LIF-induced STAT3 phosphorylation. Taken together, our results strongly suggest that LIF enhances bFGF-stimulated IL-6 synthesis via JAK2/STAT3 pathway in osteoblasts.  相似文献   

16.
The dual subcellular fate of fibroblast growth factor 3 (FGF3) is determined by the competing effects of amino-terminal signals for nuclear localization and secretion (P. Kiefer, P. Acland, D. Pappin, G. Peters, and C. Dickson, EMBO J. 13:4126-4136, 1994). Mutation analysis has implicated additional basic domains in the carboxy-terminal region of the protein as necessary for nuclear uptake and the association of FGF3 with the nucleoli. Immunogold electron microscopy shows that FGF3 is predominantly within the dense fibrillar component of the nucleolus. A form of FGF3 that localizes exclusively in the nucleus and nucleolus was generated by removing signals for secretion, and expression of this nonsecreted FGF3 in a mammary epithelial cell line resulted in slowly growing colonies of enlarged cells. Thus, nuclear import and nucleolar association of FGF3 are determined by the concerted interaction of several distinct motifs, and the exclusive production of the nuclear isoform can inhibit DNA synthesis and cell proliferation.  相似文献   

17.
Isoforms of the serine-threonine kinase Akt coordinate multiple cell survival pathways in response to stimuli such as platelet-derived growth factor (PDGF). Activation of Akt is a multistep process, which relies on the production of 3'-phosphorylated phosphoinositide (PI) lipids by PI 3-kinases. To quantitatively assess the kinetics of PDGF receptor/PI 3-kinase/Akt signaling in fibroblasts, a systematic study of this pathway was performed, and a mechanistic mathematical model that describes its operation was formulated. We find that PDGF receptor phosphorylation exhibits positive cooperativity with respect to PDGF concentration, and its kinetics are quantitatively consistent with a mechanism in which receptor dimerization is initially mediated by the association of two 1:1 PDGF/PDGF receptor complexes. Receptor phosphorylation is transient at high concentrations of PDGF, consistent with the loss of activated receptors upon endocytosis. By comparison, Akt activation responds to lower PDGF concentrations and exhibits more sustained kinetics. Further analysis and modeling suggest that the pathway is saturated at the level of PI 3-kinase activation, and that the p110alpha catalytic subunit of PI 3-kinase contributes most to PDGF-stimulated 3'-PI production. Thus, at high concentrations of PDGF the kinetics of 3'-PI production are limited by the turnover rate of these lipids, while the Akt response is additionally influenced by the rate of Akt deactivation.  相似文献   

18.
Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) has been implicated in the regulation of cell growth and actin rearrangement mediated by several receptor tyrosine kinases, including platelet-derived growth factor and epidermal growth factor. Here we identify the Xenopus laevis homolog of LMW-PTP1 (XLPTP1) as an additional positive regulator in the fibroblast growth factor (FGF) signaling pathway during Xenopus development. XLPTP1 has an expression pattern that displays substantial overlap with FGF receptor 1 (FGFR1) during Xenopus development. Using morpholino antisense technology, we show that inhibition of endogenous XLPTP1 expression dramatically restricts anterior and posterior structure development and inhibits mesoderm formation. In ectodermal explants, loss of XLPTP1 expression dramatically blocks the induction of the early mesoderm gene, Xbrachyury (Xbra), by FGF and partially blocks Xbra induction by Activin. Moreover, FGF-induced activation of mitogen-activated protein (MAP) kinase is also inhibited by XLPTP1 morpholino antisense oligonucleotides; however, introduction of RNA encoding XLPTP1 is able to rescue morphological and biochemical effects of antisense inhibition. Inhibition of FGF-induced MAP kinase activity due to loss of XLPTP1 is also rescued by an active Ras, implying that XLPTP1 may act upstream of or parallel to Ras. Finally, XLPTP1 physically associates only with an activated FGFR1, and this interaction requires the presence of SNT1/FRS-2 (FGFR substrate 2). Although LMW-PTP1 has been shown to participate in other receptor systems, the data presented here also reveal XLPTP1 as a new and important component of the FGF signaling pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号