首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The survival motor neuron (SMN) complex fulfils essential functions in the assembly of snRNPs, which are key components in the splicing of pre-mRNAs. Little is known about the regulation of SMN complex activity by posttranslational modification despite its complicated phosphorylation pattern. Several phosphatases had been implicated in the regulation of SMN, including the nuclear phosphatases PPM1G and PP1γ. Here we systematically screened all human phosphatase gene products for a regulatory role in the SMN complex. We used the accumulation of SMN in Cajal bodies of intact proliferating cells, which actively assemble snRNPs, as a readout for unperturbed SMN complex function. Knockdown of 29 protein phosphatases interfered with SMN accumulation in Cajal bodies, suggesting impaired SMN complex function, among those the catalytically inactive, non–receptor-type tyrosine phosphatase PTPN23/HD-PTP. Knockdown of PTPN23 also led to changes in the phosphorylation pattern of SMN without affecting the assembly of the SMN complex. We further show interaction between SMN and PTPN23 and document that PTPN23, like SMN, shuttles between nucleus and cytoplasm. Our data provide the first comprehensive screen for SMN complex regulators and establish a novel regulatory function of PTPN23 in maintaining a highly phosphorylated state of SMN, which is important for its proper function in snRNP assembly.  相似文献   

3.
A macromolecular complex containing survival of motor neurons (SMN), the spinal muscular atrophy protein, and Gemin2-7 interacts with Sm proteins and snRNAs to carry out the assembly of these components into spliceosomal small nuclear ribonucleoproteins (snRNPs). Here we report the characterization of unr-interacting protein (unrip), a GH-WD protein of unknown function, as a component of the SMN complex that interacts directly with Gemin6 and Gemin7. Unrip also binds a subset of Sm proteins, and unrip-containing SMN complexes are necessary and sufficient to mediate the assembly of spliceosomal snRNPs. These results demonstrate that unrip functions in the pathway of snRNP biogenesis and is a marker of cellular SMN complexes active in snRNP assembly.  相似文献   

4.
The survival of motor neurons (SMN) complex is essential for the biogenesis of small nuclear ribonucleoprotein (snRNP) complexes in eukaryotic cells. Reduced levels of SMN cause the motor neuron degenerative disease, spinal muscular atrophy. We identify here stable subunits of the SMN complex that do not contain SMN. Sedimentation and immunoprecipitation experiments using cell extracts reveal at least three complexes composed of Gemin3, -4, and -5; Gemin6, -7, and unrip; and SMN with Gemin2, as well as free Gemin5. Complexes containing Gemin3-Gemin4-Gemin5 and Gemin6-Gemin7-unrip persist at similar levels when SMN is reduced. In cells, immunofluorescence microscopy shows differential localization of Gemin5 after cell stress. We further show that the Gemin5-containing subunits bind small nuclear RNA independently of the SMN complex and without a requirement for exogenous ATP. ATP hydrolysis is, however, required for displacement of small nuclear RNAs from the Gemin5-containing subunits and their assembly into snRNPs. These findings demonstrate a modular nature of the SMN complex and identify a new intermediate in the snRNP assembly process.  相似文献   

5.
The survival motor neuron (SMN) protein plays an essential role in the assembly of uridine-rich small nuclear ribonuclear protein complexes. Phosphorylation of SMN can regulate its function, stability, and sub-cellular localization. This study shows that protein kinase A (PKA) phosphorylates SMN both in vitro and in vivo. Bioinformatic analysis predicts 12 potential PKA phosphorylation sites in human SMN. Mass spectrometric analysis of a tryptic digest of SMN after PKA phosphorylation identified five distinct phosphorylation sites in SMN (serines 4, 5, 8, 187 and threonine 85). Mutagenesis of this subset of PKA-phosphorylated sites in SMN affects association of SMN with Gemin2 and Gemin8. This result indicates that phosphorylation of SMN by PKA may play a role in regulation of the in vivo function of SMN.  相似文献   

6.
Lin Lee 《Developmental biology》2009,332(1):142-2844
Survival motor neuron protein (SMN) is the determining factor for the human neurodegenerative disease spinal muscular atrophy (SMA). SMN is critical for small nuclear ribonucleoprotein (snRNP) assembly. Using Drosophila oogenesis as a model system, we show that mutations in smn cause abnormal nuclear organization in nurse cells and oocytes. Germline and mitotic clonal analysis reveals that both nurse cells and oocytes require SMN to maintain normal organization of nuclear compartments including chromosomes, nucleoli, Cajal bodies and histone locus bodies. We previously found that SMN-containing U bodies invariably associate with P bodies (Liu, J. L., and Gall, J. G. (2007). U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc. Natl. Acad. Sci. U. S. A. 104, 11655-11659.). Multiple lines of evidence implicate SMN in the regulation of germline nuclear organization through the connection of U bodies and P bodies. Firstly, smn germline clones phenocopy mutations for two P body components, Cup and Ovarian tumour (Otu). Secondly, P body mutations disrupt SMN distribution and the organization of U bodies. Finally, mutations in smn disrupt the function and organization of U bodies and P bodies. Taken together, our results suggest that SMN is required for the functional integrity of the U body-P body pathway, which in turn is important for maintaining proper nuclear architecture.  相似文献   

7.
The cell nucleus contains two closely related structures, Cajal bodies (CBs) and gems. CBs are the first site of accumulation of newly assembled splicing snRNPs (small nuclear ribonucleoproteins) following their import into the nucleus, before they form their steady-state localization in nuclear splicing speckles. Gems are the nuclear site of accumulation of survival motor neurons (SMNs), an insufficiency of which leads to the inherited neurodegenerative condition, spinal muscular atrophy (SMA). SMN is required in the cytoplasm for the addition of core, Sm, proteins to new snRNPs and is believed to accompany snRNPs to the CB. In most cell lines, gems are indistinguishable from CBs, although the structures are often separate in vivo . The relationship between CBs and gems is not fully understood, but there is evidence that symmetrical dimethylation of arginine residues in the CB protein coilin brings them together in HeLa cells. During neuronal differentiation of the human neuroblastoma cell line SH-SY5Y, CBs and gems increase their colocalization, mimicking changes seen during foetal development. This does not result from alterations in the methylation of coilin, but from increased levels of SMN. Expression of exogenous SMN results in an increased efficiency of snRNP transport to nuclear speckles. This suggests different mechanisms are present in different cell types and in vivo that may be significant for the tissue-specific pathology of SMA.  相似文献   

8.
Cajal bodies (CBs) are subnuclear domains that participate in spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis and play a part in the assembly of the spliceosomal complex. The CB marker protein, coilin, interacts with survival of motor neuron (SMN) and Sm proteins. Several coilin phosphoresidues have been identified by mass spectrometric analysis. Phosphorylation of coilin affects its self-interaction and localization in the nucleus. We hypothesize that coilin phosphorylation also impacts its binding to SMN and Sm proteins. In vitro binding studies with a C-terminal fragment of coilin and corresponding phosphomimics show that SMN binds preferentially to dephosphorylated analogs and that SmB′ binds preferentially to phosphomimetic constructs. Bacterially expressed full-length coilin binds more SMN and SmB′ than does the C-terminal fragment. Co-immunoprecipitation and phosphatase experiments show that SMN also binds dephosphorylated coilin in vivo. These data show that phosphorylation of coilin influences interaction with its target proteins and, thus, may be significant in managing the flow of snRNPs through the CB.  相似文献   

9.
Cytoplasmic assembly of Sm-class small nuclear ribonucleoproteins (snRNPs) is a central process in eukaryotic gene expression. A large macromolecular complex containing the survival of motor neurons (SMN) protein is required for proper snRNP assembly in vivo. Defects in SMN function lead to a human neuromuscular disorder, spinal muscular atrophy (SMA). SMN protein localizes to both nuclear and cytoplasmic compartments, and a reduction in nuclear levels of SMN is correlated with the disease. The mechanism of SMN nuclear import, however, is unknown. Using digitonin-permeabilized cells, we show that SMN import depends on the presence of Sm snRNPs. Conversely, import of labeled U1 snRNPs was SMN complex dependent. Thus, import of SMN and U snRNPs are coupled in vitro. Furthermore, we identify nuclear import defects in SMA patient-derived SMN mutants, uncovering a potential mechanism for SMN dysfunction.  相似文献   

10.
Spinal muscular atrophy (SMA) is caused by reduced levels of SMN (survival of motor neurons protein) and consequent loss of motor neurons. SMN is involved in snRNP transport and nuclear RNA splicing, but axonal transport of SMN has also been shown to occur in motor neurons. SMN also binds to the small actin-binding protein, profilin. We now show that SMN and profilin II co-localise in the cytoplasm of differentiating rat PC12 cells and in neurite-like extensions, especially at their growth cones. Many components of known SMN complexes were also found in these extensions, including gemin2 (SIP-1), gemin6, gemin7 and unrip (unr-interacting protein). Coilin p80 and Sm core protein immunoreactivity, however, were seen only in the nucleus. SMN is known to associate with beta-actin mRNA and specific hnRNPs in axons and in neurite extensions of cultured nerve cells, and SMN also stimulates neurite outgrowth in cultures. Our results are therefore consistent with SMN complexes, rather than SMN alone, being involved in the transport of actin mRNPs along the axon as in the transport of snRNPs into the nucleus by similar SMN complexes. Antisense knockdown of profilin I and II isoforms inhibited neurite outgrowth of PC12 cells and caused accumulation of SMN and its associated proteins in cytoplasmic aggregates. BIAcore studies demonstrated a high affinity interaction of SMN with profilin IIa, the isoform present in developing neurons. Pathogenic missense mutations in SMN, or deletion of exons 5 and 7, prevented this interaction. The interaction is functional in that SMN can modulate actin polymerisation in vitro by reducing the inhibitory effect of profilin IIa. This suggests that reduced SMN in SMA might cause axonal pathfinding defects by disturbing the normal regulation of microfilament growth by profilins.  相似文献   

11.
Assembly of the Sm-class of U-rich small nuclear ribonucleoprotein particles (U snRNPs) is a process facilitated by the macromolecular survival of motor neuron (SMN) complex. This entity promotes the binding of a set of factors, termed LSm/Sm proteins, onto snRNA to form the core structure of these particles. Nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2-8 and unrip have been identified as the major components of the SMN complex. So far, however, only little is known about the architecture of this complex and the contribution of individual components to its function. Here, we present a comprehensive interaction map of all core components of the SMN complex based upon in vivo and in vitro methods. Our studies reveal a modular composition of the SMN complex with the three proteins SMN, Gemin8, and Gemin7 in its center. Onto this central building block the other components are bound via multiple interactions. Furthermore, by employing a novel assay, we were able to reconstitute the SMN complex from individual components and confirm the interaction map. Interestingly, SMN protein carrying an SMA-causing mutation was severely impaired in formation of the SMN complex. Finally, we show that the peripheral component Gemin5 contributes an essential activity to the SMN complex, most likely the transfer of Sm proteins onto the U snRNA. Collectively, the data presented here provide a basis for the detailed mechanistic and structural analysis of the assembly machinery of U snRNPs.  相似文献   

12.
13.
Phosphorylation modulates the functioning of alphaB-crystallin as a molecular chaperone. We here explore the role of phosphorylation in the nuclear import and cellular localization of alphaB-crystallin in HeLa cells. Inhibition of nuclear export demonstrated that phosphorylation of alphaB-crystallin is required for import into the nucleus. As revealed by mutant analysis, phosphorylation at Ser-59 is crucial for nuclear import, and phosphorylation at Ser-45 is required for speckle localization. Co-immunoprecipitation experiments suggested that the import of alphaB-crystallin is possibly regulated by its phosphorylation-dependent interaction with the survival motor neuron (SMN) protein, an important factor in small nuclear ribonucleoprotein nuclear import and assembly. This interaction was supported by co-localization of endogenous phosphorylated alphaB-crystallin with SMN in nuclear structures. The cardiomyopathy-causing alphaB-crystallin mutant R120G was found to be excessively phosphorylated, which disturbed SMN interaction and nuclear import, and resulted in the formation of cytoplasmic inclusions. Like for other protein aggregation disorders, hyperphosphorylation appears as an important aspect of the pathogenicity of alphaB-crystallin R120G.  相似文献   

14.
Cajal bodies (CBs) are nuclear suborganelles involved in biogenesis of small RNAs. Twin structures, called gems, contain high concentrations of the survival motor neurons (SMN) protein complex. CBs and gems often colocalize, and communication between these subdomains is mediated by coilin, the CB marker. Coilin contains symmetrical dimethylarginines that modulate its affinity for SMN, and, thus, localization of SMN complexes to CBs. Inhibition of methylation or mutation of the coilin RG box dramatically decreases binding of coilin to SMN, resulting in gem formation. Coilin is hypomethylated in cells that display gems, but not in those that primarily contain CBs. Likewise, extracts prepared from cells that display gems are less efficient in methylating coilin and Sm constructs in vitro. These results demonstrate that alterations in protein methylation status can affect nuclear organization.  相似文献   

15.
We have previously shown that ISG20, an interferon (IFN)-induced gene, encodes a 3' to 5' exoribonuclease member of the DEDD superfamily of exonucleases. ISG20 specifically degrades single-stranded RNA. In this report, using immunofluorescence analysis, we demonstrate that in addition to a diffuse cytoplasmic and nucleoplasmic localization, the endogenous ISG20 protein was present in the nucleus both in the nucleolus and in the Cajal bodies (CBs). In addition, we show that the ectopic expression of the CBs signature protein, coilin, fused to the red fluorescent protein (coilin-dsRed) increased the number of nuclear dots containing both ISG20 and coilin-dsRed. Using electron microcopy analysis, ISG20 appeared principally concentrated in the dense fibrillar component of the nucleolus, the major site for rRNA processing. We also present evidences that ISG20 was associated with survival of motor neuron (SMN)-containing macromolecular nuclear complexes required for the biogenesis of various small nuclear ribonucleoproteins. Finally, we demonstrate that ISG20 was associated with U1 and U2 snRNAs, and U3 snoRNA. The accumulation of ISG20 in the CBs after IFN treatment strongly suggests its involvement in a new route for IFN-mediated inhibition of protein synthesis by modulating snRNA and rRNA maturation.  相似文献   

16.
Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.  相似文献   

17.
Mutation of the survival motor neurons 1 (SMN1) gene causes motor neuron apoptosis and represents the major cause of spinal muscular atrophy in humans. Biochemical studies have established that the SMN protein plays an important role in spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis and that the SMN complex can interact with the zinc finger protein ZPR1. Here we report that targeted ablation of the Zpr1 gene in mice disrupts the subcellular localization of both SMN and spliceosomal snRNPs. Specifically, SMN localization to Cajal bodies and gems was not observed in cells derived from Zpr1-/- embryos and the amount of cytoplasmic snRNP detected in Zpr1-/- embryos was reduced compared with that in wild-type embryos. We found that Zpr1-/- mice die during early embryonic development, with reduced proliferation and increased apoptosis. These effects of Zpr1 gene disruption were confirmed and extended in studies of cultured motor neuron-like cells using small interfering RNA-mediated Zpr1 gene suppression; ZPR1 deficiency caused growth cone retraction, axonal defects, and apoptosis. Together, these data indicate that ZPR1 contributes to the regulation of SMN complexes and that it is essential for cell survival.  相似文献   

18.
The survival motor neuron (SMN) protein is the product of the spinal muscular atrophy disease gene. SMN and Gemin2-7 proteins form a large macromolecular complex that localizes in the cytoplasm as well as in the nucleoplasm and in nuclear Gems. The SMN complex interacts with several additional proteins and likely functions in multiple cellular pathways. In the cytoplasm, a subset of SMN complexes containing unrip and Sm proteins mediates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). Here, by mass spectrometry analysis of SMN complexes purified from HeLa cells, we identified a novel protein that is evolutionarily conserved in metazoans, and we named it Gemin8. Co-immunoprecipitation and immunolocalization experiments demonstrated that Gemin8 is associated with the SMN complex and is localized in the cytoplasm and in the nucleus, where it is highly concentrated in Gems. Gemin8 interacts directly with the Gemin6-Gemin7 heterodimer and, together with unrip, these proteins form a heteromeric subunit of the SMN complex. Gemin8 is also associated with Sm proteins, and Gemin8-containing SMN complexes are competent to carry out snRNP assembly. Importantly, RNA interference experiments indicate that Gemin8 knock-down impairs snRNP assembly, and Gemin8 expression is down-regulated in cells with low levels of SMN. These results demonstrate that Gemin8 is a novel integral component of the SMN complex and extend the repertoire of cellular proteins involved in the pathway of snRNP biogenesis.  相似文献   

19.
The survival motor neurons (smn) gene in mice is essential for embryonic viability. In humans, mutation of the telomeric copy of the SMN1 gene causes spinal muscular atrophy, an autosomal recessive disease. Here we report that the SMN protein interacts with the zinc-finger protein ZPR1 and that these proteins colocalize in small subnuclear structures, including gems and Cajal bodies. SMN and ZPR1 redistribute from the cytoplasm to the nucleus in response to serum. This process is disrupted in cells from patients with Werdnig-Hoffman syndrome (spinal muscular atrophy type I) that have SMN1 mutations. Similarly, decreased ZPR1 expression prevents SMN localization to nuclear bodies. Our data show that ZPR1 is required for the localization of SMN in nuclear bodies.  相似文献   

20.
Gemins 2-8 and Unr-interacting protein (UNRIP) are intimate partners of the survival motor neuron (SMN) protein, which is the determining factor for the neuromuscular disorder spinal muscular atrophy (SMA). The most documented role of SMN, Gemins and UNRIP occurs within the large macromolecular SMN complex and involves the cytoplasmic assembly of spliceosomal uridine-rich small nuclear ribonucleoproteins (UsnRNPs), a housekeeping process critical in all cells. Several reports detailing alternative functions for SMN in either motor neurons or skeletal muscles may, however, hold the answer to the extreme neuromuscular tissue specificity observed in SMA. Recent discoveries indicate that collaboration between SMN and Gemins also extends to these non-canonical functions, hence raising the possibility that mutations in Gemin genes may be the cause of unlinked neuromuscular hereditary syndromes. This review evaluates the functions of Gemins and UNRIP inside the SMN complex and discusses whether these less notorious SMN complex members are capable of acting independently of SMN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号