首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用人源性抗HBcAg单链抗体细胞内表达技术,探讨抗HBV复制基因治疗的应用价值.应用噬菌体展示和基因重组技术,从HBV感染的外周血淋巴细胞克隆了人源性抗HBcAg单链抗体,并重组至逆转录病毒载体.以人肝癌细胞smmc-7721和PLC/PRF/5为靶细胞进行基因共转染,分别测定实验组细胞上清中的HBsAg和HBeAg,与对照组做比较,观察抗HBcAg单链抗体细胞内表达的抗病毒治疗作用.结果显示,在急性HBV感染的细胞株中,抑制病毒复制效率为49%~61%,在慢性病毒感染细胞,抑制率为41%~54%.实验结果表明,应用单链抗体细胞内表达技术,在抗病毒治疗研究中具有潜在的应用价值.应对HBV的4个开放阅读框架编码产物进行全面的对比研究,以发现抑制效率高、实用价值大的靶基因.  相似文献   

2.
The monoclonal antibody C7-50 binds to the HCV core protein with high sensitivity and specificity. The coding sequences of the variable domains of the antibody were determined following cDNA cloning of the Fab and sFv fragments. Subsequently, intracellular expression and binding of these antibody fragments to the HCV core protein as a potential antiviral approach were studied. There was high specificity and sensitivity of binding of bacterially expressed, recombinant C7-50 Fab to HCV core as measured by EIA and immunoblot. For expression in mammalian cells, the C7-50 antibody was subcloned in the sFv format by the introduction of a (Gly(4)Ser)(3) linker spaced between light and heavy chains. Northern and Western blot analysis as well as confocal microscopy established the targeted expression of the C7-50 sFv antibody fragment in the endoplasmic reticulum of transfected cells. The colocalization and intracellular binding of the antibody fragment to HCV core protein was confirmed by immunoprecipitation and subsequent immunoblot analysis. This study demonstrates that gene delivery of cDNA coding sequences inducing intracellular expression of C7-50 antibody fragments leads to binding of the antibody fragment to the HCV core protein within the secretory compartment of transfected cells. Intracellular immunization represents a promising antiviral approach to interfere with the life cycle of HCV.  相似文献   

3.
The bacterial expression of a single-chain antibody fragment, designated L6 sFv, was examined. Periplasmic targeting resulted in the production of a correctly folded protein that bound tumor antigen. However, immediately after induction at either 30°C or 37°C there was a significant loss in bacterial viability, which was followed by a loss in absorbance. The loss in absorbance correlated with cell lysis and release of the L6 sFv into the culture supernatant. The kinetics of appearance of L6 sFv in the supernatant paralleled that of periplasmic \-lactamase and confirmed an initial loss of cell-wall integrity prior to cell lysis. Bacteria incubated at 30°C produced approximately threefold more correctly folded antibody fragment because of an increase in the number of cells/A 660 at the lower incubation temperature. More than 95% of the L6 sFv, made at either incubation temperature, was incorrectly folded. Osmotic-shock procedures did not release L6 sFv. However, in situ subtilisin susceptibility experiments with bacterial spheroplasts confirmed a periplasmic location. French press disruption resulted in the release of correctly but not incorrectly folded material. Membrane fractionation revealed that the incorrectly folded L6 sFv remained associated with both the inner and outer membrane. These results demonstrate that, in this system, antibody fragment expression resulted initially in cell death, which was followed by release of protein into the culture supernatant and eventually cell lysis. It is also suggested that membrane association in the periplasmic space may impede proper folding.  相似文献   

4.
5.
Protein translation, translocation, folding, processing, and secretion in eukaryotic cells are complex and not always straightforward processes, e.g., different routes of secretion and degradation exist. Formation of malfolded proteins in the endoplasmic reticulum (ER) can be one of the major bottlenecks for recombinant protein production. In this regard, an in-depth analysis of the interactions of a secreted protein during its pathway through the cell may be beneficial, as realized in this study for the methylotrophic yeast Pichia pastoris. The antibody fragment Fab3H6 used here is the anti-idiotype to the HIV neutralizing antibody 2F5 and is known to be intracellularly degraded in significant amounts when expressed in P. pastoris. The interactome of Fab3H6 was analyzed by using a pull-down mass spectrometry approach, and 23 proteins were found to bind specifically to the antibody fragment. Those allowed concluding that Fab3H6 is post-translationally translocated into the ER and degraded via the proteasome as well as the vacuole. In line with this, the expression of Fab3H6 increased the proteasomal activities by over 20%. Partial inhibition of the proteasome resulted in a significant increase of extracellular Fab3H6. Thus, it seems that ER quality control overshoots its requirements for the recombinant protein expressed and that more than just terminally malfolded protein is degraded by ER-associated degradation. This work will further facilitate our understanding how recombinant proteins behave in the secretory pathway.  相似文献   

6.
The hepatitis B virus (HBV) transgenic mouse (Tg) 50-4 strain is immunologically tolerant to HBV antigens. Various vaccination strategies have been attempted but failed to break the tolerance in the mouse. Although the tolerance to HBV antigen is maintained, this mouse strain develops spontaneous liver disease beginning at the age of about 3 months. We attempted to induce immune responses to HBV surface antigen (HBsAg) in the Tg by immunization with recombinant vaccinia virus expressing HBsAg (vvHBV), and observed different immunological responsiveness between 2-month-old and 5-month-old Tg. In contrast to the unbreakable tolerance reported previously, we could induce both the cytotoxic T lymphocyte (CTL) and the antibody response against HBsAg by the vvHBV immunization. The cytokine expression pattern indicated that T helper 1 type immune response was induced. However, interestingly, these immune responses were observed only in the 5-month-old Tg, but not in the 2-month-old Tg. Furthermore, CD4+ T cells from 2-month-old mice, but not those from 5-month-old mice, inhibited CTL response to HBV antigen when adoptively transferred to C57BL/6. These results suggest the possible involvement of regulatory T cell function in the HBV Tg for maintaining tolerance. This study would contribute to a better understanding of immune status of the HBV Tg as a model of human chronic hepatitis and to the search for new therapeutic targets for chronic viral infections.  相似文献   

7.
Various domains of hepatitis B surface antigen (HBsAg) are essential for the assembly and secretion of hepatitis D virus (HDV). This study investigated the influences of the levels and sequences of HBsAg of naturally occurring HBV variants on the assembly and secretion of HDV. Six hepatitis B virus (HBV)-producing plasmids (three genotype B and three genotype C) and six HBsAg expression plasmids that expressed various HBsAg levels were constructed from the sera of HDV-infected patients. These plasmids were cotransfected with six expression plasmids of HDV of genotype 1, 2, or 4 into the Huh-7 hepatoma cell line. Serum HBsAg and HBV DNA levels were correlated with HDV RNA levels and outcomes of chronic hepatitis D (CHD) patients. The secretion of genotype 1, 2, or 4 HDV generally correlated with HBsAg levels but not with HBV genotypes or HBV DNA levels. Swapping and residue mutagenesis experiments of HBsAg-coding sequences revealed that the residue Pro-62 in the cytosolic domain-I affects the assembly and secretion of genotype 2 and 4 HDV and not those of genotype 1. The pre-S2 N-terminal deletion HBV mutant adversely affects secretion of the three HDV genotypes. In patients, serum HDV RNA levels correlated with HBsAg levels but not with HBV DNA levels. Viremia of HDV or HBV correlated with poor outcomes. In conclusion, the assembly and secretion of HDV were influenced by the amounts and sequences of HBsAg. For an effective treatment of CHD, reduction of HBsAg production in addition to the suppression of HBV and HDV replication might be crucial.  相似文献   

8.
9.
10.
The hepatitis C virus (HCV) core protein is a multifunctional protein that can interfere with the induction of an immune response. It has been reported that the HCV core protein inhibits HBV replication in vitro. In this study, we test the effect of the HCV core gene on the priming of the immune response to hepatitis B surface antigen (HBsAg) and on the replication of HBV in vivo. Our results showed that the full-length HCV core gene inhibits the induction of an immune response to the heterogeneous antigen, HBsAg, at the site of inoculation when HCV core (pC191) and HBsAg (pHBsAg) expression plasmids are co-administered as DNA vaccines into BALB/c mice. The observed interference effect of the HCV core occurs in the priming stage and is limited to the DNA form of the HBsAg antigen, but not to the protein form. The HCV core reduces the protective effect of the HBsAg when the HBsAg and the HCV core are co-administered as vaccines in an HBV hydrodynamic mouse model because the HCV core induces immune tolerance to the heterogeneous HBsAg DNA antigen. These results suggest that HCV core may play an important role in viral persistence by the attenuation of host immune responses to different antigens. We further tested whether the HCV core interfered with the priming of the immune response in hepatocytes via the hydrodynamic co-injection of an HBV replication-competent plasmid and an HCV core plasmid. The HCV core inhibited HBV replication and antigen expression in both BALB/c (H-2d) and C57BL/6 (H-2b) mice, the mouse models of acute and chronic hepatitis B virus infections. Thus, the HCV core inhibits the induction of a specific immune response to an HBsAg DNA vaccine. However, HCV C also interferes with HBV gene expression and replication in vivo, as observed in patients with coinfection.  相似文献   

11.
G K Sing  S Prior  A Fernan    G Cooksley 《Journal of virology》1993,67(6):3454-3460
The hematopoietic cell lines HL-60 and THP-1 were challenged with hepatitis B virus (HBV) in vitro to study interactions between the virus and host cell. Exposure to HBV suppressed the ability of HL-60 cells to differentiate into granulocytes after treatment with retinoic acid (RA) or dimethyl sulfoxide (DMSO), and RA-induced activation of the monocytic cell line THP-1 was also suppressed. Terminal differentiation of both cell lines by phorbol 12-myristate 13-acetate (PMA) was not affected by HBV. The suppressive effect on RA- or DMSO-induced differentiation was unique to HBV, since cell exposure to human cytomegalovirus, another virus that inhibits hematopoiesis, failed to block cellular differentiation. At 5 days postinfection, extracellular viral DNA was detected in immature but not in differentiated cultures and higher levels of core antigen (HBcAg) and surface antigen (HBsAg) were seen in undifferentiated cells than in RA- or PMA-treated cells. In addition, release of HBsAg into the medium was 2 to 12 times greater in untreated cultures than for RA- or PMA-treated cells. Thus, HBV suppresses hematopoiesis by blocking the maturational development of progenitors and selectively infects immature myeloid cells compared with mature end-stage cells.  相似文献   

12.
Hepatitis B virus (HBV) surface antigen (HBsAg) genes were injected directly into the liver of adult rats with non-histone chromosomal protein high mobility group 1 by the hemagglutinating B virus of Japan (Sendai virus)-liposome method (Kato, K., Nakanishi, M., Kaneda, Y., Uchida, T., and Okada, Y. (1991) J. Biol. Chem. 266, 3361-3364). Immunohistochemical analysis showed that HBV surface antigen was expressed by the hepatocytes in vivo. On successive injections of the HBsAg genes, the antibody to HBV surface polypeptides was produced in the rats, and characteristic pathological changes of lymphocytic focal necrosis and denaturation of hepatic cells were observed in the liver of all the rats. We conclude that hepatitis is caused by the direct injection of HBsAg genes.  相似文献   

13.
Coexistence of hepatitis B surface antigen (HBsAg) and antibody against HBsAg (anti-HBs) comprises an atypical serological profile in patients with chronic hepatitis B virus (HBV) infection. In this study, in total 94 patients with coexisting HBsAg and anti-HBs and 94 age- and sex-matched patients with positive HBsAg were characterized by quantitatively measuring HBsAg and HBV DNA, sequencing large S genes, and observing clinical features. Compared with common hepatitis B patients, the patients with coexisting HBsAg and anti-HBs had lower HBsAg and HBV DNA levels. These two groups had similar rate of pre-S deletion mutations. However, in patients with coexisting HBsAg and anti-HBs, more amino acid substitutions in the a determinant of S gene were observed in HBV genotype C, but not in genotype B. Fourteen patients with coexisting HBsAg and anti-HBs were followed up for an average of 15.5 months. There were no significant changes in the levels of HBsAg, anti-HBs, HBV DNA and ALT over the follow-up period. Compared with the baseline sequences, amino acid substitutions in the MHR of HBsAg occurred in 14.3% (2/14) patients. In conclusion, coexistence of HBsAg and anti-HBs may be associated with higher frequency of mutations in the a determinant of HBV genotype C.  相似文献   

14.
15.
我们先前用rAAV8-1.3HBV静脉注射C57BL/6小鼠成功地制备了慢性乙型肝炎病毒(Hepatitis B virus,HBV)感染模型。为了探讨不同品系的小鼠对rAAV8-1.3HBV静脉注射是否具有不同反应,本研究比较了C57BL/6和BALB/c小鼠静脉注射重组病毒后外周血中HBV抗原和抗体水平、病毒载量和肝脏组织HBcAg表达情况,以及不同剂量重组病毒注射与这些指标的关系。将低(4×109 Viral genome,vg)、中(4×1010vg)和高(4×1011vg)三种剂量的rAAV8-1.3HBV通过尾静脉注射至C57BL/6和BALB/c小鼠,分别利用ELISA和荧光定量PCR方法检测血清中的HBV抗原、抗体水平以及HBV DNA,利用免疫组化检测肝脏组织HBcAg的表达。结果发现,对于C57BL/6小鼠,三种不同剂量rAAV8-1.3HBV注射均可造成100%小鼠出现HBV持续感染;血清HBsAg、HBeAg和HBV DNA以及肝组织HBcAg稳定表达超过8个月,其表达水平随重组病毒注射剂量的增加而升高,高剂量注射时可造成超过40%的肝细胞感染HBV,血清中HBV DNA可达105 IU/mL以上;未检测到针对HBV的抗体。对于BALB/c小鼠,三种不同剂量rAAV8-1.3HBV注射也可造成100%小鼠出现HBV持续感染;血清HBeAg和HBV DNA以及肝组织HBcAg稳定表达超过8个月,但是血清HBsAg在重组病毒注射2周之后显著下降甚至消失;在中剂量注射组的BALB/c小鼠血清中检测到低水平的Anti-HBs;血清HBeAg和肝组织HBcAg的表达水平随重组病毒注射剂量的增加而增高,并且各剂量组表达水平均高于C57BL/6小鼠,高剂量注射时可造成超过50%的肝细胞感染HBV。本研究表明,低至4×109 vg剂量的rAAV8-1.3HBV注射即可造成C57BL/6和BALB/c两种品系小鼠出现HBV持续感染,并且HBV复制水平随重组病毒注射剂量增加而增高;BALB/c小鼠对HBV的免疫反应强于C57BL/6小鼠,可以产生针对HBsAg的体液免疫反应而使血清HBsAg转阴,但无法清除携带HBV的肝细胞。  相似文献   

16.
G Ge  S Wang  Y Han  C Zhang  S Lu  Z Huang 《PloS one》2012,7(7):e41573
Although the use of recombinant hepatitis B virus surface (HBsAg) protein vaccine has successfully reduced global hepatitis B infection, there are still a number of vaccine recipients who do not develop detectable antibody responses. Various novel vaccination approaches, including DNA vaccines, have been used to further improve the coverage of vaccine protection. Our previous studies demonstrated that HBsAg-based DNA vaccines could induce both humoral and CMI responses in experimental animal models. However, one form of the the HBsAg antigen, the large S antigen (HBs-L), expressed by DNA vaccine, was not sufficiently immunogenic in eliciting antibody responses. In the current study, we produced a modified large S antigen DNA vaccine, HBs-L(T), which has a truncated N-terminal sequence in the pre-S1 region. Compared to the original HBs-L DNA vaccine, the HBs-L(T) DNA vaccine improved secretion in cultured mammalian cells and generated significantly enhanced HBsAg-specific antibody and B cell responses. Furthermore, this improved HBsL DNA vaccine, along with other HBsAg-expressing DNA vaccines, was able to maintain predominantly Th1 type antibody responses while recombinant HBsAg protein vaccines produced in either yeast or CHO cells elicited mostly Th2 type antibody responses. Our data indicate that HBsAg DNA vaccines with improved immunogenicity offer a useful alternative choice to recombinant protein-based HBV vaccines, particularly for therapeutic purposes against chronic hepatitis infection where immune tolerance led to poor antibody responses to S antigens.  相似文献   

17.
A 62-year-old man had chronic hepatitis B virus (HBV) infection and was diagnosed with liver cirrhosis. At the time of diagnosis the patient’s virologic markers were positive for hepatitis B surface antigen (HBsAg), antibody to hepatitis B e antigen (anti-HBe) and antibody to hepatitis B core antigen (anti-HBc), while antibody to hepatitis B surface antigen (anti-HBs) and HBV DNA were negative. Later the patient received chemotherapy for malignancy. However, this was interrupted due to elevated liver enzymes. At the same time HBV DNA became positive. Lamivudine (LMV) therapy was administered immediately. However, the levels of serum aminotransferase and total bilirubin (TB) were still rising. Finally the patient died of fulminant hepatic failure. A sequence revealed HBV genotype C (HBsAg subtype adw) with immune escape mutations, F8L, S34L, F41S, G44V, F93C, V96G, L110I, C149Y and F161Y. The high morbidity and mortality of this complication is one of the major obstacles to completing the standard treatment for malignancy in HBV carriers. Therefore, the relative risk of antiviral prophylactic failure should be further assessed and the optimal strategy for antiviral prophylaxis in HBsAg-positive patients with oncologic and hematologic malignancies undergoing chemotherapy should be revised.  相似文献   

18.
乙型肝炎病毒(hepatitis B virus,HBV)合成的蛋白调节细胞脂质代谢的研究不断被报道,但乙型肝炎病毒表面抗原(hepatitis B virus surface antigen,HBsAg)与脂质代谢的相互调控研究较少,且机制尚不明确。本研究通过对细胞转录组学的分析,揭示HBsAg对脂质代谢的调控机制。选用稳定表达HBsAg的细胞系HepG2-S-G2与其对照细胞系HepG2-neo-F4进行转录组学分析。利用定量聚合酶链反应(polymerase chain reaction,PCR)、蛋白质印迹法(Western blot,WB)分别检测重要差异基因OXCT1和CYP4F3在mRNA水平和蛋白水平的表达差异。为验证HBsAg促进脂质合成上调的表型,对两种细胞系进行油红O染色并检测细胞脂肪酸、总胆固醇水平。进一步对稳定转染HBV的细胞系HepG2.2.15进行降脂处理,以观察细胞上清液中HBsAg与脂质合成之间是否存在相互调控。结果显示,参与脂质代谢的差异基因发生显著变化,提示HBsAg引起了宿主细胞脂质合成途径的上调和消耗途径下调。定量PCR结果显示,相对于HepG2-neo-F4细胞,HepG2-S-G2细胞的3-酮酸辅酶A转移酶1(3-oxoacid CoA-transferase 1,OXCT1)mRNA水平升高约9倍,与转录组测序结果基本一致;CYP4F3基因在HepG2-S-G2细胞中转录相对下调。 WB结果显示,OXCT1和CYP4F3蛋白表达均出现相应的显著上调或下调,并且趋势与转录组分析一致。油红O染色以及细胞脂肪酸、总胆固醇水平检测结果证实HepG2-S-G2细胞中脂滴更明显,且游离脂肪酸和总胆固醇均显著升高。降脂处理结果显示细胞上清液中HBsAg显著降低。上述结果表明,HBsAg可上调脂质代谢、促进脂质合成,提示降脂可能成为抑制HBsAg的潜在有效途径。  相似文献   

19.
重组质粒与重组蛋白共免疫诱导HBsAg特异性T细胞免疫抑制   总被引:1,自引:0,他引:1  
摘要:【目的】为了探索治疗急性乙型肝炎和爆发性乙型肝的新策略,本研究将HBV DNA疫苗和相应抗原的蛋白质分子联合免疫小鼠,旨在探讨联合免疫对小鼠抗原特异性T细胞增殖反应的影响。【方法】我们将HBV DNA疫苗(pcDS2)和相应抗原蛋白质分子(HBsAg)联合免疫BALB/c小鼠;分别在第0、2和4周进行免疫,在第6周用ELISA方法检测抗-HBs IgG效价,MTT和流式细胞仪检测T细胞增殖反应,及流式细胞仪检测细胞因子表达水平。【结果】pcDS2和HBsAg联合免疫组小鼠的抗-HBs水平显著提高;免疫小鼠的T细胞体外经HBsAg刺激后, 联合免疫组刺激指数(SI)明显降低;经流式细胞仪检测进一步证实联合免疫组T细胞增殖反应被显著抑制;联合免疫组T细胞表达IL-10和Foxp3水平显著升高。【结论】pcDS2和HBsAg联合免疫能诱导产生特异性体液免疫应答,但不能诱导产生抗原特异性T细胞增殖反应;T细胞增殖反应被显著抑制可能与T细胞表达IL-10和Foxp3上调有关;本研究为急性乙型肝炎和爆发性乙型肝炎治疗及HBV疫苗的研究奠定了基础。  相似文献   

20.
HepG2.2.15 cell is a widely used cell model for studying HBV (hepatitis B virus) in vitro. In these cells, the HBV genome is integrated in several sites of HepG2 cellular DNA. These multiple copies may have some influence on the cellular processes. We constructed a new plasmid, pSEH-Flag-HBV, and transfected it into HepG2 cells, and then screened it with hygromycin. We then used ELISA, PCR, and RT-PCR to detect the expression of HBV in these cell lines. A cell line that stably expressed hepatitis B e antigen (HBeAg) and hepatitis B surface antigen (HBsAg) was established. Using Southern blotting analysis, we found that the HBV genome was integrated as a single copy in the cellular DNA. This cell line will be a useful alternative model for HBV studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号