首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
The three enzymes of the D-tagatose 6-phosphate pathway (galactose 6-phosphate isomerase, D-tagatose 6-phosphate kinase, and tagatose 1,6-diphosphate aldolase) were absent in lactose-negative (Lac-) derivatives of Streptococcus lactis C10, H1, and 133 grown on galactose. The lactose phosphoenolpyruvate-dependent phosphotransferase system and phospho-beta-galactosidase activities were also absent in Lac- derivatives of strains H1 and 133 and were low (possibly absent) in C10 Lac-. In all three Lac- derivatives, low galactose phosphotransferase system activity was found. On galactose, Lac- derivatives grew more slowly (presumably using the Leloir pathway) than the wild-type strains and accumulated high intracellular concentrations of galactose 6-phosphate (up to 49 mM); no intracellular tagatose 1,6-diphosphate was detected. The data suggest that the Lac phenotype is plasmid linked in the three strains studied, with the evidence being more substantial for strain H1. A Lac- derivative of H1 contained a single plasmid (33 megadaltons) which was absent from the Lac- mutant. We suggest that the genes linked to the lactose plasmid in S. lactis are more numerous than previously envisaged, coding for all of the enzymes involved in lactose metabolism from initial transport to the formation of triose phosphates via the D-tagatose 6-phosphate pathway.  相似文献   

2.
Partial lactose-fermenting revertants from lactose-negative (lac(-)) mutants of Streptococcus lactis C2 appeared on a lawn of lac(-) cells after 3 to 5 days of incubation at 25 C. The revertants grew slowly on lactose with a growth response similar to that for cryptic cells. In contrast to lac(+)S. lactis C2, the revertants were defective in the accumulation of [(14)C]thiomethyl-beta-d-galactoside, indicating that they were devoid of a transport system. Hydrolysis of o-nitrophenyl-beta-d-galactoside-6-phosphate by toluene-treated cells confirmed the presence of phospho-beta-d-galactosidase (P-beta-gal) in the revertant. However, this enzyme was induced only when the cells were grown in the presence of lactose; galactose was not an inducer. In lac(+)S. lactis C2, enzyme induction occurred in lactose- or galactose-grown cells. The revertants were defective in EII-lactose and FIII-lactose of the phosphoenolpyruvate-dependent phosphotransferase system. Galactokinase activity was detected in cell extracts of lac(+)S. lactis C2, but the activity was 9 to 13 times higher in extracts from the revertant and lac(-), respectively. This suggested that the lac(-) and the revertants use the Leloir pathway for galactose metabolism and that galactose-1-phosphate rather than galactose-6-phosphate was being formed. This may explain why lactose, but not galactose, induced P-beta-gal in the revertants. Because the revertant was unable to form galactose-6-phosphate, induction could not occur. This compound would be formed on hydrolysis of lactose phosphate. The data also indicate that galactose-6-phosphate may serve not only as an inducer of the lactose genes in S. lactis C2, but also as a repressor of the Leloir pathway for galactose metabolism.  相似文献   

3.
A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose-phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of [14C]lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution 31P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM. We conclude from our data that phosphorylation of glucose by S. lactis 133 can be mediated by only two mechanisms: (i) via ATP-dependent glucokinase, and (ii) by the phosphoenolpyruvate-dependent mannose-PTS system.  相似文献   

4.
Streptococcus lactis strain DR1251 was capable of growth on lactose and galactose with generation times, at 30 degrees C, of 42 and 52 min, respectively. Phosphoenolpyruvate-dependent phosphotransferase activity for lactose and galactose was induced during growth on either substrate. This activity had an apparent K(m) of 5 x 10(-5) M for lactose and 2 x 10(-2) M for galactose. beta-d-Phosphogalactoside galactohydrolase activity was synthesized constitutively by these cells. Strain DR1251 lost the ability to grow on lactose at a high frequency when incubated at 37 degrees C with glucose as the growth substrate. Loss of ability to metabolize lactose was accompanied by the loss of a 32-megadalton plasmid, pDR(1), and Lac(-) isolates did not revert to a Lac(+) phenotype. Lac(-) strains were able to grow on galactose but with a longer generation time. Galactose-grown Lac(-) strains were deficient in beta-d-phosphogalactoside galactohydrolase activity and phosphoenolpyruvate phosphotransferase activity for both lactose and galactose. There was also a shift from a predominantly homolactic to a heterolactic fermentation and a fivefold increase in galactokinase activity, relative to the Lac(+) parent strain grown on galactose. These results suggest that S. lactis strain DR1251 metabolizes galactose primarily via the tagatose-6-phosphate pathway, using a lactose phosphoenolpyruvate phosphotransferase activity to transport this substrate into the cell. Lac(-) derivatives of strain DR1251, deficient in the lactose phosphoenolpyruvate phosphotransferase activity, appeared to utilize galactose via the Leloir pathway.  相似文献   

5.
Cells of Lactobacillus casei grown in media containing galactose or a metabolizable beta-galactoside (lactose, lactulose, or arabinosyl-beta-D-galactoside) were induced for a galactose-phosphoenolpyruvate-dependent phosphotransferase system (gal-PTS). This high-affinity system (Km for galactose, 11 microM) was inducible in eight strains examined, which were representative of all five subspecies of L. casei. The gal-PTS was also induced in strains defective in glucose- and lactose-phosphoenolpyruvate-dependent phosphotransferase systems during growth on galactose. Galactose 6-phosphate appeared to be the intracellular inducer of the gal-PTS. The gal-PTS was quite specific for D-galactose, and neither glucose, lactose, nor a variety of structural analogs of galactose caused significant inhibition of phosphotransferase system-mediated galactose transport in intact cells. The phosphoenolpyruvate-dependent phosphorylation of galactose in vitro required specific membrane and cytoplasmic components (including enzyme IIIgal), which were induced only by growth of the cells on galactose or beta-galactosides. Extracts prepared from such cells also contained an ATP-dependent galactokinase which converted galactose to galactose 1-phosphate. Our results demonstrate the separate identities of the gal-PTS and the lactose-phosphoenol-pyruvate-dependent phosphotransferase system in L. casei.  相似文献   

6.
Populations of lactose positive (Lac+) and proteinase positive (Prt+) cells from Streptococcus lactis M18, C10, and ML3 grown at 39 degrees C gave rise to increasing proportions of Lac- Prt- clones. The deficiencies did not appear until after a number of generations at the elevated temperature, and the rate depended on the strain.Lac- Prt+ and Lac+ Prt- mutants were isolated after treatment with ethidium bromide. Plasmid deoxyribonucleic acid was isolated by cesium chloride-ethidium bromide equilibrium density gradient centrifugation from the parent cultures as well as from their Lac- Prt-, Lac- Prt+, and Lac+ Prt- mutants. Five distinct plasmid sizes of approximate molecular weights of 2,4, 8, 21, and 27 million were found in S. lactis C10, whereas the Lac- Prt- derivative lacked the 8- and 21-million-dalton plasmids, but the 8-million-dalton plasmid was present in the Lac-Att mutant. In S. lactis m18 five plasmids possessing molecular weights of about 2, 4, 10, 18 and 27 million were observed. The 10- and 18-million-dalton plasmids were not detected in the Lac- Prt- mutants, whereas the Lac- Prt+ derivative lacked only the 18-million-dalton plasmid and the Lac+ Prt- mutant lacked only the 10-million-dalton plasmid. In S. lactis ML3 five distinct plasmids, with approximate molecular weights of 2, 4, 8, 22, and 30 million, were present. The 8- and 22-million-dalton plasmids were not detected in the Lac- Prt- derivative, but the 8-million-dalton plasmid was present in the Lac- Prt+ mutant. The evidence suggests that lactose-fermenting ability and proteinase activity in these organisms are mediated through two distinct plasmids having molecular weights of 8 x 10(6) to 10 x 10(6) for proteinase activity and 18 x 10(6) to 22 x 10(6) for lactose metabolism.  相似文献   

7.
Restriction endonucleases and agarose gel electrophoresis were used to analyze plasmid pLM2001, which is required for lactose metabolism by Streptococcus lactis LM0232. The enzymes XhoI, SstI, BamHI, and KpnI each cleaved the plasmid into two fragments, whereas EcoRI and BglII cleaved the plasmid into seven and five fragments, respectively. Sizing of fragments and multiple digestions allowed construction of a composite restriction map. The KpnI fragments of pLM2001 were cloned into the KpnI cleavage site of the vector plasmid pDB101. A recombinant plasmid (pSH3) obtained from a lactose-fermenting, erythromycin-resistant (Lac+ Eryr) transformant of Streptococcus sanguis Challis was analyzed by enzyme digestion and agarose gel electrophoresis. Plasmid pSH3 contained 7 of the 11 KpnI-HindIII fragments from pLM2001 and 5 of the 7 fragments from pDB101. It was determined that a 23-kilobase (kb) KpnI-generated fragment from pLM2001 had been cloned into pDB101 with deletion of part of the vector plasmid. The recombinant plasmid could be transformed with high frequency into several Lac- strains of S. sanguis, conferring the ability to ferment lactose and erythromycin resistance. The presence of pSH3 allowed a strain deficient in Enzyme IIlac, Factor IIIlac, and phospho-beta-galactosidase of the lactose phosphoenolpyruvate-dependent phosphotransferase system to efficiently ferment lactose. Under conditions designed to maximize curing of plasmid DNA with acriflavin, no Lac- derivatives could be isolated from cells transformed with pSH3. Seven of the 40 Lac+ colonies isolated after 10 transfers in acriflavin were shown to be sensitive to erythromycin and did not appear to harbor plasmid DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Restriction endonucleases and agarose gel electrophoresis were used to analyze plasmid pLM2001, which is required for lactose metabolism by Streptococcus lactis LM0232. The enzymes XhoI, SstI, BamHI, and KpnI each cleaved the plasmid into two fragments, whereas EcoRI and BglII cleaved the plasmid into seven and five fragments, respectively. Sizing of fragments and multiple digestions allowed construction of a composite restriction map. The KpnI fragments of pLM2001 were cloned into the KpnI cleavage site of the vector plasmid pDB101. A recombinant plasmid (pSH3) obtained from a lactose-fermenting, erythromycin-resistant (Lac+ Eryr) transformant of Streptococcus sanguis Challis was analyzed by enzyme digestion and agarose gel electrophoresis. Plasmid pSH3 contained 7 of the 11 KpnI-HindIII fragments from pLM2001 and 5 of the 7 fragments from pDB101. It was determined that a 23-kilobase (kb) KpnI-generated fragment from pLM2001 had been cloned into pDB101 with deletion of part of the vector plasmid. The recombinant plasmid could be transformed with high frequency into several Lac- strains of S. sanguis, conferring the ability to ferment lactose and erythromycin resistance. The presence of pSH3 allowed a strain deficient in Enzyme IIlac, Factor IIIlac, and phospho-beta-galactosidase of the lactose phosphoenolpyruvate-dependent phosphotransferase system to efficiently ferment lactose. Under conditions designed to maximize curing of plasmid DNA with acriflavin, no Lac- derivatives could be isolated from cells transformed with pSH3. Seven of the 40 Lac+ colonies isolated after 10 transfers in acriflavin were shown to be sensitive to erythromycin and did not appear to harbor plasmid DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The apparent instability of beta-galactosidase in toluene-treated cells or cell-free extracts of lactic streptococci is explained by the fact that these organisms do not contain the expected enzyme. Instead, various strains of Streptococcus lactis, S. cremoris, and S. diacetilactis were shown to hydrolyze o-nitrophenyl-beta-d-galactoside-6-phosphate (ONPG-6-P), indicating the presence of a different enzyme. In addition, lactose metabolism in S. lactis C(2)F was found to involve enzyme I (EI), enzyme II (EII), factor III (FIII), and a heat-stable protein (HPr) of a phosphoenolpyruvate (PEP)-dependent phosphotransferase system analogous to that of Staphylococcus aureus. Mutants of S. lactis C(2)F, defective in lactose metabolism, possessed the phenotype lac(-) gal(-). These strains were unable to accumulate (14)C-thiomethyl-beta-d-galactoside, to hydrolyze ONPG, or to utilize lactose when grown in lactose or galactose broth. In addition, these mutants contained EI and HPr, but lacked EII, FIII, and the ability to hydrolyze ONPG-6-P. This suggested that the defect was in the phosphorylation step. Lactose-negative mutants of S. lactis 7962, a strain containing beta-galactosidase, could be separated into several classes, which indicated that this organism is not dependent upon the PEP-phosphotransferase system for lactose metabolism.  相似文献   

10.
Galactose transport systems in Streptococcus lactis   总被引:12,自引:8,他引:4       下载免费PDF全文
Galactose-grown cells of Streptococcus lactis ML3 have the capacity to transport the growth sugar by two separate systems: (i) the phosphoenolpyruvate-dependent phosphotransferase system and (ii) an adenosine 5'-triphosphate-energized permease system. Proton-conducting uncouplers (tetrachlorosalicylanilide and carbonyl cyanide-m-chlorophenyl hydrazone) inhibited galactose uptake by the permease system, but had no effect on phosphotransferase activity. Inhibition and efflux experiments conducted using beta-galactoside analogs showed that the galactose permease had a high affinity for galactose, methyl-beta-D-thiogalactopyranoside, and methyl-beta-D-galactopyranoside, but possessed little or no affinity for glucose and lactose. The spatial configurations of hydroxyl groups at C-2, C-4, and C-6 were structurally important in facilitating interaction between the carrier and the sugar analog. Iodoacetate had no inhibitory effect on accumulation of galactose, methyl-beta-D-thiogalactopyranoside, or lactose via the phosphotransferase system. However, after exposure of the cells to p-chloromercuribenzoate, phosphoenolpyruvate-dependent uptake of lactose and methyl-beta-D-thiogalactopyranoside were reduced by 75 and 100%, respectively, whereas galactose phosphotransferase activity remained unchanged. The independent kinetic analysis of each transport system was achieved by the selective generation of the appropriate energy source (adenosine 5'-triphosphate or phosphoenolpyruvate) in vivo. The maximum rates of galactose transport by the two systems were similar, but the permease system exhibited a 10-fold greater affinity for sugar than did the phosphotransferase system.  相似文献   

11.
As part of a study on the effect of low temperature on cellular regulatory processes, a class of lactose-negative mutants of Escherichia coli K-12 was isolated which could use lactose as a sole carbon and energy source at 37 C, but which could not use this sugar at 20 C. The lactose operon of the mutants functioned normally at 20 C. Galactose exhibited a strong inhibitory effect on growth, especially at 20 C. Growth of the mutants on glycerol was stopped at 20 C and slowed considerably at 37 C if galactose was added to the medium. Making the mutants galactose-positive eliminated the cold sensitivity of lactose utilization. One mutant was shown to be galactose-1-phosphate uridyl transferase-negative, galactose-kinase heat-sensitive, and uridine diphosphate-galactose-4-epimerase-positive. It is postulated that the mutant is able to phosphorylate galactose at 20 C (if only at a very low rate), but lacking transferase it is poisoned by the accumulation of galactose-1-phosphate. At 37 C, galactokinase is nonfunctional and the mutant grows on the glucose moiety of lactose.  相似文献   

12.
13.
A lactose-negative (Lac-), proteinase-negative (Prt-) mutant, designated C145 was isolated from Streptococcus lactis C2 after treatment with nitrosoguanidine and ultraviolet irradiation. The mutant appeared to be cured of the prophage(s) present in S. lactis C2 based on non-inducibility by ultraviolet irradiation or mitomycin C. When cleared lysate material from C145 was subjected, to cesium chloride-ethidum bromide (EB) density gradient centrifugation, no plasmid peak was observed, suggesting that C145 was cured of plasmid deoxyribonucleic and (DNA). A histogram showing distribution of contour lengths of circular molecules of DNA from C145, however, revealed the presence of a greatly diminished number of DNA molecules as compared with the parent culture and indicated the absence of the 30 x 10(6) plasmid. Cesium chloride-ethidium bromide gradient profiles from Lac+, Prt- and Lac+ Prt+ transductants of C145 revealed no plasmid peak, but electron microscopy of the fractions normally possessing the satellite band of DNA showed the presence of a new plasmid species having a molecular weight from 20 x 10(6) to 22 x 10(6). This plasmid was lost when the transductants became Lac-. Examination of a plasmid histogram from a spontaneous Lac- Prt- mutants of S. lactis C2 resembled that of C145, with the absence of the 30 x 10(6) plasmid and the presence of the 22 x 10(6) plasmid in Lac+ Prt+ transductants. The results suggest that lactose metabolism is mediated through the 30 x 10(6) plasmid in S. lactis C2 and that the transducing bacteriophage, which is too small to accommodate the entire plasmid, is transferring about two-thirds of the original plasmid through a process termed transductional shortening.  相似文献   

14.
Growth of galactose-adapted cells of Streptococcus lactis ML(3) in a medium containing a mixture of glucose, galactose, and lactose was characterized initially by the simultaneous metabolism of glucose and lactose. Galactose was not significantly utilized until the latter sugars had been exhausted from the medium. The addition of glucose or lactose to a culture of S. lactis ML(3) growing exponentially on galactose caused immediate inhibition of galactose utilization and an increase in growth rate, concomitant with the preferential metabolism of the added sugar. Under nongrowing conditions, cells of S. lactis ML(3) grown previously on galactose metabolized the three separate sugars equally rapidly. However, cells suspended in buffer containing a mixture of glucose plus galactose or lactose plus galactose again consumed glucose or lactose preferentially. The rate of galactose metabolism was reduced by approximately 95% in the presence of the inhibitory sugar, but the maximum rate of metabolism was resumed upon exhaustion of glucose or lactose from the system. When presented with a mixture of glucose and lactose, the resting cells metabolized both sugars simultaneously. Lactose, glucose, and a non-metabolizable glucose analog (2-deoxy-d-glucose) prevented the phosphoenolpyruvate-dependent uptake of thiomethyl-beta-d-galactopyranoside (TMG), but the accumulation of TMG, like galactose metabolism, commenced immediately upon exhaustion of the metabolizable sugars from the medium. Growth of galactose-adapted cells of the lactose-defective variant S. lactis 7962 in the triple-sugar medium was characterized by the sequential metabolism of glucose, galactose, and lactose. Growth of S. lactis ML(3) and 7962 in the triple-sugar medium occurred without apparent diauxie, and for each strain the patterns of sequential sugar metabolism under growing and nongrowing conditions were identical. Fine control of the activities of preexisting enzyme systems by catabolite inhibition may afford a satisfactory explanation for the observed sequential utilization of sugars by these two organisms.  相似文献   

15.
16.
The addition of 2-deoxy-D-glucose to cultures of Streptococcus lactis 133 that were growing exponentially on sucrose or lactose reduced the growth rate by ca. 95%. Inhibition did not occur with glucose or mannose as the growth sugar. The reduction in growth rate was concomitant with rapid accumulation of the analog in phosphorylated form (2-deoxy-D-glucose 6-phosphate) via the phosphoenolpyruvate-dependent mannose:phosphotransferase system. Within 5 min the intracellular 2-deoxy-D-glucose 6-phosphate concentration reached a steady-state level of greater than 100 mM. After maximum accumulation of the sugar phosphate, the rate of sucrose metabolism (glycolysis) decreased by only 30%, but the cells were depleted of fructose-1,6-diphosphate. The addition of glucose to 2-deoxy-D-glucose 6-phosphate preloaded cells caused expulsion of 2-deoxy-D-glucose and a resumption of normal growth. S. lactis 133 contained an intracellular Mg2+-dependent, fluoride-sensitive phosphatase which hydrolyzed 2-deoxy-D-glucose 6-phosphate (and glucose 6-phosphate) to free sugar and inorganic phosphate. Because of continued dephosphorylation and efflux of the non-metabolizable analog, the maintenance of the intracellular 2-deoxy-D-glucose 6-phosphate pool during growth stasis was dependent upon continued glycolysis. This steady-state condition represented a dynamic equilibrium of: (i) phosphoenolpyruvate-dependent accumulation of 2-deoxy-D-glucose 6-phosphate, (ii) intracellular dephosphorylation, and (iii) efflux of free 2-deoxy-D-glucose. This sequence of events constitutes a futile cycle which promotes the dissipation of phosphoenolpyruvate. We conclude that 2-deoxy-D-glucose functions as an uncoupler by dissociating energy production from growth in S. lactis 133.  相似文献   

17.
Galactose metabolism in Lactobacillus casei 64H was analyzed by genetic and biochemical methods. Mutants with defects in ptsH, galK, or the tagatose 6-phosphate pathway were isolated either by positive selection using 2-deoxyglucose or 2-deoxygalactose or by an enrichment procedure with streptozotocin. ptsH mutations abolish growth on lactose, cellobiose, N-acetylglucosamine, mannose, fructose, mannitol, glucitol, and ribitol, while growth on galactose continues at a reduced rate. Growth on galactose is also reduced, but not abolished, in galK mutants. A mutation in galK in combination with a mutation in the tagatose 6-phosphate pathway results in sensitivity to galactose and lactose, while a galK mutation in combination with a mutation in ptsH completely abolishes galactose metabolism. Transport assays, in vitro phosphorylation assays, and thin-layer chromatography of intermediates of galactose metabolism also indicate the functioning of a permease/Leloir pathway and a phosphoenolpyruvate-dependent phosphotransferase system (PTS)/tagatose 6-phosphate pathway. The galactose-PTS is induced by growth on either galactose or lactose, but the induction kinetics for the two substrates are different.  相似文献   

18.
In Lactococcus lactis subsp. cremoris FD1, galactose and lactose are both transported and phosphorylated by phosphotransferase systems. Lactose 6-phosphate (lactose-6P) is hydrolyzed intracellularly to galactose-6P and glucose. Glucose enters glycolysis as glucose-6P, whereas galactose-6P is metabolized via the tagatose-6P pathway and enters glycolysis at the tagatose diphosphate and fructose diphosphate pool. Galactose would therefore be a gluconeogenic sugar in L. lactis subsp. cremoris FD1, but since fructose 1,6-diphosphatase is not present in this strain, galactose cannot serve as an essential biomass precursor (glucose-6P or fructose-6P) but only as an energy (ATP) source. Analysis of the growth energetics shows that transition from N limitation to limitation by glucose-6P or fructose-6P gives rise to a very high growth-related ATP consumption (152 mmol of ATP per g of biomass) compared with the value in cultures which are not limited by glucose-6P or fructose-6P (15 to 50 mmol of ATP per g of biomass). During lactose metabolism, the galactose flux through the tagatose-6P pathway (r(max) = 1.2 h) is lower than the glucose flux through glycolysis (r(max) = 1.5 h) and intracellular galactose-6P is dephosphorylated; this is followed by expulsion of galactose. Expulsion of a metabolizable sugar has not been reported previously, and the specific rate of galactose expulsion is up to 0.61 g of galactose g of biomass h depending on the lactose flux and the metabolic state of the bacteria. Galactose excreted during batch fermentation on lactose is reabsorbed and metabolized when lactose is depleted from the medium. In vitro incubation of galactose-6P (50 mM) and permeabilized cells (8 g/liter) gives a supernatant containing free galactose (50 mM) but no P(i) (less than 0.5 mM). No organic compound except the liberated galactose is present in sufficient concentration to bind the phosphate. Phosphate is quantitatively recovered in the supernatant as P(i) by hydrolysis with alkaline phosphatase (EC 3.1.3.1), whereas inorganic pyrophosphatase (EC 3.6.1.1) cannot hydrolyze the compound. The results indicate that the unknown phosphate-containing compound might be polyphosphate.  相似文献   

19.
Present evidence indicates that lactose metabolism in group N streptococci is linked to plasmid deoxyribonucleic acid. Lactose-positive (Lac+) Streptococcus lactis and lactose-negative (Lac-) derivatives were examined for their resistance to various inorganic ions. Lac+ S. lactis strains ML3, M18, and C2 were found more resistant to arsenate (7.5- to 60.2-fold), arsenite (2.25- to 3.0-fold), and chromate (6.6- to 9.4-fold), but more sensitive to copper (10.0- to 13.3-fold) than their Lac- derivatives. These results suggested that genetic information for resistance and/or sensitivity to these ions resides on the "lactose plasmid." Kinetics of ultraviolet irradiation inactivation of transducing ability for lactose metabolism and arsenate resistance confirmed the plasmid location of the two markers. Lac+ transductants from S. lactis C2 received genetic determinants for resistance to arsenate, arsenite, and chromate but not for copper sensitivity. In this case, resistance markers were lost when the transductants became Lac- but the derivatives remained copper resistant. The resistant markers for arsenate and arsenite could not be identified as separate genetic loci, but chromate resistance and copper sensitivity markers were found to be independent genetic loci. The "lactose plasmid" from S. lactis C10 possessed the genetic loci for arsenate and arsenite resistance but not for chromate resistance or copper sensitivity.  相似文献   

20.
Streptococcus lactis 7962, which ferments lactose slowly, has a lactose phosphoenolpyruvate-dependent phosphotransferase system and low phospho-beta-galactosidase activity, in addition to high beta-galactosidase activity. Lactose 6'-phosphate accumulated to a high concentration (greater than 100 mM) in cells growing on lactose. In contrast, lactic streptococci, which ferment lactose rapidly and use only the lactose-phosphotransferase system for uptake, contained high phospho-beta-galactosidase activity and low concentrations (0.9 to 1.6 mM) of lactose 6'-phosphate. It is concluded that rate-limiting phospho-beta-galactosidase activity is primarily responsible for defective lactose metabolism in S. lactis 7962.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号