首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local X-irradiation of mouse heart caused a large increase in manganese superoxide dismutase activity (MnSOD) in this organ but not in copper and zinc containing superoxide dismutase (CuZn SOD) activity. MnSOD induction was both dose and time dependent. Another mitochondrial enzyme, citrate synthase, was not induced by X-irradiation. The amount of immunoreactive MnSOD also increased after X-irradiation, showing that the amount of MnSOD protein increased after X-irradiation. The response to X-irradiation was found to be biphasic—with one large peak and one smaller peak of manganese superoxide dismutase activity. The effect of various inhibitors of cellular activities on these two peaks of MnSOD activity was examined. Cycloheximide, a cytosolic protein synthesis inhibitor, abolished both peaks of MnSOD activity, while chloramphenicol, a mitochondrial protein synthesis inhibitor, has no effect on either peak. Actinomycin D, a RNA-synthesis inhibitor, lowered both peaks, but had more of an effect on the second peak than on the first. In vivo protein synthesis studies using [3H]arginine showed that an increase in new protein synthesis occurred during the time period of the second peak, but did not occur during the first peak. These results are consistent with the hypothesis that MnSOD induction occurs in two peaks with the first peak due to a preformed MnSOD protein or mRNA for MnSOD and the second peak due to an increase in new protein synthesis.  相似文献   

2.
The virulence of superoxide dismutase (SOD) mutants of Vibrio vulnificus, as tested by intraperitoneal injection into mice, decreases in the order of sodC mutant, sodA mutant, and sodB mutant lacking CuZnSOD, MnSOD, and FeSOD, respectively. The survival of SOD mutants under superoxide stress also decreases in the same order. The virulence of soxR mutant, which is unable to induce MnSOD in response to superoxide, is similar to that of the sodA mutant, as the survival of the soxR mutant under superoxide stress is similar to that of the sodA mutant. Consistently, the lowered survival of the soxR mutant is complemented not only with soxR but also with sodA. Thus, the virulence of V. vulnificus is significantly affected by the cellular level of SOD activity, and an increase in SOD level through MnSOD induction by SoxR under superoxide stress is essential for virulence.  相似文献   

3.
Role of antioxidant enzymes in cell immortalization and transformation   总被引:6,自引:0,他引:6  
Summary The role of antioxidant enzymes, particularly superoxide dismutase (SOD), in immortalization and malignant transformation is discussed. SOD (generally MnSOD) has been found to be lowered in a wide variety of tumor types when compared to an appropriate normal cell control. Levels of immunoreactive MnSOD protein and mRNA for MnSOD also appear to be lowered in tumor cells. Tumor cells have the capacity to produce superoxide radical, the substrate for SOD. This suggests that superoxide production coupled with diminished amounts of MnSOD may be a general characteristic of tumor cells. The levels of MnSOD in certain cells correlates with their degree of differentiation; non-differentiating cells, whether normal or malignant, appear to have lost the ability to undergo MnSOD induction. These observations are used to elucidate a two-step model of cancer. This model involves not only the antioxidant enzymes, but also organelle (particularly mitochondria and peroxisomes) function as a dominant theme in carcinogenesis.  相似文献   

4.
MnCl2 induced manganese-containing superoxide dismutase (MnSOD) expression (mRNA, immunoreactive protein, and enzyme activity) in human breast cancer Hs578T cells. The induction of MnSOD immunoreactive protein in Hs578T cells was inhibited by tiron (a metal chelator and superoxide scavenger), pyruvate (a hydrogen peroxide scavenger), or 2-deoxy-d-glucose (DG, an inhibitor of glycolysis and the hexose monophosphate shunt), but not by 5,5-dimethyl-1-pyrroline-1-oxide (a superoxide scavenger), N-acetyl cysteine (a scavenger for reactive oxygen species and precursor of glutathione), diphenylene iodonium (an inhibitor of flavoproteins such as NADPH oxidase and nitric oxide synthase), or SOD (a superoxide scavenger). Northern blotting demonstrated that tiron or DG affected at the mRNA level, while pyruvate affected Mn-induced MnSOD expression at both the mRNA and protein levels. These results demonstrate that Mn can induce MnSOD expression in cultured human breast cancer cells. Mn also induced apoptosis and necrosis in these cells. Since inhibitors of Mn-induced MnSOD induction did not affect cell viability, MnSOD induction is probably not the cause of the Mn-induced cell killing.  相似文献   

5.
A chimeric gene consisting of the coding sequence for chloroplastic Fe superoxide dismutase (FeSOD) from Arabidopsis thaliana, coupled to the chloroplast targeting sequence from the pea ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit, was expressed in Nicotiana tabacum cv Petit Havana SR1. Expression of the transgenic FeSOD protected both the plasmalemma and photosystem II against superoxide generated during illumination of leaf discs impregnated with methyl viologen. By contrast, overproduction of a mitochondrial MnSOD from Nicotiana plumbaginifolia in the chloroplasts of cv SR1 protected only the plasmalemma, but not photosystem II, against methyl viologen (L. Slooten, K. Capiau, W. Van Camp, M. Van Montagu, C. Sybesma, D. Inzé [1995] Plant Physiol 107: 737-750). The difference in effectiveness correlates with different membrane affinities of the transgenic FeSOD and MnSOD. Overproduction of FeSOD does not confer tolerance to H2O2, singlet oxygen, chilling-induced photoinhibition in leaf disc assays, or to salt stress at the whole plant level. In nontransgenic plants, salt stress led to a 2- to 3-fold increase in activity, on a protein basis, of FeSOD, cytosolic and chloroplastic Cu/ZnSOD, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. In FeSOD-overproducing plants under salt stress, the induction of cytosolic and chloroplastic Cu/ZnSOD was suppressed, whereas induction of a water-soluble chloroplastic ascorbate peroxidase isozyme was promoted.  相似文献   

6.
SOD活性对高温酵母菌株乙醇忍受性的影响   总被引:2,自引:1,他引:1  
研究了超氧化物歧化酶(SOD)活性与乙醇忍受性关系。结果表明,环境pH改变导致SOD构象及活性变化。酸性条件下,SOD在220nm波长附近吸收峰紫移,酶活性减弱或丧失,热致死最高温度降低;中、碱性条件(pH7~9)下,220nm波长附近吸收峰红移,酶活性及热致死温度未发生显著性改变。热休克和乙醇预处理MnSOD、CuZnSOD缺失菌株,不同程度提高细胞存活率,证实了MnSOD比CuZnSOD对菌株乙醇抗性起了更为重要的作用.  相似文献   

7.
Genetic deletion of the mitochondrial deacetylase sirtuin-3 (Sirt3) results in increased mitochondrial superoxide, a tumor-permissive environment, and mammary tumor development. MnSOD contains a nutrient- and ionizing radiation (IR)-dependent reversible acetyl-lysine that is hyperacetylated in Sirt3?/? livers at 3 months of age. Livers of Sirt3?/? mice exhibit decreased MnSOD activity, but not immunoreactive protein, relative to wild-type livers. Reintroduction of wild-type but not deacetylation null Sirt3 into Sirt3?/? MEFs deacetylated lysine and restored MnSOD activity. Site-directed mutagenesis of MnSOD lysine 122 to an arginine, mimicking deacetylation (lenti-MnSOD(K122-R)), increased MnSOD activity when expressed in MnSOD?/? MEFs, suggesting acetylation directly regulates function. Furthermore, infection of Sirt3?/? MEFs with lenti-MnSOD(K122-R) inhibited in vitro immortalization by an oncogene (Ras), inhibited IR-induced genomic instability, and decreased mitochondrial superoxide. Finally, IR was unable to induce MnSOD deacetylation or activity in Sirt3?/? livers, and these irradiated livers displayed significant IR-induced cell damage and microvacuolization in their hepatocytes.  相似文献   

8.
9.
The filamentous cyanobacterium Anabaena PCC 7120 (now renamed Nostoc PCC 7120) possesses two genes for superoxide dismutase (SOD). One is an iron-containing (FeSOD) whereas the other is a manganese-containing superoxide dismutase (MnSOD). Localization experiments and analysis of the sequence showed that the FeSOD is cytosolic, whereas the MnSOD is a membrane-bound homodimeric protein containing one transmembrane helix, a spacer region, and a soluble catalytic domain. It is localized in both cytoplasmic and thylakoid membranes at the same extent with the catalytic domains positioned either in the periplasm or the thylakoid lumen. A phylogenetic analysis revealed that generally the highly homologous MnSODs of filamentous cyanobacteria are unique in being membrane-bound. Two recombinant variants of Anabaena MnSOD lacking either the hydrophobic region (MnSOD(Delta 28)) or the hydrophobic and the linker region (MnSOD(Delta 60)) are shown to exhibit the characteristic manganese peak at 480 nm, an almost 100% occupancy of manganese per subunit, a specific activity using the ferricytochrome assay of (660 +/- 90) unit mg-1 protein and a dissociation constant for the inhibitor azide of (0.84 +/- 0.05) mm. Using stopped-flow spectroscopy it is shown that the decay of superoxide in the presence of various (MnSOD(Delta 28)) or (MnSOD(Delta 60)) concentrations is first-order in enzyme concentration allowing the calculation of catalytic rate constants which increase with decreasing pH: 8 x 10(6) m-1 s-1 (pH 10) and 6 x 10(7) m-1 s-1 (pH 7). The physiological relevance of these findings is discussed with respect to the bioenergetic peculiarities of cyanobacteria.  相似文献   

10.
Cellular protection against oxidative stress is afforded by the enzyme superoxide dismutase (SOD). In this study, the protein levels of copper–zinc SOD (CuZnSOD) in the cytosolic and nuclear fraction, manganese SOD (MnSOD) in the mitochondrial, and cytosolic fraction and cytochrome c (cyt c) in the liver of male rats exposed to 2 h of acute immobilization (IM) or Cold stress, 21 days chronic isolation or their combinations (chronic/acute stress) were examined. The serum corticosterone (CORT) level was measured, as an indicator of stress stimuli. Both acute stressors with elevated CORT levels caused a decrease of mitochondrial MnSOD, while acute IM resulted in redistribution of the CuZnSOD protein level between the cytosolic and nuclear fraction. Chronic isolation, during which the CORT level was close to control value, resulted in an increase of cytosolic CuZnSOD, whereas a decrease of MnSOD in mitochondrial and its corresponding increase in cytosol fraction was found. In both combined stress regimes, an increase of the CuZnSOD and MnSOD levels in the cytosolic fraction was recorded whereby increase of the CORT level was observed only in the chronic isolation followed by acute IM. The data indicate that acute and/or chronic stress models have different degrees of influence on serum CORT and SOD subcellular protein levels. Increased cytosolic CuZnSOD protein level under chronic isolation suggests that state of oxidative stress may also exist under CORT level similar to the basal value. The presence of MnSOD and cyt c in the cytosolic fraction could serve as useful parameters for mitochondrial dysfunction.  相似文献   

11.
The heterocystous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120 displayed two superoxide dismutase (SOD) activities, namely FeSOD and MnSOD. Prolonged exposure of Anabaena PCC7120 cells to methyl viologen mediated oxidative stress resulted in loss of both SOD activities and induced cell lysis. The two SOD proteins were individually overexpressed constitutively in Anabaena PCC7120, by genetic manipulation. Under nitrogen-fixing conditions, overexpression of MnSOD (sodA) enhanced oxidative stress tolerance, while FeSOD (sodB) overexpression was detrimental. Under nitrogen supplemented conditions, overexpression of either SOD protein, especially FeSOD, conferred significant tolerance against oxidative stress. The results demonstrate a nitrogen status-dependent protective role of individual superoxide dismutases in Anabaena PCC7120 during oxidative stress.  相似文献   

12.
13.
Two varieties of tobacco (Nicotiana tabacum var PBD6 and var SR1) were used to generate transgenic lines overexpressing Mn-superoxide dismutase (MnSOD) in the chloroplasts. The overexpressed MnSOD suppresses the activity of those SODs (endogenous MnSOD and chloroplastic and cytosolic Cu/ZnSOD) that are prominent in young leaves but disappear largely or completely during aging of the leaves. The transgenic and control plants were grown at different light intensities and were then assayed for oxygen radical stress tolerance in leaf disc assays and for abundance of antioxidant enzymes and substrates in leaves. Transgenic plants had an enhanced resistance to methylviologen (MV), compared with control plants, only after growth at high light intensities. In both varieties the activities of FeSOD, ascorbate peroxidase, dehydroascorbate reductase, and monodehydroascorbate reductase and the concentrations of glutathione and ascorbate (all expressed on a chlorophyll basis) increased with increasing light intensity during growth. Most of these components were correlated with MV tolerance. It is argued that SOD overexpression leads to enhancement of the tolerance to MV-dependent oxidative stress only if one or more of these components is also present at high levels. Furthermore, the results suggest that in var SR1 the overexpressed MnSOD enhances primarily the stromal antioxidant system.  相似文献   

14.
The superoxide dismutases (SODs) are first-line enzymatic antioxidants that dismute superoxide anion (O(2)(-)) to produce hydrogen peroxide (H(2)O(2)). The primary objective was to characterize, by western blot analysis, the expression of two SODs, the cytosolic (Cu,ZnSOD or SOD1) and the mitochondrial (MnSOD or SOD2) forms in three sections of the oviduct, i.e. isthmus (I), ishtmic-ampullary junction (IA), and ampulla (A), during the estrous cycle. The Cu,ZnSOD and MnSOD proteins were mostly expressed in the ampulla (I相似文献   

15.
16.
A Scots pine (Pinus sylvestris L.) cDNA library was screened with two heterologous cDNA probes (P31 and T10) encoding cytosolic and chloroplastic superoxide dismutases (SOD) from tomato. Several positive clones for cytosolic and chloroplastic superoxide dismutases were isolated, subcloned, mapped and sequenced. One of the cDNA clones (PS3) had a full-length open reading frame of 465 bp corresponding to 154 amino acid residues and showed approximately 85% homology with the amino acid sequences of angiosperm cytosolic SOD counterparts. Another cDNA clone (PST13) was incomplete, but encoded a putative protein with 93% homology to pea and tomato chloroplastic superoxide dismutase. The derived amino acid sequence from both cDNA clones matched the corresponding N-terminal amino acid sequence of the purified mature SOD isozymes. Northern blot hybridizations showed that, cytosolic and chloroplastic CuZn-SOD are expressed at different levels in Scots pine organs. Sequence data and Southern blot hybridization confirm that CuZn-SODs in Scots pine belong to a multigene family. The results are discussed in relation to earlier observations of CuZn-SODs in plants.  相似文献   

17.
18.
Reactive oxygen species (ROS), including superoxide anions, hydrogen peroxide and hydroxyl radicals are generated through normal biochemical processes, but their production is increased by abiotic stresses. The prospects for enhancing ROS scavenging, and hence stress tolerance, by direct gene expression in a vulnerable cell compartment, the chloroplast, have been explored in tobacco. Several plastid transformants were generated which contained either a Nicotiana mitochondrial superoxide dismutase (MnSOD) or an Escherichia coli glutathione reductase (gor) gene. MnSOD lines had a three-fold increase in MnSOD activity, but interestingly a five to nine-fold increase in total chloroplast SOD activity. Gor transgenic lines had up to 6 times higher GR activity and up to 8 times total glutathione levels compared to wild type tobacco. Photosynthetic capacity of transplastomic plants, as measured by chlorophyll content and variable fluorescence of PSII was equivalent to non-transformed plants. The response of these transplastomic lines to several applied stresses was examined. In a number of cases improved stress tolerance was observed. Examples include enhanced methyl viologen (Paraquat)-induced oxidative stress tolerance in Mn-superoxidase dismutase over-expressing plants, improved heavy metal tolerance in glutathione reductase expressing lines, and improved tolerance to UV-B radiation in both sets of plants.  相似文献   

19.
Salmonella typhimurium possesses an adaptive response to acid that increases survival during exposure to extremely low pH values. The acid tolerance response (ATR) includes both log-phase and stationary-phase systems. The log-phase ATR appears to require two components for maximum acid tolerance, namely an inducible pH homeostasis system, and a series of acid-shock proteins. We have discovered one of what appears to be a series of inducible exigency pH homeostasis systems that contribute to acid tolerance in extreme acid environments. The low pH-inducible lysine decarboxylase was shown to contribute significantly to pH homeostasis in environments as low as pH 3.0. Under the conditions tested, both lysine decarboxylase and σs-dependent acid-shock proteins were required for acid tolerance but only lysine decarboxylase contributed to pH homeostasis. The cadBA operon encoding lysine decarboxylase and a lysine/cadaverine antiporter were cloned from S. typhimurium and were found to be 79% homologous to the cadBA operon from Escherichia coli . The results suggest that S. typhimurium has a variety of means of fulfilling the pH homeostasis requirement of the ATR in the form of inducible amino acid decarboxylases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号