首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
2.
Identification of chemopreventive substances may be achieved by measuring biological endpoints in human cells in vitro. Since generally only tumour cells are available for such investigations, our aim was to test the applicability of peripheral blood mononuclear cells (PBMC) as an in vitro primary cell model since they mimic the human in vivo situation and are relatively easily available. Cell culture conditions were refined, and the basal variation of gene expression related to drug metabolism and stress response was determined. Results were compared with profiles of an established human colon cell line (HT29) as standard. For biomarker development of nutritional effects, PBMC and HT29 cells were treated with potentially chemopreventive substances (chrysin and butyrate), and gene expression was determined. Key results were that relevant stress response genes, such as glutathione S-transferase T2 (GSTT2) and GSTM2, were modulated by butyrate in PBMC as in HT29 cells, but the blood cells were less sensitive and responded with high individual differences. We conclude that these cells may serve as a surrogate tissue in dietary investigations and the identified differentially expressed genes have the potential to become marker genes for population studies on biological effects.  相似文献   

3.
Summary We have shown that depletion of monocytes from human peripheral blood mononuclear cells (PBMC) byl-phenylalanine methyl ester (PheOMe) enhanced lymphokine-activated killer cell (LAK) generation by recombinant interleukin-2 (rIL-2) at high cell density. In this study, we have investigated the mechanism of action of PheOMe on LAK activation by using trypsin, chymotrypsin, tosylphenylalaninechloromethanol (TPCK, a chymotrypsin inhibitor), tosyl-l-lysinechloromethane (TLCK, a trypsin inhibitor), phenylalaninol (PheOH), and benzamidine. PBMC were treated with 1–5 mM PheOMe for 40 min at room temperature in combination with the various agents, washed and assessed for their effects on natural killer (NK) activity against K562 cells and monocyte depletion. The treated cells were then cultured with or without rIL-2 for 3 days. LAK cytotoxicity was assayed against51Cr-labeled K562 and Raji tumor target cells. TPCK at 10 µg/ml partially inhibited depletion of monocytes by PheOMe. TLCK did not prevent depletion of monocytes nor inhibition of NK activity induced by PheOMe. TPCK and TLCK inhibited NK activity by themselves. TPCK but not TLCK inhibited rIL-2 induction of LAK cells. On the other hand, PheOH and benzamidine (analogs of PheOMe) lacked any effect on monocyte depletion but abrogated the inhibitory effect of PheOMe on NK activity. They had no effect on rIL-2 activation of LAK activity enhanced by PheOMe. Trypsin potentiated the inhibitory effect of PheOMe on NK activity and monocyte depletion. Trypsin partially inhibited IL-2 activation of LAK activity enhanced by PheOMe. Chymotrypsin had little effect on NK activity but prevented the inhibitory effect of PheOMe on NK activity. It had little effect on monocyte depletion induced by PheOMe. PheOMe was hydrolysed by monocytes and chymotrypsin to Phe and methanol as determined by HPLC. TPCK inhibited hydrolysis of PheOMe by monocytes. Our data suggest that the effects of PheOMe on monocytes, NK cells and LAK activation involve protease activities of monocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号