首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yasui M  Ryu M  Sakurai K  Ishihara K 《Gerodontology》2012,29(2):e494-e502
doi: 10.1111/j.1741‐2358.2011.00506.x Colonisation of the oral cavity by periodontopathic bacteria in complete denture wearers Objective: The purpose of this study was to investigate colonisation by periodontopathic bacteria and the sites of colonisation in elderly upper and lower complete denture wearers. We also investigated the relationship between level of oral hygiene and colonisation by periodontopathic bacteria. Materials and methods: Forty edentulous and 37 dentate volunteers participated in this study. Samples were collected from whole saliva, and levels of Aggregatibacter actinomycetemcomitans, Prevotella intermedia, Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia and Fusobacterium nucleatum were determined by PCR Invader technology. Detection of these species on oral mucosal and denture surfaces was performed by PCR. Fisher’s exact test was used for the statistical analysis. Cluster analysis was employed to investigate trends in the periodontopathic bacteria flora in each sampling area. Results: Detection rates of periodontopathic bacteria in whole saliva were lower under edentulous conditions than under dentulous conditions, except for A. actinomycetemcomitans and F. nucleatum (p < 0.01). Detection rate of F. nucleatum was the highest in all areas. A positive correlation was observed between DNA quantification of P. gingivalis and number of Candida species in saliva. Cluster analysis of the test species identified two clusters. Tongue‐coating status was associated with the detection rate of all periodontopathic bacteria investigated, and denture plaque status was associated with the detection rate of T. denticola and F. nucleatum. Conclusion: Results indicate the presence of periodontopathic bacteria under edentulous conditions and that the status of oral hygiene of the mucosal or denture surfaces affects colonisation by T. denticola and F. nucleatum.  相似文献   

2.
Given the emerging evidence of an association between periodontal infections and systemic conditions, the search for specific methods to detect the presence of P. gingivalis, a principal etiologic agent in chronic periodontitis, is of high importance. The aim of this study was to characterize antibodies raised against purified P. gingivalis HmuY protein and selected epitopes of the HmuY molecule. Since other periodontopathogens produce homologs of HmuY, we also aimed to characterize responses of antibodies raised against the HmuY protein or its epitopes to the closest homologous proteins from Prevotella intermedia and Tannerella forsythia. Rabbits were immunized with purified HmuY protein or three synthetic, KLH-conjugated peptides, derived from the P. gingivalis HmuY protein. The reactivity of anti-HmuY antibodies with purified proteins or bacteria was determined using Western blotting and ELISA assay. First, we found homologs of P. gingivalis HmuY in P. intermedia (PinO and PinA proteins) and T. forsythia (Tfo protein) and identified corrected nucleotide and amino acid sequences of Tfo. All proteins were overexpressed in E. coli and purified using ion-exchange chromatography, hydrophobic chromatography and gel filtration. We demonstrated that antibodies raised against P. gingivalis HmuY are highly specific to purified HmuY protein and HmuY attached to P. gingivalis cells. No reactivity between P. intermedia and T. forsythia or between purified HmuY homologs from these bacteria and anti-HmuY antibodies was detected. The results obtained in this study demonstrate that P. gingivalis HmuY protein may serve as an antigen for specific determination of serum antibodies raised against this bacterium.  相似文献   

3.
Lactoferrin (LF) is a component of saliva and is suspected to be a defense factor against oral pathogens including Streptococcus mutans and Candida albicans. Periodontitis is a very common oral disease caused by periodontopathic bacteria. Antimicrobial activities and other biological effects of LF against representative periodontopathic bacteria, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Prevotella intermedia, have been widely studied. Association of polymorphisms in LF with incidence of aggressive periodontitis and the role of LF in the gingival crevicular fluid as a marker of periodontitis severity have also been reported. Periodontopathic bacteria reside as a biofilm in supragingival and subgingival plaque. Our recent study indicated that LF exhibits antibacterial activity against planktonic forms of P. gingivalis and P. intermedia at higher concentrations, and furthermore, LF effectively inhibits biofilm formation and reduces the established biofilm of these bacteria at physiological concentrations. A small-scale clinical study indicated that oral administration of bovine LF reduces P. gingivalis and P. intermedia in the subgingival plaque of chronic periodontitis patients. LF seems to be a biofilm inhibitor of periodontopathic bacteria in vitro and in vivo.  相似文献   

4.
The aim of this study was to investigate the impact of early colonizing species on the structure and the composition of the bacterial community developing in a subgingival 10-species biofilm model system. The model included Streptococcus oralis, Streptococcus anginosus, Actinomycesoris, Fusobacterium nucleatum subsp. nucleatum, Veillonella dispar, Campylobacter rectus, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. Based on literature, we considered Streptococcus oralis, Streptococcus anginosus, and Actinomyces oris as early colonizers and examined their role in the biofilms by either a delayed addition to the consortium, or by not inoculating at all the biofilms with these species. We quantitatively evaluated the resulting biofilms by real-time quantitative PCR and further compared the structures using confocal laser scanning microscopy following fluorescence in situ hybridisation. The absence of the early colonizers did not hinder biofilm formation. The biofilms reached the same total counts and developed to normal thickness. However, quantitative shifts in the abundances of individual species were observed. In the absence of streptococci, the overall biofilm structure appeared looser and more dispersed. Moreover, besides a significant increase of P. intermedia and a decrease of P. gingivalis , P. intermedia appeared to form filamented long chains that resembled streptococci. A. oris, although growing to significantly higher abundance in absence of streptococci, did not have a visible impact on the biofilms. Hence, in the absence of the early colonizers, there is a pronounced effect on P. intermedia and P. gingivalis that may cause distinct shifts in the structure of the biofilm. Streptococci possibly facilitate the establishment of P. gingivalis into subgingival biofilms, while in their absence P. intermedia became more dominant and forms elongated chains.  相似文献   

5.
Periodontal disease is a chronic infectious disease, which is characterized by the damaged dental hard tissue by lactic acid generated by microorganisms after the fermentation of carbohydrates rich diet. The risk of periodontal disease is known to be higher in diabetic patients. We compared the diversity of five commonly occurring dental bacteria including Porphyromonas gingivalis, Tannerella forsythia, Capnocytophaga ochracea, Prevotella intermedia, and Aggregatibacter actinomycetemcomitans in 14 type-2 diabetic patients and equal numbers of healthy controls. The subgingival samples were collected using sterile paper points. We used 16S rRNA sequence specific primers for PCR-based identification of dental bacteria. Our results showed that A. actinomycetemcomitans was completely absent in control subjects but present in 43% of diabetic patients. C. ochracea was highly prevalent in diabetic patients (100%) as compared to controls (28.5%). The frequency of other three bacterial species was also higher in diabetic patients than control subjects. These findings indicate that dental bacteria are highly prevalent in subgingival pockets of diabetic patients. Therefore, proper monitoring of diabetic patients for dental care is important to prevent bacterial growth and its sequela in risky individuals. Further case-control studies using larger sample size would help in validating the association between oral diseases and diabetes.  相似文献   

6.
The interaction between Lactobacillus reuteri, a probiotic bacterium, and oral pathogenic bacteria have not been studied adequately. This study examined the effects of L. reuteri on the proliferation of periodontopathic bacteria including Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, and Tannerella forsythia, and on the formation of Streptococcus mutans biofilms. Human-derived L. reuteri strains (KCTC 3594 and KCTC 3678) and rat-derived L. reuteri KCTC 3679 were used. All strains exhibited significant inhibitory effects on the growth of periodontopathic bacteria and the formation of S. mutans biofilms. These antibacterial activities of L. reuteri were attributed to the production of organic acids, hydrogen peroxide, and a bacteriocin-like compound. Reuterin, an antimicrobial factor, was produced only by L. reuteri KCTC 3594. In addition, L. reuteri inhibited the production of methyl mercaptan by F. nucleatum and P. gingivalis. Overall, these results suggest that L. reuteri may be useful as a probiotic agent for improving oral health.  相似文献   

7.
The incidence of potential periodontal pathogens (Aggregatibacter actinomycetemcomitans, formerly Actinobacillus actinomycetemcomitans, Tannerella forsythia, Porphyromonas gingivalis, Prevotella nigrescens, Prevotella intermedia and Capnocytophaga ochracea) was monitored in patients with chronic periodontitis and in healthy control subjects. Two types of studies were carried out in which the composition of the bacterial communities in different niches of the same oral cavity ecosystem was investigated. Fluctuation or at least pronounced quantitative changes in the incidence of individual species in time were documented in the long-term study as well as after the local administration of antibacterial drug Chlo-Site or Metronidazole. Even within two weeks, a turnover of the monitored bacteria in separate niches of the oral biotope can be detected. A relatively high incidence of the tested periopathogens in the clinically healthy teeth of patients implies that even the “healthy” niches in the periodontal biotope function as a dynamic reservoir of periopathogenic microorganisms. This should be kept in mind when a local application of antibacterial compounds is used in the therapy of periodontal disease.  相似文献   

8.
《Anaerobe》2009,15(3):87-90
BackgroundChronic periodontitis is caused by mixed bacterial infection. Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola are frequently detected in deep periodontal pockets. We demonstrate that these bacteria induce proinflammatory cytokine production by the mouse macrophage-like cell line J774.1.Materials and methodsJ774.1 cells were incubated with and without bacteria for 24 h in 96-well flat-bottomed plates. The culture supernatants were analyzed by enzyme-linked immunosorbent assay for secreted mouse interleukin (IL)-6, monocyte chemoattractant protein-1, IL-23, IL-1β and tumor necrosis factor-α. The cytokine concentrations were determined using a standard curve prepared for each assay.ResultsMixed infection with P. gingivalis and either T. forsythia or T. denticola at 105 CFU/ml acted synergistically to increase IL-6 production, but not monocyte chemoattractant protein-1, IL-23, IL-1β or tumor necrosis factor-α production. Gingipain inhibitors KYT-1 and KYT-36 inhibited IL-6 production by J774.1 cells incubated with 105 CFU/ml of mixed bacteria.ConclusionThese results suggest that P. gingivalis with either T. forsythia or T. denticola directly induces synergistic IL-6 protein production and that gingipains play a role in this synergistic effect.  相似文献   

9.
Objectives: The aim of this study was to analyse the prevalence of oral bacteria on the dorsum of the tongue. In addition, the relationship between the number of teeth and the microflora present on the coating of the tongue in a population of 85‐year‐old people was assessed. Subjects and methods: Two hundred and five individuals (89 males, 116 females) from the same geographical area who were 85 years of age were examined. Five periodontopathic bacteria (Porphyromonas gingivalis, Tannerella forsythia, Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum, and Treponema denticola) and one cariogenic bacterium (Streptococcus mutans) were analysed using a polymerase chain reaction assay of tongue samples from the population. Results: Periodontal bacteria‐positive individuals have more teeth than that of periodontal bacteria‐negative people. Between the periodontal bacteria‐positive and ‐negative individuals, there were significant differences in the mean number of teeth for P. gingivalis (p < 0.0001), T. denticola (p < 0.001), F. nucleatum (p = 0.002), and T. forsythia (p = 0.005), while there were no significant differences for A. actinomycetemcomitans (p = 0.998) or S. mutans (p = 0.147). Conclusions: A wide range of species, including anaerobes, was detected in 85‐year‐old subjects. It was found that the detection of periodontal bacteria on the tongue coating increased with the number of teeth. There was a positive relationship between the tooth number and periodontopathic bacteria, except for A. actinomycetemcomitans.These results suggest that tongue care is essential for preventing oral disease and needs to be part of any oral care programme in elderly people.  相似文献   

10.
IntroductionThe purpose of this study was to investigate the adhesion and invasion of periodontopathogenic bacteria in varied mixed infections and the release of interleukins from an epithelial cell line (KB cells).MethodsKB cells were co-cultured with Porphyromonas gingivalis ATCC 33277 and M5-1-2, Tannerella forsythia ATCC 43037, Treponema denticola ATCC 35405 and Fusobacterium nucleatum ATCC 25586 in single and mixed infections. The numbers of adherent and internalized bacteria were determined up to 18 h after bacterial exposure. Additionally, the mRNA expression and concentrations of released interleukin (IL)-6 and IL-8 were measured.ResultsAll periodontopathogenic bacteria adhered and internalized in different numbers to KB cells, but individually without any evidence of co-aggregation also to F. nucleatum. High levels of epithelial mRNA of IL-6 and IL-8 were detectable after all bacterial challenges. After the mixed infection of P. gingivalis ATCC 33277 and F. nucleatum ATCC 25586 the highest levels of released interleukins were found. No IL-6 and IL-8 were detectable after the mixed infection of P. gingivalis M5-1-2 and F. nucleatum ATCC 25586 and the fourfold infection of P. gingivalis ATCC 33277, T. denticola ATCC 35405, T. forsythia ATCC 43037 and F. nucleatum ATCC 25586.ConclusionAnaerobic periodontopathogenic bacteria promote the release of IL-6 and IL-8 by epithelial cells. Despite a continuous epithelial expression of IL-8 mRNA by all bacterial infections these effects are temporary because of the time-dependent degradation of cytokines by bacterial proteases. Mixed infections have a stronger virulence potential than single bacteria. Further research is necessary to evaluate the role of mixed infections and biofilms in the pathogenesis of periodontitis.  相似文献   

11.
Bacterial translocation is defined as the passage of viable bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other extraintestinal sites. The translocation rate of a newly described species of indigenous bacteria,Lactobacillus murinus, was compared with the translocation rates of indigenousLactobacillus acidophilus and nonindigenousSalmonella enteritidis. Groups of germfree or antibiotic-decontaminated, specific pathogen-free mice were monoassociated with each of these bacterial strains and tested at various intervals for translocation to the mesenteric lymph nodes. The translocation rates of the various bacteria expressed in decreasing order as the numbers of translocating bacteria per gram mesenteric lymph node wereS. enteritidis, L. murinus, andL. acidophilus. The degree of histologic damage to the gastrointestinal mucosa after monoassociation with these strains followed the same pattern. Thus,L. murinus translocates from the GI tract at a surprisingly high rate for an indigenous bacterial strain, and its translocation appears to be associated with mucosal alterations.  相似文献   

12.
It is well known that strain and virulence diversity exist within the population structure of Porphyromonas gingivalis. In the present study we investigate intra- and inter-species variability in biofilm formation of Porphyromonas gingivalis and partners Prevotella intermedia and Prevotella nigrescens. All strains tested showed similar hydrophobicity, except for P. gingivalis W83 which has roughly half of the hydrophobicity of P. gingivalis ATCC33277. An intraspecies variability in coaggregation of P. gingivalis with P. intermedia was also found. The association P. gingivalis W83/P. intermedia 17 produced the thickest biofilm and strain 17 was prevalent. In a two-compartment system P. gingivalis W83 stimulates an increase in biomass of strain 17 and the latter did not stimulate the growth of P. gingivalis W83. In addition, P. gingivalis W83 also stimulates the growth of P. intermedia ATCC25611 although strain W83 was prevalent in the association with P. intermedia ATCC25611. P. gingivalis ATCC33277 was prevalent in both associations with P. intermedia and both strains of P. intermedia stimulate the growth of P. gingivalis ATCC33277. FISH images also showed variability in biofilm structure. Thus, the outcome of the association P. gingivalis/P. intermedia seems to be strain-dependent, and both soluble factors and physical contact are relevant. The association P. gingivalis-P. nigrescens ATCC33563 produced larger biomass than each monotypic biofilm, and P. gingivalis was favored in consortia, while no differences were found in the two-compartment system. Therefore, in consortia P. gingivalis-P. nigrescens physical contact seems to favor P. gingivalis growth. The intraspecies variability found in our study suggests strain-dependence in ability of microorganisms to recognize molecules in other bacteria which may further elucidate the dysbiosis event during periodontitis development giving additional explanation for periodontal bacteria, such as P. gingivalis and P. intermedia, among others, to persist and establish chronic infections in the host.  相似文献   

13.
Chronic periodontitis has a polymicrobial biofilm aetiology and interactions between key bacterial species are strongly implicated as contributing to disease progression. Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia have all been implicated as playing roles in disease progression. P. gingivalis cell-surface-located protease/adhesins, the gingipains, have been suggested to be involved in its interactions with several other bacterial species. The aims of this study were to determine polymicrobial biofilm formation by P. gingivalis, T. denticola and T. forsythia, as well as the role of P. gingivalis gingipains in biofilm formation by using a gingipain null triple mutant. To determine homotypic and polymicrobial biofilm formation a flow cell system was employed and the biofilms imaged and quantified by fluorescent in situ hybridization using DNA species-specific probes and confocal scanning laser microscopy imaging. Of the three species, only P. gingivalis and T. denticola formed mature, homotypic biofilms, and a strong synergy was observed between P. gingivalis and T. denticola in polymicrobial biofilm formation. This synergy was demonstrated by significant increases in biovolume, average biofilm thickness and maximum biofilm thickness of both species. In addition there was a morphological change of T. denticola in polymicrobial biofilms when compared with homotypic biofilms, suggesting reduced motility in homotypic biofilms. P. gingivalis gingipains were shown to play an essential role in synergistic polymicrobial biofilm formation with T. denticola.  相似文献   

14.
Polymicrobial diseases are caused by combinations of multiple bacteria, which can lead to not only mild but also life-threatening illnesses. Periodontitis represents a polymicrobial disease; Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia, called ‘the red complex'', have been recognized as the causative agents of periodontitis. Although molecular interactions among the three species could be responsible for progression of periodontitis, the relevant genetic mechanisms are unknown. In this study, we uncovered novel interactions in comparative genome analysis among the red complex species. Clustered regularly interspaced short palindromic repeats (CRISPRs) of T. forsythia might attack the restriction modification system of P. gingivalis, and possibly work as a defense system against DNA invasion from P. gingivalis. On the other hand, gene deficiencies were mutually compensated in metabolic pathways when the genes of all the three species were taken into account, suggesting that there are cooperative relationships among the three species. This notion was supported by the observation that each of the three species had its own virulence factors, which might facilitate persistence and manifestations of virulence of the three species. Here, we propose new mechanisms of bacterial symbiosis in periodontitis; these mechanisms consist of competitive and cooperative interactions. Our results might shed light on the pathogenesis of periodontitis and of other polymicrobial diseases.  相似文献   

15.
Chronic periodontitis is a highly prevalent endogenous polymicrobial disease. To better understand the etiology of the disease a quantitative approach is mandatory and real-time PCR is the molecular technique currently preferred to achieve this purpose. Taking into account that such a kind of study is still scarce, we aimed to evaluate the association between periodontal microbiota and chronic periodontitis. A total of 60 low-income age-matched female adults, 30 with chronic periodontitis and 30 without periodontal disease, were enrolled. DNA obtained from subgingival specimens was used for quantification of Aggregatibacter actinomycetemcomitans, Eikenella corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, and Prevotella intermedia by real-time PCR. A. actinomycetemcomitans, E. corrodens, and F. nucleatum were detected in all subjects, P. gingivalis was observed in 70.0% and 46.6% and P. intermedia in 90.0% and 80.0% of chronic periodontitis patients and periodontally healthy subjects, respectively. P. gingivalis mean count was significantly higher in patients with chronic periodontitis than in periodontally healthy individuals. Accurate detection and quantification of five putative periodontal pathogens was feasible using a simple and fast real-time PCR protocol. Although P. gingivalis and P. intermedia have been found more commonly in chronic periodontitis patients, no statistical difference was observed between periodontally diseased and healthy groups. Quantitative data indicated association between P. gingivalis and chronic periodontitis. However, because of its uneven distribution, it should not be solely taken as a marker of periodontal status.  相似文献   

16.
Tannerella forsythia is considered a pathogen of periodontitis and forms a biofilm with multi-species bacteria in oral cavity. Lipopolysaccharide is a powerful immunostimulator and induces inflammation and shock. The purpose of this study was to investigate the characteristics of T. forsythia LPS in its co-cultivation with Fusobacterium nucleatum or Porphyromonas gingivalis. T. forsythia was co-cultured in the presence and absence of F. nucleatum and P. gingivalis and then T. forsythia LPS was extracted. The extracts were analyzed by SDS-PAGE and NF-κB reporter CHO cell lines. THP-1 cells were treated with the LPS and evaluated induction of cytokine expression by real-time RT-PCR and ELISA. For analysis of the bioactivity of T. forsythia LPS, the binding assay on LPS-binding protein (LBP) and CD14 was processed. The extracts did not contaminate other molecules except LPS and showed TLR4 agonists. Co-cultured T. forsythia LPS with P. gingivalis exhibited a lower level of induction of TNF-α, IL-1β, and IL-6 expression than singleor co-cultured T. forsythia LPS with F. nucleatum in the conditions of human serum. However, the three T. forsythia LPS did not show difference of cytokine induction in the serum free conditions. Co-cultured T. forsythia LPS with P. gingivalis exhibited a lower affinity to LBP and CD14 as binding site of O-antigen and attached at a lower level to THP-1 cells compared to single- or co-cultured T. forsythia LPS with F. nucleatum. The virulence of T. forsythia LPS was decreased by co-culturing with P. gingivalis and their affinity to LBP and CD14 was reduced, which may due to modification of O-antigen chain by P. gingivalis.  相似文献   

17.
The enzyme-labeled antigen method was applied to visualize plasma cells producing antibodies to Porphyromonas gingivalis, flora of the human oral cavity. Antibodies to P. gingivalis have reportedly been detected in sera of patients with periodontitis. Biotinylated bacterial antigens, Ag53, and four gingipain domains (Arg-pro, Arg-hgp, Lys-pro, and Lys-hgp) were prepared by the cell-free protein synthesis system using the wheat germ extract. In paraformaldehyde-fixed frozen sections of rat lymph nodes experimentally immunized with Ag53-positive and Ag53-negative P. gingivalis, plasma cells were labeled with biotinylated Arg-hgp and Lys-hgp. Antibodies to Ag53 were detected only in the nodes immunized with Ag53-positive bacteria. In two of eight lesions of gingival radicular cyst with inflammatory infiltration, CD138-positive plasma cells in frozen sections were signalized for Arg-hgp and Lys-hgp. An absorption study using unlabeled antigens confirmed the specificity of staining. The AlphaScreen method identified the same-type antibodies in tissue extracts but not in sera. Antibodies to Ag53, Arg-pro, and Lys-pro were undetectable. In two cases, serum antibodies to Arg-hgp and Lys-hgp were AlphaScreen positive, whereas plasma cells were scarcely observed within the lesions. These findings indicate the validity of the enzyme-labeled antigen method. This is the very first application of this novel histochemical technique to human clinical samples.  相似文献   

18.
《Anaerobe》2002,8(4):200-208
Overwhelming evidence indicates that bacteria play an essential role in the etiology of different forms of periradicular diseases. The purpose of this study was to assess the prevalence of 11 putative oral pathogens in root canals associated with symptoms using a 16S rDNA-directed polymerase chain reaction (PCR) assay. Associations of the target species in pairs were also recorded. Samples were obtained from the root canals of 20 symptomatic teeth. DNA was extracted from the samples and analysed for the presence of the target bacterial species using PCR. All samples were positive for the presence of bacterial DNA. In general, Treponema denticola was detected in 50% of the cases (ten of 20), Bacteroides forsythus in 40% (eight of 20), Porphyromonas endodontalis in 40% (eight of 20), Porphyromonas gingivalis in 30% (six of 20), Campylobacter rectus in 20% (two of ten), Micromonas micros in 20% (two of ten), Prevotella nigrescens in 10% (two of 20), and Streptococcus anginosus in 10% (one of ten cases). No sample yielded Actinobacillus actinomycetemcomitans, Prevotella intermedia or Fusobacterium nucleatum. The most common bacterial pairs observed between the target species were B. forsythus/P. gingivalis (five cases), B. forsythus/P. endodontalis (four cases), P. endodontalis/P. gingivalis (four cases) andB. forsythus/T. denticola (three cases). The relatively high prevalence of T. denticola, B. forsythus, P. endodontalis, and P. gingivalis suggests that these bacterial species are implicated in the development of symptoms associated with infected root canals.  相似文献   

19.
Prevotella intermedia and Prevotella nigrescens, which are often isolated from periodontal sites, were once considered two different genotypes of P. intermedia. Although the genomic sequence of P. intermedia was determined recently, little is known about the genetic differences between P. intermedia and P. nigrescens. The subtractive hybridization technique is a powerful method for generating a set of DNA fragments differing between two closely related bacterial strains or species. We used subtractive hybridization to identify the DNA regions specific to P. intermedia ATCC 25611 and P. nigrescens ATCC 25261. Using this method, four P. intermedia ATCC 25611-specific and three P. nigrescens ATCC 25261-specific regions were determined. From the species-specific regions, insertion sequence (IS) elements were isolated for P. intermedia. IS elements play an important role in the pathogenicity of bacteria. For the P. intermedia-specific regions, the genes adenine-specific DNA-methyltransferase and 8-amino-7-oxononanoate synthase were isolated. The P. nigrescens-specific region contained a Flavobacterium psychrophilum SprA homologue, a cell-surface protein involved in gliding motility, Prevotella melaninogenica ATCC 25845 glutathione peroxide, and Porphyromonas gingivalis ATCC 33277 leucyl-tRNA synthetase. The results demonstrate that the subtractive hybridization technique was useful for distinguishing between the two closely related species. Furthermore, this technique will contribute to our understanding of the virulence of these species.  相似文献   

20.
Periodontal disease (PD) and atherosclerosis are both polymicrobial and multifactorial and although observational studies supported the association, the causative relationship between these two diseases is not yet established. Polymicrobial infection-induced periodontal disease is postulated to accelerate atherosclerotic plaque growth by enhancing atherosclerotic risk factors of orally infected Apolipoprotein E deficient (ApoEnull) mice. At 16 weeks of infection, samples of blood, mandible, maxilla, aorta, heart, spleen, and liver were collected, analyzed for bacterial genomic DNA, immune response, inflammation, alveolar bone loss, serum inflammatory marker, atherosclerosis risk factors, and aortic atherosclerosis. PCR analysis of polymicrobial-infected (Porphyromonas gingivalis [P. gingivalis], Treponema denticola [T. denticola], and Tannerella forsythia [T. forsythia]) mice resulted in detection of bacterial genomic DNA in oral plaque samples indicating colonization of the oral cavity by all three species. Fluorescent in situ hybridization detected P. gingivalis and T. denticola within gingival tissues of infected mice and morphometric analysis showed an increase in palatal alveolar bone loss (p<0.0001) and intrabony defects suggesting development of periodontal disease in this model. Polymicrobial-infected mice also showed an increase in aortic plaque area (p<0.05) with macrophage accumulation, enhanced serum amyloid A, and increased serum cholesterol and triglycerides. A systemic infection was indicated by the detection of bacterial genomic DNA in the aorta and liver of infected mice and elevated levels of bacterial specific IgG antibodies (p<0.0001). This study was a unique effort to understand the effects of a polymicrobial infection with P. gingivalis, T. denticola and T. forsythia on periodontal disease and associated atherosclerosis in ApoEnull mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号