首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alicyclobacillus are spoilage microbes of many juice products, but contamination of kiwi products by Alicyclobacillus is seldom reported. This study aims to investigate the whole production line of kiwi products in China to assess the potential risk of their contamination. A total of 401 samples from 18 commercial products, 1 processing plant and 16 raw material orchards were tested, and 76 samples were positive, from which 76 strains of microbes were isolated and identified as 4 species of Alicyclobacillus, including Alicyclobacillus acidoterrestris, Alicyclobacillus contaminans, Alicyclobacillus herbarius and Alicyclobacillus cycloheptanicus, and another 9 strains as 3 species of Bacillus by sequencing of their 16S rDNA. Through phylogenetic tree construction and RAPD-PCR amplification, it was found that there exist genotypic diversities to some extent among these isolates. Four test strains (each from one species of the 4 Alicyclobacillus species isolated in this study) could spoil pH adjusted kiwi fruit juice and some commercial kiwi fruit products with producing guaiacol (11–34 ppb).  相似文献   

2.
Alicyclobacilli were isolated from orchard soil collected from an apple and pear farm in Elgin, Western Cape, South Africa. Morphological, biochemical and physiological characteristics of the isolates were used to presumptively classify them as belonging to the genus Alicyclobacillus. Strains were identified to species level by polymerase chain reaction (PCR) with genus-specific primers, and 16S ribosomal RNA (rRNA) gene sequencing. To our knowledge this is the first report on the isolation of Alicyclobacillus acidoterrestris and Alicyclobacillus acidocaldarius from orchard soil. The presence of these organisms in the soil suggests a possible source of contamination for the final fruit juice, concentrate or pulp.  相似文献   

3.
Alicyclobacillus acidoterrestris is the main cause of most spoilage problems in fruit juices and acidic products. Since soil borne species often contaminate fruit juices and do not need strict extreme requirements for survival, it is a great concern to investigate whether and how soil species could evolve from their ecological niches in microbial community to new environments as fruit juices. In this study, 23 isolates of thermo-acidophilic, spore-forming bacteria from soil were characterized by cultural and molecular methods. In addition, 2 strains isolated from a spoilage incident in pear juice were typed. Strains phenotyping showed that they could be grouped into 3 different clusters, and some isolates showed identical or quite similar patterns. Analyzing pH and temperature ranges for growth, the majority of strains were able to grow at values described for many species of Alicyclobacillus. Qualitative utilization of lysine, arginine and indole production from tryptophan revealed, for the first time, deamination of lysine and decarboxylation of arginine. Resistance to 5% NaCl as well as the ability to hydrolyze starch and gelatin, nitrate reduction, catalase and oxidase activities confirmed literature evidences. Examining of 16S rRNA, showed that isolates were divided into three blocks represented by effectively soil species and strains that are moving from soil to other possible growing source characterized by parameters that could strongly influence bacterial survival. RAPD PCR technique evidenced a great variability in banding patterns and, although it was not possible to obtain genotypically well-distinguished groups, it was feasible to appreciate genetic similarity between some strains. In conclusion, the investigation of a microbial community entails a combination of metagenomic and classic culture-dependent approaches to expand our knowledge about Alicyclobacillus and to look for new subspecies.  相似文献   

4.

Aims

To purify and primarily characterize an anti‐Alicyclobacillus bacteriocin produced by Bifidobacterium animalis subsp. animalis CICC 6165, suggested to be named bificin C6165.

Methods and Results

During purification of the bificin C6165, optimal recovery was achieved with ammonium sulfate precipitation followed by two chromatographic steps. Mass spectrometry analyses revealed a distinctive peak corresponding to a molecular mass of 3395·1 Da. This bacteriocin was heat stable, effective after refrigerated storage and freeze–thaw cycles. The primary mode of action of bificin C6165 is most probably due to pore formation, as indicated by the efflux of K+ from metabolically active cells of Alicyclobacillus acidoterrestris. In the presence of 10 mmol l?1 gadolinium, bificin C6165 did not affect cells of Alicyclobacillus acidoterrestris. This suggests that the mode of action of bificin C6165 relies on a net negatively charged cell surface.

Conclusions

Bificin C6165 is indeed a novel bacteriocin and it exhibited remarkable potency for Alicyclobacillus control.

Significance and Impact of the Study

Application of bacteriocins in preservation of fruit juices has seldom been studied. Bificin C6165 may be an alternative method to control juice spoilage by this Alicyclobacillus acidoterrestris and meet increasing consumer demand for nature and artificial chemical additive‐free food products.  相似文献   

5.
The prevention of spoilage by Alicyclobacillus acidoterrestris is a current challenge for fruit juice and beverage industries worldwide due to the bacterium''s acidothermophilic growth capability, heat resistance, and spoilage potential. This study examined the effect of storage temperature on A. acidoterrestris growth in hot-filled orange juice. The evolution of the A. acidoterrestris population was monitored under six different storage conditions after pasteurization (at 92°C for 10 s), maintenance at 85°C for 150 s, and cooling with water spray to 35°C in about 30 min and using two inoculum levels: <101 and 101 spores/ml. Final cooling and storage conditions were as follows: treatment 1, 30°C for the bottle cold point and storage at 35°C; treatment 2, 30°C for 48 h and storage at 35°C; treatment 3, 25°C for the bottle cold point and storage at 35°C; treatment 4, 25°C for 48 h and storage at 35°C; treatment 5, storage at 20°C (control); and treatment 6, filling and storage at 25°C. It was found that only in treatment 5 did the population remain inhibited during the 6 months of orange juice shelf life. By examining treatments 1 to 4, it was observed that A. acidoterrestris predicted growth parameters were significantly influenced (P < 0.05) either by inoculum level or cooling and storage conditions. The time required to reach a 104 CFU/ml population of A. acidoterrestris was considered to be an adequate parameter to indicate orange juice spoilage by A. acidoterrestris. Therefore, hot-filled orange juice should be stored at or below 20°C to avoid spoilage by this microorganism. This procedure can be considered a safe and inexpensive alternative to other treatments proposed earlier.The first Alicyclobacillus sp. discovered was isolated in 1982 from spoiled apple juice aseptically packed in Germany and was considered at that time strictly limited to thermophilic and acidic environments (5). The spoilage of fruit juices by Alicyclobacillus is characterized by “off” flavors (medicinal or phenolic) due to guaiacol, 2,6-dibromophenol, and 2,6-dichlorophenol (20, 32, 25). As the spoilage does not show any evident signs like swelling of the container or any overt changes in the fruit juice (e.g., pH or turbidity), it is often not recognized until the packages are opened, the product is tasted, and consumer complaints are received by the manufacturer (6).Alicyclobacillus acidoterrestris, Alicyclobacillus cycloheptanicus and Alicyclobacillus acidocaldarius were the first three species described when the Alicyclobacillus genus was created in 1992 (31). Although there are currently more than 15 species described (27), only four Alicyclobacillus species (A. acidoterrestris, A. pomorum, A. herbarius and A. acidophilus) have shown the ability to produce off flavors in fruit juices or beverages (5, 13, 9, 1). Of these, A. acidoterrestris is considered the most important spoilage species within the Alicyclobacillus genus either by its frequency of occurrence or by its linkage to the spoilage problems of fruit juices and beverages. The broad temperature range for A. acidoterrestris growth (25 to 60°C) (33, 21, 20, 30, 11), its ability to grow under acidic environments (pH 2.5 to 6.0) (20, 30, 19, 22, 6), and its high heat resistance in orange juice (D at 95°C of 2.7 min) (8) together provide adequate conditions for both survival through pasteurization and growth during juice storage.A. acidoterrestris growth and the consequent orange juice spoilage can lead to enormous economic losses; therefore, this microorganism is currently considered a major challenge for the fruit juice industries. It is known to be difficult, if not impossible, to guarantee the absence of Alicyclobacillus spores on the surface of fruits used to make juices since the soil is the primary niche of Alicyclobacillus spp. (7). Subsequently, control measures such as avoiding fruit contact with soil and the use of sanitizers during the fruit washing step before crushing have been studied (16, 12). In addition, fruit juice producers need to better control the pasteurization conditions and to redesign their thermal processes for targeting Alicyclobacillus spp. (28, 24). However, the limited effectiveness of sanitizers against Alicyclobacillus spores and the sensory and nutritional problems that may arise from increased time and temperature regimes in pasteurization are recognized. Since the complete inactivation of Alicyclobacillus spores from raw materials may not be feasible and since juice spoilage by this microorganism depends on the germination of spores and outgrowth, studies reporting conditions that avoid spoilage by controlling Alicyclobacillus spore germination are necessary. The best option to manage the challenge that Alicyclobacillus presents to the fruit juice industries will be one that results in the fewest alterations in processing and storage conditions, preserves the nutritional and sensory aspects of the final products, does not impact production costs and commercial practices, and at the same time ensures the control of the microorganism.In the fruit juice industry, two main types of thermal processes are commonly applied: pasteurization followed by a hot-fill process or pasteurization followed by a cold-fill process (6). In the former, after the product is heated to >90 to 95°C, it is held hot for 15 to 20 s. As the temperature decreases to 82 to 84°C, the product is filled into the package. Next, the product is held for approximately 2 min before the packages are cooled to room temperature. Hot filling has been extensively used in the manufacturing processes of fruit-based drinks and beverages, but problems due to spoilage caused by Alicyclobacillus may arise during fruit juice shelf life. This is due to the extended time that the product is maintained at temperature conditions adequate for the germination and outgrowth of acidothermophilic spore-forming microbes. Despite several studies regarding the factors that affect A. acidoterrestris growth and heat resistance (12, 18, 2, 29), there is a lack of research on the effects of hot-filled fruit juice storage conditions on A. acidoterrestris growth during juice storage. Thus, this study aimed at estimating and comparing the growth parameters (maximum population ratio, κ; lag time, λ; and maximum growth rate, μ) of A. acidoterrestris survival in hot-filled orange juice that was cooled and stored under several conditions that simulate industrial and commercial practices. Primary growth parameters were estimated by using the Baranyi predictive model (3). Additionally, orange juice cooling and storage conditions that avoided germination, growth, and guaiacol production by A. acidoterrestris CRA 7152 were determined.  相似文献   

6.
Alicyclobacillus acidoterrestris is a thermoacidophilic, non-pathogenic, spore-forming bacterium detected in spoiled commercial pasteurized fruit juice. Apple, white grape and tomato are particularly susceptible. A. acidoterrestris spores are resistant to lemon juice pasteurization (2 min at 82°C), and they can germinate and grow causing spoilage. This contamination is characterized by a medicinal or disinfectant smell attributed to guaiacol (o-dihydroxybenzene) production and other taint chemicals. The aim of this work was to study the influence of temperature (82, 86, 92 and 95 °C), total soluble solids (SS) (6.20, 9.8, 50 and 68°Brix) and pH (2.28, 2.45, 2.80, 3.25, 3.5) on decimal reduction time (D) of the A. acidoterrestris in clarified and non-clarified concentrated lemon juice. Once D-value was determined, the resistance of A. acidoterrestris at the assayed temperatures was confirmed. SS and pH influence spore viability, because spore resistance increases with higher SS (50°Brix 22 min 82 °C–68°Brix 28 min 82 °C) and pH values (pH 2.28, 17 min–pH 4.00, 22 min). Bacterial growth was lower in clarified lemon juice, 26 min at 82 °C, than in non-clarified lemon juice, 51 min at 82 °C. Temperature was the parameter that had the greatest influence on the D value.  相似文献   

7.
A thermo-acidophilic bacterium, designated strain ACK006T, was isolated from the soil of a hot spring at Tengchong in China. Cells were Gram-staining-positive, motile, catalase-positive and oxidase-negative, spore-forming rods. The isolate grew aerobically at 30–50°C (optimum at 45°C), pH 2.0–6.0 (optimum pH 3.2) and 0–5.0% (w/v) NaCl (optimum 1% NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain ACK006T belongs to the genus Alicyclobacillus with the sequence similarity of 92.3, 92.4, 92.5, and 92.8% to Alicyclobacillus cycloheptanicus SCHT, Alicyclobacillus ferrooxydans TC-34T, Alicyclobacillus contaminans 3-A191T and Alicyclobacillus disulfidooxidans SD-11T, respectively. Similarity to other species of the genus Alicyclobacillus was 90.3–92.8% and similarity to species of the genus Tumebacillus was 85.9–87.8%. The genomic DNA G+C content was 53.7 mol%. The predominant menaquinone was MK-7. Major fatty acids were ω-cycloheptane C18:0, iso-C17:0 and anteiso-C17:0. The cell-wall peptidoglycan was the A1γ type; containing meso-diaminopimelic acid as the diagnostic diamino acid. On the basis of polyphasic analysis from this study, strain ACK006T represents a novel species of the genus Alicyclobacillus for which the name Alicyclobacillus tengchongensis sp. nov. is proposed. The type strain is ACK006T (=KCTC 33022T =DSM 25924T).  相似文献   

8.
A total of 106 actinobacteria associated with the marine sponge Hymeniacidon perleve collected from the Yellow Sea, China were isolated using eight different media. The number of species and genera of actinobacteria recovered from the different media varied significantly, underlining the importance of optimizing the isolation conditions. The phylogenetic diversity of the actinobacteria isolates was assessed using 16S rRNA gene amplification–restriction fragment length polymorphism (RFLP) analysis of the 106 strains with different morphologies. The RFLP fingerprinting of selected strains by HhaI-digestion of the 16S rRNA genes resulted in 11 different patterns. The HhaI-RFLP analysis gave good resolution for the identification of the actinobacteria isolates at the genus level. A phylogenetic analysis using 16S rRNA gene sequences revealed that the isolates belonged to seven genera of culturable actinobacteria including Actinoalloteichus, Micromonospora, Nocardia, Nocardiopsis, Pseudonocardia, Rhodococcus, and Streptomyces. The dominant genus was Streptomyces, which represented 74% of the isolates. Three of the strains identified are candidates for new species.  相似文献   

9.
采用平板水解圈法(plate hydrolysis spot method)对分离自酒鬼酒发酵车间空气样品的细菌进行淀粉酶产生菌筛选,运用基于16S rRNA基因序列的分析方法对高酶活菌株进行系统发育多样性分析。结果表明,73个受试菌株中,有23株为淀粉酶产生菌,占受试菌株的31.5%,其中有9株为高酶活菌。23个淀粉酶产生菌类群多样性和物种多样性较高,属于4个大的系统发育类群(Actinobacteria、Deinococcus-Thermus、Firmicutes、Proteobacteria)中的10个科(Bacillaceae、Deinococcaceae、Intrasporangiaceae、Microbacteriaceae、Micrococcaceae、Nocardiaceae、Propionibacteriaceae、Pseudomonadaceae、Rhodobacteraceae、Xanthomonadaceae)的13个属,可分为21个物种。进一步分析表明,9株高酶活菌属于细菌域(Eubacteria)的4个大的系统发育类群(Actinobacteria、Deinococcus Thermus、Firmicutes、Proteobacteria)的7个科(Bacillaceae、Deinococcaceae、Micrococcaceae、Microbacteriaceae、Nocardiaceae、Rhodobacteraceae、Xanthomonadaceae),归属于8个属。研究结果表明,酒鬼酒发酵车间空气源细菌存在较高比例的淀粉酶产生菌,且这些菌株具有较高的类群多样性和物种多样性。  相似文献   

10.
Intracellular bacteria of the genus Wolbachia (alpha Proteobacteria) induce cytoplasmic incompatibility (CI) in many arthropod species, including spider mites, but not all Wolbachia cause CI. In spider mites CI becomes apparent by a reduced egg hatchability and a lower daughter:son ratio: CI in haplodiploid organisms in general was expected to produce all-male offspring or a male-biased sex ratio without any death of eggs. In a previous study of Japanese populations of Tetranychus urticae, two out of three green-form populations tested were infected with non-CI Wolbachia strains, whereas none of six red-form populations harbored Wolbachia. As the survey of Wolbachia infection in T. urticae is still fragmentary in Japan, we checked Wolbachia infection in thirty green-form populations and 29 red-form populations collected from a wide range of Japanese islands. For Wolbachia-infected populations, we tested the effects of Wolbachia on the reproductive traits and determined the phylogenetic relationships of the different strains of Wolbachia. All but one green-form populations were infected with Wolbachia and all strains belonged to the subgroup Ori when the wsp gene was used to determine the phylogenetic relationships of different strains of Wolbachia. Six out of 29 red-form populations harbored Wolbachia and the infected strains belonged to the subgroups Ori and Bugs. Twenty-four of 29 infected green-form populations and five of six infected red-form populations induced CI among the hosts. Thus, CI-Wolbachia strains are widespread in Japan, and no geographical trend was observed in the CI-Wolbachia. Although three red-form populations harbored other intracellular bacteria Cardinium, they did not affect host reproduction.  相似文献   

11.
In this study we characterized a bacteriocin, warnericin RB4, produced by Staphylococcus warneri RB4. Warnericin RB4 activity was completely inactivated by trypsin and actinase E. The activity was stable at 100°C for 15 min, and had a pH range of 2 to 6. S. warneri RB4 showed antibacterial activity against only Alicyclobacillus acidoterrestris, A. acidocaldarius, and Micrococcus luteus, among 34 bacterial species tested. The amino acid sequence of the purified bacteriocin contained 27 amino acid residues (K-K-K-S-G-V-I-P-X-V-X-H-D-X-H-M-N-X-F-Q-F-V-F-X-X-X-S). The molecular mass of the bacteriocin was estimated to be 2,958.2 Da by ESI-MS. These results show that the Warnericin RB4 exhibiting specific antibacterial activity against thermo-acidophiles, Alicyclobacillus spp., is a Nukacin ISK-1 or closely related bacteriocin, classified with class IA (Lacticin 481 types). This is the first report that Warnericin RB-4 is effective to inhibit the growth of causative microorganisms of spoilage in various acidic drinks. Warnericin RB4 might prove useful in fruit juices and fruit juice–containing drinks.  相似文献   

12.
Three strains of thermophilic-acidophilic bacteria isolated previously from different hot springs in Japan were characterized by molecular genetic methods. The strategy taken involved PCR amplification, sequencing and restriction pattern analysis of 16S rDNA, 16S-23S rDNA spacer polymorphism analysis and genomic DNA-DNA hybridization. A phylogenetic analysis based on 16S rDNA sequences showed that the new thermoacidophilic isolates formed a genetically coherent group at the species level and fell into a major cluster together with members of the genera Alicyclobacillus and Sulfobacillus with A. acidocaldarius and A. acidoterrestris as their closest relatives. The levels of binary sequence similarity between the isolates and the two Alicyclobacillus species were 97.6 to 97.9%, values considered low enough to warrant placement of the isolates in a distinct species of the genus Alicyclobacillus. The 16S rDNA restriction pattern analysis, but not 16S-23S rDNA spacer polymorphism analysis, was useful for differentiating the isolates from the established Alicyclobacillus species. DNA-DNA hybridization assays demonstrated a distinct phylogenetic position of our isolates as a genospecies within the genus Alicyclobacillus. On the basis of these results, the thermoacidophilic isolates should be classified into a new species of Alicyclobacillus. The results of this study suggest that this new genospecies of Alicyclobacillus is widely distributed in hot springs in Japan.  相似文献   

13.
A comparison of the 16S rRNA gene (rDNA) sequences of seven type strains belonging to different Alicyclobacillus species (i.e., five validated species, one proposed species and one genomic species) suggested that the 5' end hypervariable region (259-273 bases in length) of 16S rDNA was specific for the respective type strains. Further phylogenetic analysis based on DNA sequences of the hypervariable region using 24 Alicyclobacillus strains revealed that the strains could be categorized into five species and the A. acidocaldarius-Alicyclobacillus genomic species 1 group. The hypervariable region was highly conserved among the five species: A. acidiphilus, A. acidoterrestris, A. cycloheptanicus, A. herbarius, and A. hesperidum. The strains in the A. acidocaldarius-Alicyclobacillus genomic species 1 group were subdivided into two clusters (Clusters I and II) based on DNA sequences in the hypervariable region. On the basis of phenotypic characteristics, chemotaxonomic and phylogenetic analyses, and DNA-DNA hybridization data, strains in Cluster I were grouped as Alicyclobacillus genomic species 1 and strains in Cluster II were re-identified as A. acidocaldarius, thereby demonstrating that the hypervariable regions were also highly conserved within these two species. These results suggest that as is the case with Bacillus, the hypervariable region is significantly species-specific in the genus Alicyclobacillus to distinguish Alicyclobacillus species by DNA sequence comparison of the hypervariable region.  相似文献   

14.
The phylogenetic relationships among the Japanese members of the genus Eubrianax (Coleoptera: Psephenidae) were examined using the mitochondrial cytochrome oxidase subunit I (COI) gene and nuclear 28S rRNA gene sequences. Based on the molecular phylogeny as well as morphological features, the species status of Eubrianax brunneicornis Nakane, 1952 was proposed. The phylogenetic analyses recovered monophyly of the previously proposed pellucidus species group with four Japanese species, whereas a single Japanese species of the granicollis group was included in the lineage of the ramicornis group with five Japanese species. The divergence times of the species were estimated by dating the phylogenetic tree against the fossil record and a molecular clock based on the COI gene. The divergence of the Japanese species was inferred to have occurred during the Pliocene epoch.  相似文献   

15.
The aims of this work were to study cyanobacterial isolates resembling the genus Hydrocoryne using a combination of morphology and phylogeny of 16S rRNA and nifH sequences and to investigate genes involved in cyanotoxin and protease inhibitor production. Four new cyanobacterial strains, isolated from biofilm samples collected from King George Island, Antarctica, were studied. In terms of morphology, these new strains share traits similar to true Anabaena morphotypes (benthic ones), whereas phylogenetic analysis of their 16S rRNA gene sequences grouped them with the sequence of the type species Hydrocoryne spongiosa (H. Schwabe ex Bornet and Flahault 1886–1888), but not with sequences of the type species from the genus Anabaena. This cluster is the sister group of Anabaena morphotypes isolated only from the Gulf of Finland. In addition, this cluster is related to two other clusters formed by sequences of Anabaena isolated from different sites. Partial nifH genes were sequenced from two strains and the phylogenetic tree revealed that the Antarctic nifH sequences clustered with sequences from Anabaena. Furthermore, two strains were tested, using PCR with specific primers, for the presence of genes involved in cyanotoxins (microcystin and saxitoxin) and protease inhibitor (aeruginosin, and cyanopeptolin). Only cyanopeptolin was amplified using PCR. These four Hydrocoryne strains are the first to be isolated and sequenced from Antarctica, which improves our knowledge on this poorly defined cyanobacterial genus.  相似文献   

16.
Aim: To test the efficacy of a chemical (chlorous acid) for reducing the numbers of viable Alicyclobacillus acidoterrestris spores in laboratory media and on apples. Methods and Results: Alicyclobacillus acidoterrestris spores in aqueous suspension and on apple surfaces of four different cultivars were treated with 268 ppm chlorous acid. Treatment with 268 ppm chlorous acid sharply reduced the numbers of spores of A. acidoterrestris in laboratory media by 1·6, 4·3, and 7·0 log10 reductions for 5, 10, and 15 min treatments, respectively. Chlorous acid also effectively reduced the spore load on apple surfaces. Alicyclobacillus acidoterrestris spore counts were significantly reduced by about 5 log10 after 10 min treatment on four different apple cultivars (‘Red Delicious’, ‘Golden Delicious’,’ Gala’, and ‘Fuji’). There was no synergistic effect on spore reduction when chlorous acid treatment was combined with heat. Conclusions: These results show that chlorous acid is highly efficacious against A. acidoterrestris spores on apple surfaces. Significance and Impact of the Study: Chlorous acid can be used as an alternative sanitizer of chlorine to control a major A. acidoterrestris contamination source in juice processing plants.  相似文献   

17.
Alicyclobacillus acidoterrestris is one of the most spoilage-causing bacteria in fruit juices. Control of A. acidoterrestris in fruit juices by bificin C6165 (Pei et al. in J Appl Microbiol 114(5):1273–1284, 2013), a bacteriocin produced by Bifidobacterium animalis subsp. animalis CICC 6165, was described in this study. Activity spectrum of bificin C6165 was investigated and sixteen strains of A. acidoterrestris were sensitive to bificin C6165 in diluted Apple Juices. In the commercial fruit juices, vegetative cells of A. acidoterrestris were inactivated by bificin C6165 at 40 μg/ml. The inhibitory effect of bificin C6165 was better at lower pH (pH 3.5) and at a higher temperature of 45 °C. Furthermore, electron microscopy examination of the vegetative cells treated with bacteriocin revealed substantial cell damage and bacterial lysis. The result suggested that primary mode of action of bificin C6165 was most probably due to pore formation. Although no significantly activity of bificin C6165 was observed against the endospores of A. acidoterrestris in commercial apple juice, the addition of bacteriocin contributed to the reduction of the thermal resistance of A. acidoterrestris spores. Additionally, encapsulation of bificin C6165 with Ca-alginate gel was investigated. Encapsulation of bificin C6165 provided a promising method to control A. acidoterrestris in food juice industry.  相似文献   

18.
To clarify the relationship between Bartonella grahamii strains and both the rodent host species and the geographic location of the rodent habitat, we have investigated 31 B. grahamii strains from ten rodent host species from Asia (Japan and China), North America (Canada and the USA), and Europe (Russia and the UK). On the basis of multi-locus sequencing analysis of 16S rRNA, ftsZ, gltA, groEL, ribC, and rpoB, the strains were classified into two large groups, an Asian group and an American/European group. In addition, the strains examined were clearly clustered according to the geographic locations where the rodents had been captured. In the phylogenetic analysis based on gltA, the Japanese strains were divided into two subgroups: one close to strains from China, and the other related to strains from Far Eastern Russia. Thus, these observations suggest that the B. grahamii strains distributed in Japanese rodents originated from two different geographic regions. In the American/European group, B. grahamii from the North American continent showed an ancestral lineage and strict host specificity; by contrast, European strains showed low host specificity. The phylogenetic analysis and host specificity of B. grahamii raise the possibility that B. grahamii strains originating in the North American continent were distributed to European countries by adapting to various rodent hosts. An erratum to this article can be found at  相似文献   

19.
Three undescribed strains of basidiomycetous, anamorphic yeastlike fungi were isolated from Japanese pear fruits with a reddish stain collected in Tottori Prefecture, Japan. The strains are classified in a single group and assigned to the genus Meira by conventional and chemotaxonomic studies. Sequence analyses of the D1/D2 domain of 26S rDNA and internal transcribed spacer (ITS) regions indicate that the strains represent a novel species with a close phylogenetic relationship to Meira geulakonigii and M. argovae. The name Meira nashicola sp. nov. is proposed for the strains (type strain PFS 002 = MAFF 230028 = CBS 117161).  相似文献   

20.
蓝藻是地球上最古老的生物之一,其形态结构较为简单,为产氧型光合作用的原核生物。山西省晋阳湖为华北地区最大的人工湖,该研究以采自晋阳湖水体及岸边附着的蓝藻为材料,采用经典毛细管法分离纯化出5株丝状蓝藻,利用光学显微镜观察其形态结构特征(如细胞形状、藻丝体宽度、是否有鞘)和显微结构,并采用16S rRNA序列分析其系统发育关系,以明确晋阳湖的蓝藻种类,为预防湖泊蓝藻水华的发生、维护水资源环境稳定与生态平衡提供理论数据。结果显示:(1)所分离纯化的5株丝状蓝藻依形态特征归属于3个科,其中2株(JYH005和JYH012)为细鞘丝藻亚科(Leptolyngbyaceae),2株(JYH008和JYH022)为伪鱼腥藻科(Pseudanabaenaceae),1株(JYH010)为沙丝藻科(Desertifilaceae)。(2)基于16S rRNA序列构建的系统发育树显示,5株丝状蓝藻中JYH005为结丝藻属(Nodosilinea)的一种;JYH008可归为Arthronema,该株蓝藻在培养条件下观察到不同的形态特征,可能为新物种;JYH010为沙丝藻属(Desertifilum)的一种;JYH012可归为细鞘丝藻属(Leptolyngbya);JYH022与伪鱼腥藻科聚为一支,由于与该科其他藻相似度低于90%,且不能聚为一支,因此只能归为伪鱼腥藻科。研究表明,基于16S rRNA序列系统发育分析与形态学鉴定结果相一致。该研究结果丰富了山西省晋阳湖丝状蓝藻的多样性,为该湖的资源利用和环境保护提供了一定的科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号