首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ruptured pea (Pisum sativum cv. Massey Gem) chloroplasts exhibited ascorbate peroxidase activity as determined by H2O2-dependent oxidation of ascorbate and ascorbate-dependent reduction of H2O2. The ratio of ascorbate peroxidase to NADP-glyceraldehyde 3-phosphate dehydrogenase activity was constant during repeated washing of isolated chloroplasts. This indicates that the ascorbate peroxidase is a chloroplast enzyme. The pH optimum of ascorbate peroxidase activity was 8.2 and the Km value for ascorbate was 0.6 millimolar. Pyrogallol, glutathione, and NAD(P)H did not substitute for ascorbate in the enzyme catalyzed reaction. The enzyme was inhibited by NaN3, KCN, and 8-hydroxyquinoline but not ZnCl2 or iodoacetate. The ascorbate peroxidase activity of sonicated chloroplasts was inhibited by light but not in the presence of substrate concentrations of ascorbate.  相似文献   

2.
A NAD(P)H oxidizing system (NAAP) was detected and partially purified from leaves of spinach and Sedum praealtum, seeds and leaves of pea and cells of green and red algae which oxidized NAD(P)H in the presence of ascorbate and H2O2.  相似文献   

3.
All aerobic biological systems, including N2-fixing root nodules, are subject to O2 toxicity that results from the formation of reactive intermediates such as H2O2 and free radicals of O2. H2O2 may be removed from root nodules in a series of enzymic reactions involving ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. We confirm here the presence of these enzymes in root nodules from nine species of legumes and from Alnus rubra. Ascorbate peroxidase from soybean nodules was purified to near homogeneity. This enzyme was found to be a hemeprotein with a molecular weight of 30,000 as determined by sodium dodecyl sulfate gel electrophoresis. KCN, NaN3, CO, and C2H2 were potent inhibitors of activity. Nonphysiological reductants such as guaiacol, o-dianisidine, and pyrogallol functioned as substrates for the enzyme. No activity was detected with NAD(P)H, reduced glutathione, or urate. Ascorbate peroxidation did not follow Michaelis-Menten kinetics. The substrate concentration which resulted in a reaction rate of ½ Vmax was 70 micromolar for ascorbate and 3 micromolar for H2O2. The high affinity of ascorbate peroxidase for H2O2 indicates that this enzyme, rather than catalase, is responsible for most H2O2 removal outside of peroxisomes in root nodules.  相似文献   

4.
Summary By means of a cytochemical technique, hydrogen peroxide formation was located on the endothelial cell surface (predominantly the luminal aspect) of capillaries obtained by collagenase digestion of rat thyroid. The cyanide-insensitive H2O2 formation required aerobic conditions and NAD(P)H as substrate. FAD could also stimulate the reaction, but not xanthine. The cytochemical reaction was blocked by a non-penetrating protein inhibitor. The observations are interpreted as evidence of a plasmalemma-bound H2O2-generating enzyme. The findings indicate that microvascular endothelial cells are involved in the release of activated oxygen species, which might have important pathophysiologic implications.  相似文献   

5.
Kow YW  Erbes DL  Gibbs M 《Plant physiology》1982,69(2):442-447
A spinach (Spinacia oleracia var. America) chloroplast particle fortified with ferredoxin, fructose-1,6-bisphosphate, or ribose-5-phosphate and NADP has been shown to generate NADPH by the oxidation of glyceraldehyde-3 phosphate to glycerate-3-phosphate (PGA) and to reduce ferredoxin with the NADPH. The resulting reduced ferredoxin can reduce O2 to H2O2, nitrite to ammonia, or protons to H2. Hydrogen production was the result of adding hydrogenase from Chlamydomonas reinhardii to the chloroplast preparation. The predicted stoichiometry of 1 PGA:1 O2 in the absence of and 2 PGA:1 O2 in the presence of catalase was observed indicating H2O2 as the end product of O2 reduction. The predicted stoichiometry of 3 PGA:1 nitrite:1 ammonia was also observed. A scheme is presented to account for a sustained generation of NADP and ATP necessary for the dissimilation of starch in the darkened chloroplast. The unifying term chloroplast respiration is introduced to account for those reactions in which reduced ferredoxin interacts with physiological acceptors other than NADP or nitrite, hydrogen, or O2 respiration when nitrite, protons, or O2 is the ultimate electron acceptor.  相似文献   

6.
Industrial enzymatic reactions requiring 1,4-NAD(P)H2 to perform redox transformations often require convoluted coupled enzyme regeneration systems to regenerate 1,4-NAD(P)H2 from NAD(P) and recycle the cofactor for as many turnovers as possible. Renewed interest in recycling the cofactor via electrochemical means is motivated by the low cost of performing electrochemical reactions, easy monitoring of the reaction progress, and straightforward product recovery. However, electrochemical cofactor regeneration methods invariably produce adventitious reduced cofactor side products which result in unproductive loss of input NAD(P). We review various literature strategies for mitigating adventitious product formation by electrochemical cofactor regeneration systems, and offer insight as to how a successful electrochemical bioreactor system could be constructed to engineer efficient 1,4-NAD(P)H2-dependent enzyme reactions of interest to the industrial biocatalysis community.  相似文献   

7.
8.
Kolla VA  Vavasseur A  Raghavendra AS 《Planta》2007,225(6):1421-1429
The presence of 2 mM bicarbonate in the incubation medium induced stomatal closure in abaxial epidermis of Arabidopsis. Exposure to 2 mM bicarbonate elevated the levels of H2O2 in guard cells within 5 min, as indicated by the fluorescent probe, dichlorofluorescein diacetate (H2DCF-DA). Bicarbonate-induced stomatal closure as well as H2O2 production were restricted by exogenous catalase or diphenylene iodonium (DPI, an inhibitor of NAD(P)H oxidase). The reduced sensitivity of stomata to bicarbonate and H2O2 production in homozygous atrbohD/F double mutant of Arabidopsis confirmed that NADP(H) oxidase is involved during bicarbonate induced ROS production in guard cells. The production of H2O2 was quicker and greater with ABA than that with bicarbonate. Such pattern of H2O2 production may be one of the reasons for ABA being more effective than bicarbonate, in promoting stomatal closure. Our results demonstrate that H2O2 is an essential secondary messenger during bicarbonate induced stomatal closure in Arabidopsis.  相似文献   

9.
Summary Cytochromeb 561 (cytb 561) is a trans-membrane cytochrome probably ubiquitous in plant cells. In vitro, it is readily reduced by ascorbate or by juglonol, which in plasma membrane (PM) preparations from plant tissues is efficiently produced by a PM-associated NAD(P)Hquinone reductase activity. In bean hypocotyl PM, juglonol-reduced cytb 561 was not oxidized by hydrogen peroxide alone, but hydrogen peroxide led to complete oxidation of the cytochrome in the presence of a peroxidase found in apoplastic extracts of bean hypocotyls. This peroxidase active on cytb 561 was purified from the apoplastic extract and identified as an ascorbate peroxidase of the cytosolic type. The identification was based on several grounds, including the ascorbate peroxidase activity (albeit labile), the apparent molecular mass of the subunit of 27 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the dimeric native structure, the typical spectral properties of a heme-containing peroxidase, and an N-terminal sequence strongly conserved with cytosolic ascorbate peroxidases of plants. Cytb 561 used in the experiments was purified from bean hypocotyl PM and juglonol was enzymatically produced by recombinant NAD(P)H:quinone reductase. It is shown that NADPH, NAD(P)H:quinone reductase, juglone, cytb 561, the peroxidase interacting with cytb 561, and H2O2, in this order, constitute an artificial electron transfer chain in which cytb 561 is indirectly reduced by NADPH and indirectly oxidized by H2O2.Abbreviations APX ascorbate peroxidase - b 561PX cytochrome 6561 peroxidase - CPX coniferol peroxidase - cyt cytochrome - GPX guaia-col peroxidase - IWF intercellular washing fluid - MDHA monodehydroascorbate - PM plasma membrane  相似文献   

10.
Two of the three metabolic subtypes of species utilizing C4-pathway photosynthesis are defined by high activities of either NADP malic enzyme (NADP malic enzyme type) or a coenzyme A (CoA)- and acetyl-CoA-activated NAD malic enzyme (NAD malic enzyme type). These enzymes function to decarboxylate malate as an integral part of the photosynthetic process. Leaves of NADP malic enzyme-type species also contain significant NAD-dependent malic enzyme activity. The purpose of the present study was to examine the nature and photosynthetic role of this activity. With Zea mays, this NAD-dependent activity was found to vary widely in fresh leaf extracts. Incubating extracts at 25 °C resulted in a disproportionate increase in NAD activity so that the final ratio of NADP to NAD activity was always about 5. Strong evidence was provided that the NADP and NAD malic enzyme activities in Z. mays extracts were catalyzed by the same enzyme. These activities remained associated during purification and were coincident after polyacrylamide gel electrophoresis. The pH optimum for NAD-dependent activity was about 7.1, compared with 8.3 for NADP malic enzyme activity. Other properties of the NAD-dependent activity are described, a particularly notable feature being the inhibition of this activity by less than 1 μm NADP and NADPH. Evidence is provided that the NADP malic enzyme of several other NADP malic enzyme-type C4 species also has associated activity toward NAD. We concluded that the NAD-dependent malic enzyme activity would have no significant function in photosynthesis.  相似文献   

11.
Several flavin-dependent enzymes of the mitochondrial matrix utilize NAD+ or NADH at about the same operating redox potential as the NADH/NAD+ pool and comprise the NADH/NAD+ isopotential enzyme group. Complex I (specifically the flavin, site IF) is often regarded as the major source of matrix superoxide/H2O2 production at this redox potential. However, the 2-oxoglutarate dehydrogenase (OGDH), branched-chain 2-oxoacid dehydrogenase (BCKDH), and pyruvate dehydrogenase (PDH) complexes are also capable of considerable superoxide/H2O2 production. To differentiate the superoxide/H2O2-producing capacities of these different mitochondrial sites in situ, we compared the observed rates of H2O2 production over a range of different NAD(P)H reduction levels in isolated skeletal muscle mitochondria under conditions that favored superoxide/H2O2 production from complex I, the OGDH complex, the BCKDH complex, or the PDH complex. The rates from all four complexes increased at higher NAD(P)H/NAD(P)+ ratios, although the 2-oxoacid dehydrogenase complexes produced superoxide/H2O2 at high rates only when oxidizing their specific 2-oxoacid substrates and not in the reverse reaction from NADH. At optimal conditions for each system, superoxide/H2O2 was produced by the OGDH complex at about twice the rate from the PDH complex, four times the rate from the BCKDH complex, and eight times the rate from site IF of complex I. Depending on the substrates present, the dominant sites of superoxide/H2O2 production at the level of NADH may be the OGDH and PDH complexes, but these activities may often be misattributed to complex I.  相似文献   

12.
A reconstituted spinach chloroplast system containing thylakoids, stroma and 0.1 mM NADPH supported O2 evolution in the presence of oxidised glutathione (GSSG). The properties of the reaction were consistent with light-coupled GSSG-reductase activity involving H2O as eventual electron donor. The reconstituted system also supported dehydroascorbate-dependent O2 evolution in the presence of 0.6 mM reduced glutathione (GSH) and 0.1 mM NADPH with the concomitant production of ascorbate. The GSSG could replace GSH in which case the production of GSH preceded the accumulation of ascorbate. The data are consistent with the light-dependent reduction of dehydroascorbate using H2O as eventual electron donor via the sequence H2O→NADP→GSSG→dehydroascorbate. Approximately 30% of the GSH-dehydrogenase activity of spinach leaf protoplasts is localised in chloroplasts: this could not be attributed to contamination of chloroplasts by activity from the extrachloroplast compartment. Washed intact chloroplasts supported the uptake of ascorbate but the uptake mechanism had a very low affinity for ascorbate (Km approximately 20 mM). The rate of uptake of ascorbate was less than the rate of light-dependent reduction of dehydroascorbate and too slow to account for the rate of H2O2 reduction by washed intact chloroplasts.  相似文献   

13.
Summary. The oxidation of hydroquinone with H2O2 in the presence of mitochondria isolated from maize (Zea mays L.) roots was studied. The results indicate that a reduced form of quinone may be a substrate of mitochondrial peroxidases. Specific activities in different mitochondrial isolates, the apparent K m for hydrogen peroxide and hydroquinone, and the influence of some known peroxidase inhibitors or effectors are presented. Zymographic assays revealed that all mitochondrial peroxidases, which were stained with 4-chloro-1-naphthol, were capable of oxidizing hydroquinone. A possible antioxidative role of hydroquinone peroxidase in H2O2 scavenging within the mitochondria, in cooperation with ascorbate or coupled with mitochondrial NAD(P)H dehydrogenases, is proposed. Correspondence: M. Vuletić, Laboratory of Plant Physiology, Maize Research Zemun Polje, P.O. Box 89, 11185 Belgrade, Serbia.  相似文献   

14.
Previous studies indicate that the nitric oxide (NO) increase at fertilization in sea urchin eggs is Ca2+-dependent and attributed to the late Ca2+ rise. However, its role in fertilization still remains unclear. Simultaneous measurements of the activation current, by a single electrode voltage clamp, and NO, using the NO indicator DAF-FM, showed that the NO increase occurred at the time of peak current (tp) which corresponds to peak [Ca2+]i, suggesting that NO is not related to any other ionic changes besides [Ca2+]i. We measured O2 consumption by a polarographic method to examine whether NO regulated a respiratory burst for protection as reported in other biological systems. Our results suggested NO increased O2 consumption. The fluorescence of reduced pyridine nucleotides, NAD(P)H was measured in controls and when the NO increase was eliminated by PTIO, a NO scavenger. Surprisingly, PTIO decreased the rate of the fluorescence change and the late phase of increase in NAD(P)H was eliminated. PTIO also suppressed the production of H2O2 and caused weak and high fertilization envelope (FE). Our results suggest that NO increase upregulates NAD(P)H and H2O2 production and consolidates FE hardening by H2O2.  相似文献   

15.
In cell suspensions of Pseudomonas carboxydovorans pulsed with lithotrophic substrates (CO or H2) in the presence of oxygen, formation of reduced pyridine nucleotides and of ATP could be demonstrated using the bioluminescent assay. Experiments employing base-acid transition, an uncoupler and inhibitors of ATPase or electron transport enabled us to propose a model for the formation of NAD(P)H in chemolithotrophically growing P. carboxydovorans.The protonophor FCCP (carbonly-p-trifluormethoxyphenylhydrazon) inhibited both, formation of NAD(P)H and of ATP. In the absence of oxygen, a chemical potential imposed by base-acid transition resulted in the formation of NAD(P)H and ATP when electrogenic substrates (CO or H2) were present. This suggests proton motive force-driven NAD(P)H formation. The proton motive force was generated by oxidation of substrate, and not by ATP hydrolysis, as obvious from NAD(P)H formation during inhibition of ATP synthesis by oligomycin and N,N-dicyclohexylcarbodiimide.That the CO-born electrons are transferred via the ubiquinone 10-cytochrome b region to NADH dehydrogenase functioning in the reverse direction, was indicated by inhibition of NAD(P)H formation by HQNO (2-n-heptyl-4-hydroxyquinoline-N-oxide) and rotenone, and by resistance to antimycin A.We conclude that in P. carboxydovorans, growing with CO or H2, electrons and a proton motive force, generated by respiration, are required to drive an reverse electron transfer for the formation of reduced pyridine nucleotides.Abbreviations CODH carbon monoxide dehydrogenase - DCCD N,N-dicyclohexylcarbodiimide - FCCP carbonyl-p-trifluormethoxyphenylhydrazon - HQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - pmf proton motive force  相似文献   

16.
《Free radical research》2013,47(1-2):17-26
Electron spin resonance (ESR) measurments provide direct evidence for the involvement of Cr(V) in the reduction of Cr(VI) by NAD(P)H. Addition of hydrogen peroxide (H2O2) to NAD(P)H-Cr(VI) reaction mixtures suppresses the Cr(V) signal and generates hydroxyl (OH) radicals (as detected via spin trapping), suggesting that Cr(V) reacts with H2O2 to generate the OH radicals. Reaction between H2O2 and a Cr(V)-glutathione complex. and between H2O2 and several Cr(V)-cdrboxylato complexes also produces OH radicals. These results suggest that Cr(V) complexes catalyze the generation of OH radicals from H2O2, and that OH radicals might play a significant role in the mechanism of Cr(VI) cytotoxicity.  相似文献   

17.
Recent studies showed that hydrogen peroxide (H2O2) enhanced bone markers expression in vascular smooth muscle cells (VSMCs) implicated in osteoblastic differentiation. This study aimed at investigating the role of NAD(P)H oxidase in vascular calcification processes. A7r5 rat VSMCs were incubated with β-glycerophosphate (10 mm) or uremic serum to induce a diffuse mineralization. H2O2 production by VSMCs was determinated by chemiluminescence. NAD(P)H oxidase sub-unit (p22phox), Cbfa-1, ERK phosphorylation and bone alkaline phosphatase (ALP) expressions were measured by Western blotting. VSMCs exhibited higher production of H2O2 and early expression of p22phox with β-glycerophosphate or uremic serum within 24 h of treatment. β-glycerophosphate-induced oxidative stress was associated with Cbfa-1 expression followed by ALP expression and activity, meanwhile the VSMCs expressing ALP diffusely calcified their extracellular matrix. Interestingly, diphenyleneiodonium partly prevented the osteoblastic differentiation. Results from this model strongly suggest a major implication of vascular NAD(P)H oxidase in vascular calcification supported by VSMCs osteoblastic differentiation.  相似文献   

18.
Various kinetic approaches were carried out to investigate kinetic attributes for the dual coenzyme activities of mitochondrial aldehyde dehydrogenase from rat liver. The enzyme catalyses NAD(+)- and NADP(+)-dependent oxidations of ethanal by an ordered bi-bi mechanism with NAD(P)+ as the first reactant bound and NAD(P)H as the last product released. The two coenzymes presumably interact with the kinetically identical site. NAD+ forms the dynamic binary complex with the enzyme, while the enzyme-NAD(P)H complex formation is associated with conformation change(s). A stopped-flow burst of NAD(P)H formation, followed by a slower steady-state turnover, suggests that either the deacylation or the release of NAD(P)H is rate limiting. Although NADP+ is reduced by a faster burst rate, NAD+ is slightly favored as the coenzyme by virtue of its marginally faster turnover rate.  相似文献   

19.
Obtaining optimal cofactor balance to drive production is a challenge in metabolically engineered microbial production strains. To facilitate identification of heterologous enzymes with desirable altered cofactor requirements from native content, we have developed Cofactory, a method for prediction of enzyme cofactor specificity using only primary amino acid sequence information. The algorithm identifies potential cofactor binding Rossmann folds and predicts the specificity for the cofactors FAD(H2), NAD(H), and NADP(H). The Rossmann fold sequence search is carried out using hidden Markov models whereas artificial neural networks are used for specificity prediction. Training was carried out using experimental data from protein–cofactor structure complexes. The overall performance was benchmarked against an independent evaluation set obtaining Matthews correlation coefficients of 0.94, 0.79, and 0.65 for FAD(H2), NAD(H), and NADP(H), respectively. The Cofactory method is made publicly available at http://www.cbs.dtu.dk/services/Cofactory . Proteins 2014; 82:1819–1828. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Respiratory particles from hydrogen-grown Anacystis nidulans were found to oxidize H2, NADPH, NADH, succinate and ascorbate plus N,N,N,N-tetramethyl-p-phenylenediamine at rates corresponding to 28, 15, 6, 2.5, and 70 nmol O2 taken up x mg protein–1xmin–1, respectively. The particles were isolated by brief sonication of lysozyme-pretreated cells. Respiratory activities were studied in terms of both substrate oxidation and O2 uptake. The stoichiometry between oxidation of H2, NADPH, NADH or succinate, and consumption of O2 was calculated to be 1.95+-0.1 with each substrate.Inhibitors of flavoproteins did not affect the oxyhydrogen reaction while 2-n-heptyl-8-hydroxyquinoline-N-oxide as well as compounds known to block the terminal oxidase impaired the oxidation of both H2 and of NAD(P)H or succinate in a parallel fashion. No additivity of O2 uptake was observed when NADPH, NADH or succinate was present in addition to H2. Instead, H2 uptake was depressed under such conditions, and also the oxidation of NAD(P)H or succinate was increasingly lowered by increasing H2 tensions.The results suggest that in Anacystis molecular hydrogen is oxidized through the same type of respiratory chain as are NAD(P)H and succinate. Moreover, the cyanide-resistant branch of respiratory O2 uptake will be discussed, and a few results obtained with particles prepared from thylakoid-free Anacystis will also be presented.Abbreviations BAL 2,3-dimercaptopropanol-(1) - DCPIP 2,6-dichlorophenolindophenol - HOQNO 2-n-heptyl-8-hydroxyquinoline-N-oxide - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - tricine N-tris-(hydroxymethyl)-methylglycine - Tris tris-(hydroxymethyl)-aminomethane - TTFA thenoyltrifluoroacetone NAD(P)H indicates NADPH and/or NADH  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号