首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Escherichia coli K-12 has the ability to migrate on semisolid media by means of swarming motility. A systematic and comprehensive collection of gene-disrupted E. coli K-12 mutants (the Keio collection) was used to identify the genes involved in the swarming motility of this bacterium. Of the 3,985 nonessential gene mutants, 294 were found to exhibit a strongly repressed-swarming phenotype. Further, 216 of the 294 mutants displayed no significant defects in swimming motility; therefore, the 216 genes were considered to be specifically associated with the swarming phenotype. The swarming-associated genes were classified into various functional categories, indicating that swarming is a specialized form of motility that requires a wide variety of cellular activities. These genes include genes for tricarboxylic acid cycle and glucose metabolism, iron acquisition, chaperones and protein-folding catalysts, signal transduction, and biosynthesis of cell surface components, such as lipopolysaccharide, the enterobacterial common antigen, and type 1 fimbriae. Lipopolysaccharide and the enterobacterial common antigen may be important surface-acting components that contribute to the reduction of surface tension, thereby facilitating the swarm migration in the E. coli K-12 strain.  相似文献   

2.
A systematic and comprehensive gene-disrupted mutant collection of E. coli K-12 was used to identify genes whose deletions affect glycogen accumulation. Of the 3985 non-essential gene mutants of the collection, 35 displayed a glycogen-excess phenotype, whereas 30 displayed either glycogen-less or glycogen-deficient phenotypes. The genes whose deletions affect glycogen accumulation were classified into various functional categories, including energy production, envelope composition and integrity, protein translation and stability, transport of inorganic ions and nucleotides, and metabolism of carbohydrates and amino acids. The overall data indicate that glycogen metabolism is highly interconnected with a wide variety of cellular processes in E. coli.  相似文献   

3.
Resistance to azaserine in Escherichia coli is the result of mutations in at least three different loci. All spontaneously arising azaserine-resistant mutants harbor a lesion in the aroP gene. However, a lesion in this gene is not solely responsible for resistance. All spontaneously arising intermediate-level azaserine-resistant mutants also harbor a lesion in a gene designated azaA, which lies near min 43 on the chromosome. High-level resistant mutants harbor lesions in the aroP and azaA genes and in a third gene designated azaB, which lies near min 69 on the chromosome. Transport studies demonstrate that mutants harboring lesions in the azaA gene are not defective in the transport of the aromatic amino acids, but that mutants which harbor lesions in the azaB gene are defective in phenylalanine transport but not in tyrosine or tryptophan transport.  相似文献   

4.
5.
Overexpression of the response regulator EvgA confers an acid-resistant phenotype to exponentially growing Escherichia coli. This acid resistance is partially abolished by deletion of ydeP, yhiE or ydeO, genes induced by EvgA overexpression. Microarray analysis identified two classes of operons (genes). The first class contains seven operons induced by EvgA overexpression in the absence of ydeO, an AraC/XylS regulator gene. The second class contains 12 operons induced by YdeO overexpression. Operons in the second class were induced by EvgA overexpression only in the presence of ydeO. EvgA is likely to directly upregulate operons in the first class, and indirectly upregulate operons in the second class via YdeO. Analysis using the motif-finding program alignace identified an 18 bp inverted repeat motif in six upstream regions of all seven operons directly regulated by EvgA. Gel mobility shift assays showed the specific binding of EvgA to the six sequences. Introduction of mutations into the inverted repeats upstream of ydeP and b1500-ydeO resulted in reduction in EvgA-induced ydeP and ydeO expression and acid resistance. These results suggest that EvgA binds to the inverted repeats and upregulates the downstream genes. Overexpression of YdeP, YdeO and YhiE conferred acid resistance to exponentially growing cells, whereas GadX overexpression did not. Microarray analysis also identified several GadX-activated genes. Several genes induced by overexpression of YdeO and GadX overlapped; however, yhiE was induced only by YdeO. The acid resistance induced by YdeO overexpression was abolished by deletion of yhiE, gadC, slp-yhiF, hdeA or hdeD, genes induced by YdeO overexpression, suggesting that several genes orchestrate YdeO-induced acid resistance. We propose a model of the regulatory network of the acid resistance genes.  相似文献   

6.
Multidrug resistance is a major cause of clinical failure in treating bacterial infections. Increasing evidence suggests that bacteria can resist multiple antibiotics through intrinsic mechanisms that rely on gene products such as efflux pumps that expel antibiotics and special membrane proteins that block the penetration of drug molecules. In this study, Escherichia coli was used as a model system to explore the genetic basis of intrinsic multidrug resistance. A random mutant library was constructed in E. coli EC100 using transposon mutagenesis. The library was screened by growth measurement to identify the mutants with enhanced or reduced resistance to chloramphenicol (Cm). Out of the 4,000 mutants screened, six mutants were found to be more sensitive to Cm and seven were more resistant compared to the wild-type EC100. Mutations in 12 out of the 13 mutants were identified by inverse polymerase chain reaction. Mutants of the genes rob, garP, bipA, insK, and yhhX were more sensitive to Cm compared to the wild-type EC100, while the mutation of rhaB, yejM, dsdX, nagA, yccE, atpF, or htrB led to higher resistance. Overexpression of rob was found to increase the resistance of E. coli biofilms to tobramycin (Tob) by 2.7-fold, while overexpression of nagA, rhaB, and yccE significantly enhanced the susceptibility of biofilms by 2.2-, 2.5-, and 2.1-fold respectively.  相似文献   

7.
An oligonucleotide microarray detecting 189 Escherichia coli virulence genes or markers and 30 antimicrobial resistance genes was designed and validated using DNA from known reference strains. This microarray was confirmed to be a powerful diagnostic tool for monitoring emerging E. coli pathotypes and antimicrobial resistance, as well as for environmental, epidemiological, and phylogenetic studies including the evaluation of genome plasticity.  相似文献   

8.
9.
10.
Gene knockout experiments are frequently performed for both fundamental and applied biological research. We developed an integration helper plasmid-based knockout system for more efficient and rapid engineering of Escherichia coli. The integration helper plasmid, pCW611, contains two recombinases that are expressed in the reverse direction by two independent inducible systems. One is Red recombinase under the control of the arabinose-inducible system to induce a recombination event by using the linear gene knockout DNA fragment, while the other is Cre recombinase, which is controlled by the isopropyl β-D -1-thiogalactopyranoside-inducible system to obtain markerless mutant strains. The time and effort required can be reduced with this system because iterative transformation and curing steps are not required. We could delete one target gene in three days by using pCW611. To verify the usefulness of this system, deletion experiments were performed to knock out four target genes individually (adhE, sfcA, frdABCD, and ackA) and two genes simultaneously for two cases (adhEaspA and sfcAaspA). Also, sequential deletion of four target genes (fumB, iclR, fumA, and fumC) was successfully performed to make a fumaric acid producing strain. This successfully developed and validated rapid and efficient gene manipulation system should be useful for the metabolic engineering of E. coli.  相似文献   

11.
12.
目的了解临床分离的耐环丙沙星的大肠埃希菌质粒介导的喹诺酮类耐药基因的携带情况,并进行相关耐药机制的分析。方法采用VITEK-2全自动微生物检测系统鉴定细菌,用K-B法检测细菌对16种常用抗生素的敏感性,采用聚合酶链反应检测喹诺酮类耐药基因qnrS、qnrA、qnrB、qepA和aac(6′)-Ib,并对阳性的aac(6′)-Ib结果进行测序分析。结果 30株耐环丙沙星的大肠埃希菌中,2株(6.67%)检出qepA基因,8株(26.67%)检出aac(6′)-Ib基因,经测序证实其中6株为aac(6)′-Ib-cr(20.0%)。未检出qnrS、qnrA和qnrB基因。结论对环丙沙星耐药的大肠埃希菌携带aac(6′)-Ib-cr和qepA基因,引起质粒介导的对喹诺酮类抗菌药物的低水平耐药。  相似文献   

13.
14.

Key message

Genome-wide association mapping in conjunction with population sequencing map and Ensembl plants was used to identify markers/candidate genes linked to leaf rust, stripe rust and tan spot resistance in wheat.

Abstract

Leaf rust (LR), stripe rust (YR) and tan spot (TS) are some of the important foliar diseases in wheat (Triticum aestivum L.). To identify candidate resistance genes for these diseases in CIMMYT’s (International Maize and Wheat Improvement Center) International bread wheat screening nurseries, we used genome-wide association studies (GWAS) in conjunction with information from the population sequencing map and Ensembl plants. Wheat entries were genotyped using genotyping-by-sequencing and phenotyped in replicated trials. Using a mixed linear model, we observed that seedling resistance to LR was associated with 12 markers on chromosomes 1DS, 2AS, 2BL, 3B, 4AL, 6AS and 6AL, and seedling resistance to TS was associated with 14 markers on chromosomes 1AS, 2AL, 2BL, 3AS, 3AL, 3B, 6AS and 6AL. Seedling and adult plant resistance (APR) to YR were associated with several markers at the distal end of chromosome 2AS. In addition, YR APR was also associated with markers on chromosomes 2DL, 3B and 7DS. The potential candidate genes for these diseases included several resistance genes, receptor-like serine/threonine-protein kinases and defense-related enzymes. However, extensive LD in wheat that decays at about 5?×?107 bps, poses a huge challenge for delineating candidate gene intervals and candidates should be further mapped, functionally characterized and validated. We also explored a segment on chromosome 2AS associated with multiple disease resistance and identified seventeen disease resistance linked genes. We conclude that identifying candidate genes linked to significant markers in GWAS is feasible in wheat, thus creating opportunities for accelerating molecular breeding.
  相似文献   

15.
Loss of plasmids during enrichment for Escherichia coli.   总被引:4,自引:5,他引:4       下载免费PDF全文
Enrichment with sodium lauryl sulfate and incubation at 44.5 degrees C resulted in a loss of plasmids and decreased efficiency in the recovery of pathogenic. Escherichia coli strains from foods.  相似文献   

16.
Enrichment of microorganisms with special traits and the construction of metagenomic libraries by direct cloning of environmental DNA have great potential for identifying genes and gene products for biotechnological purposes. We have combined these techniques to isolate novel genes conferring oxidation of short-chain (C(2) to C(4)) polyols or reduction of the corresponding carbonyls. In order to favor the growth of microorganisms containing the targeted genes, samples collected from four different environments were incubated in the presence of glycerol and 1,2-propanediol. Subsequently, the DNA was extracted from the four samples and used to construct complex plasmid libraries. Approximately 100,000 Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from polyols on indicator agar. Twenty-four positive E. coli clones were obtained during the initial screen. Sixteen of them contained a plasmid (pAK101 to pAK116) which conferred a stable carbonyl-forming phenotype. Eight of the positive clones exhibited NAD(H)-dependent alcohol oxidoreductase activity with polyols or carbonyls as the substrates in crude extracts. Sequencing revealed that the inserts of pAK101 to pAK116 encoded 36 complete and 17 incomplete presumptive protein-encoding genes. Fifty of these genes showed similarity to sequenced genes from a broad collection of different microorganisms. The genes responsible for the carbonyl formation of E. coli were identified for nine of the plasmids (pAK101, pAK102, pAK105, pAK107 to pAK110, pAK115, and pAK116). Analyses of the amino acid sequences deduced from these genes revealed that three (orf12, orf14, and orf22) encoded novel alcohol dehydrogenases of different types, four (orf5, sucB, fdhD, and yabF) encoded novel putative oxidoreductases belonging to groups distinct from alcohol dehydrogenases, one (glpK) encoded a putative glycerol kinase, and one (orf1) encoded a protein which showed no similarity to any other known gene product.  相似文献   

17.
A total of 318 Escherichia coli isolates obtained from diarrheic and healthy pigs in Ontario from 2001 to 2003 were examined for their susceptibility to 19 antimicrobial agents. They were tested by PCR for the presence of resistance genes for tetracycline, streptomycin, sulfonamides, and apramycin and of 12 common virulence genes of porcine E. coli. Antimicrobial resistance frequency among E. coli isolates from swine in Ontario was moderate in comparison with other countries and was higher in isolates from pigs with diarrhea than in isolates from healthy finisher pigs. Resistance profiles suggest that cephamycinases may be produced by > or = 8% of enterotoxigenic E. coli (ETEC). Resistance to quinolones was detected only in enterotoxigenic E. coli (< or = 3%). The presence of sul3 was demonstrated for the first time in Canada in porcine E. coli isolates. Associations were observed among tetA, sul1, aadA, and aac(3)IV and among tetB, sul2, and strA/strB, with a strong negative association between tetA and tetB. The paa and sepA genes were detected in 92% of porcine ETEC, and strong statistical associations due to colocation on a large plasmid were observed between tetA, estA, paa, and sepA. Due at least in part to gene linkages, the distribution of resistance genes was very different between ETEC isolates and other porcine E. coli isolates. This demonstrates that antimicrobial resistance epidemiology differs significantly between pathogenic and commensal E. coli isolates. These results may have important implications with regards to the spread and persistence of resistance and virulence genes in bacterial populations and to the prudent use of antimicrobial agents.  相似文献   

18.
AIMS: The aim of this study was to determine if three classes of farm disinfectants were able to select for ciprofloxacin or cyclohexane tolerant [indicative of a multiple antibiotic resistance (MAR) phenotype] Escherichia coli and if cyclohexane-tolerant E. coli could be isolated from farms. METHODS AND RESULTS: Chicken slurry containing ca 1 : 99 ratio ciprofloxacin resistant : susceptible E. coli (10 different resistant strains examined) was treated for 24 h with each of the disinfectants and examined for survival of resistant : susceptible strains. Ciprofloxacin-sensitive (n=5) and -resistant (n=5) E. coli were grown with sublethal concentrations of the disinfectants and then plated to agar containing ciprofloxacin or overlaid with cyclohexane. Escherichia coli (n=389) isolated from farms were tested for cyclohexane tolerance. Minimum inhibitory concentrations (MIC) were determined against representative isolates and mutants. The disinfectants did not select for the ciprofloxacin-resistant E. coli in poultry slurry but following growth with each of the three disinfectants, higher numbers (P < or = 0.023) of cyclohexane-tolerant E. coli were isolated and these had a MAR phenotype. Of the 389 farm E. coli tested, only one was cyclohexane tolerant. CONCLUSIONS: It is possible that in a farm environment, E. coli could be exposed to similar concentrations of the disinfectants that are selected for MAR type organisms under these laboratory conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: Data from this study suggest that cyclohexane-resistant E. coli are not common on farms, but in view of the ease of isolating them in the laboratory with farm disinfectants, further investigations on farms are warranted.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号