首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three members of the Nudix (nucleoside diphosphate X) hydrolase superfamily have been cloned from Escherichia coli MG1655 and expressed. The proteins have been purified and identified as enzymes active on nucleoside diphosphate derivatives with the following specificities. Orf141 (yfaO) is a nucleoside triphosphatase preferring pyrimidine deoxynucleoside triphosphates. Orf153 (ymfB) is a nonspecific nucleoside tri- and diphosphatase and atypically releases inorganic orthophosphate from triphosphates instead of pyrophosphate. Orf191 (yffH) is a highly active GDP-mannose pyrophosphatase. All three enzymes require a divalent cation for activity and are optimally active at alkaline pH, characteristic of the Nudix hydrolase superfamily. The question of whether or not Orf1.9 (wcaH) is a bona fide member of the Nudix hydrolase superfamily is discussed.  相似文献   

2.
Two genes from Caenorhabditis elegans and Saccharomyces cerevisiae, coding for enzymes homologous to the Nudix hydrolase family of nucleotide pyrophosphatases, have been cloned and expressed in Escherichia coli. The purified enzymes are homodimers of 39.1 and 43. 5 kDa, respectively, are activated by Mg(2+) and Mn(2+), and are 30 to 50 times more active on NADH than on NAD(+). They both have a conserved array of amino acids downstream of the Nudix box first seen in the orthologous enzyme from E. coli which designates them as members of an NADH pyrophosphatase subfamily of the Nudix hydrolases.  相似文献   

3.
The genome of Bacillus cereus contains 26 Nudix hydrolase genes, second only to its closest relative, Bacillus anthracis which has 30. All 26 genes have been cloned, 25 have been expressed, and 21 produced soluble proteins suitable for analysis. Substrates for 16 of the enzymes were identified; these included ADP-ribose, diadenosine polyphosphates, sugar nucleotides, and deoxynucleoside triphosphates. One of the enzymes was a CDP-choline pyrophosphatase, the first Nudix hydrolase active on this substrate. Furthermore, as a result of this and previous work we have identified a new sub-family of the Nudix hydrolase superfamily recognizable by a specific amino acid motif outside of the Nudix box.  相似文献   

4.
Four Nudix hydrolase genes, ysa1 from Saccharomyces cerevisiae, orf209 from Escherichia coli, yqkg from Bacillus subtilis, and hi0398 from Hemophilus influenzae were amplified, cloned into an expression vector, and transformed into E. coli. The expressed proteins were purified and shown to belong to a subfamily of Nudix hydrolases active on ADP-ribose. Comparison with other members of the subfamily revealed a conserved proline 16 amino acid residues downstream of the Nudix box, common to all of the ADP-ribose pyrophosphatase subfamily. In this same region, a conserved tyrosine designates another subfamily, the diadenosine polyphosphate pyrophosphatases, while an array of eight conserved amino acids is indicative of the NADH pyrophosphatases. On the basis of these classifications, the trgB gene, a tellurite resistance factor from Rhodobacter sphaeroides, was predicted to designate an ADP-ribose pyrophosphatase. In support of this hypothesis, a highly specific ADP-ribose pyrophosphatase gene from the archaebacterium, Methanococcus jannaschii, introduced into E. coli, increased the transformant's tolerance to potassium tellurite.  相似文献   

5.
The sequence motif commonly called a Nudix box, represented by (GX(5)EX(7)REVXEEXGU) is the marker of a widely distributed family of enzymes that catalyze the hydrolysis of a variety of nucleoside diphosphate derivatives. Here we describe the cloning and characterization of an Arabidopsis thaliana cDNA encoding a Nudix hydrolase that degrades NADH. The deduced amino acid sequence of AtNUDT1 contains 147 amino acids. The recombinant AtNUDT1 was expressed in Escherichia coli and purified. In the presence of Mn(2+) and the optimal pH of 7. 0, the recombinant AtNUDT1 catalyzed the hydrolysis of NADH with a K(m) value of 0. 36 mm. A V(max) of 12. 7 units mg (-1) for NADH was determined. The recombinant AtNUDT1 migrated as a dimer on a gel filtration column. Biochemical analysis of recombinant AtNUDT1 indicated that the first characterized member of the Nudix family from A. thaliana is a NADH pyrophosphatase.  相似文献   

6.
The Nudix hydrolase superfamily is identified by a conserved cassette of 23 amino acids, and it is characterized by its pyrophosphorylytic activity on a wide variety of nucleoside diphosphate derivatives. Of the 13 members of the family in Escherichia coli, only one, Orf180, has not been identified with a substrate, although a host of nucleoside diphosphate compounds has been tested. Several reports have noted a strong similarity in the three‐dimensional structure of the unrelated enzyme, isopentenyl diphosphate isomerase (IDI) to the Nudix structure, and the report that a Nudix enzyme was involved in the synthesis of geraniol, a product of the two substrates of IDI, prompted an investigation of whether the IDI substrates, isopentenyl diphosphate (IPP), and dimethylallyl diphosphate (DAPP) could be substrates of Orf180. This article demonstrates that Orf180 does have a very low activity on IPP, DAPP, and geranyl pyrophosphate (GPP). However, several of the other Nudix enzymes with established nucleoside diphosphate substrates hydrolyze these compounds at substantial rates. In fact, some Nudix hydrolases have higher activities on IPP, DAPP, and GPP than on their signature nucleoside diphosphate derivatives.  相似文献   

7.
We cloned the gene for a novel Nudix hydrolase in the cyanobacterium Synechococcus sp. PCC 7002 and termed it nuhA. The deduced amino acid sequence of NuhA included the Nudix motif, GX(5)EX(7)RELXEEXGV, which is common to Nudix hydrolases, and in addition, a proline at the 15th amino acid from the C-terminus of the Nudix motif, which is characteristic of the subfamily of ADP-ribose pyrophosphatases. The recombinant NuhA with a hexahistidine tag was overexpressed in Escherichia coli and purified. The recombinant NuhA hydrolyzed ADP-ribose specifically among various nucleoside diphosphate derivatives. The hydrolytic activity for ADP-ribose required Mg(2+) and was optimal at pH 9.5. The V(max) and K(m) values of hydrolysis were 23.6 units mg(-1) and 0.094 mM, respectively. NuhA contained an uncharacterized domain in the C-terminal region, termed Pfam-B-3116, which is conserved in several hypothetical proteins. The mutated NuhA deficient in the Pfam-B-3116 domain failed to form the hexamers that are characteristic of NuhA, and exhibited a significantly higher K(m) value for ADP-ribose, suggesting that the Pfam-B-3116 domain might be responsible for oligomerization of NuhA and full binding affinity for ADP-ribose. These unique features suggest that NuhA is a novel type of ADP-ribose pyrophosphatase.  相似文献   

8.
9.
Arabidopsis thaliana AtNUDT7 Nudix pyrophosphatase hydrolyzes NADH and ADP-ribose in vitro and is an important factor in the cellular response to diverse biotic and abiotic stresses. Several studies have shown that loss-of-function Atnudt7 mutant plants display many profound phenotypes. However the molecular mechanism of AtNUDT7 function remains elusive. To gain a better understanding of this hydrolase cellular role, proteins interacting with AtNUDT7 were identified. Using AtNUDT7 as a bait in an in vitro binding assay of proteins derived from cultured Arabidopsis cell extracts we identified the regulatory protein RACK1A as an AtNUDT7-interactor. RACK1A-AtNUDT7 interaction was confirmed in a yeast two-hybrid assay and in a pull-down assay and in Bimolecular Fluorescence Complementation (BiFC) analysis of the proteins transiently expressed in Arabidopsis protoplasts. However, no influence of RACK1A on AtNUDT7 hydrolase catalytic activity was observed. In vitro interaction between RACK1A and the AGG1 and AGG2 gamma subunits of the signal transducing heterotrimeric G protein was also detected and confirmed in BiFC assays. Moreover, association between AtNUDT7 and both AGG1 and AGG2 subunits was observed in Arabidopsis protoplasts, although binding of these proteins could not be detected in vitro. Based on the observed interactions we conclude that the AtNUDT7 Nudix hydrolase forms complexes in vitro and in vivo with regulatory proteins involved in signal transduction. Moreover, we provide the initial evidence that both signal transducing gamma subunits bind the regulatory RACK1A protein.  相似文献   

10.
11.
Nudix hydrolases are a family of proteins that catalyze the hydrolysis of a variety of nucleoside diphosphate derivatives. Twenty-four genes of the Nudix hydrolase homologues (AtNUDTs) with predicted localizations in the cytosol, chloroplasts, and mitochondria exist in Arabidopsis thaliana. Here, we demonstrated the comprehensive analysis of nine types of cytosolic AtNUDT proteins (AtNUDT1, -2, -4, -5, -6, -7, -9, -10, and -11). The recombinant proteins of AtNUDT2, -6, -7, and -10 showed both ADP-ribose and NADH pyrophosphatase activities with significantly high affinities compared with those of animal and yeast enzymes. The expression of each AtNUDT is individually regulated in different tissues. These findings suggest that most cytosolic AtNUDTs may substantially function in the sanitization of potentially hazardous ADP-ribose and the regulation of the cellular NADH/NAD(+) ratio in plant cells. On the other hand, the AtNUDT1 protein had the ability to hydrolyze 8-oxo-dGTP with a K(m) value of 6.8 mum and completely suppress the increased frequency of spontaneous mutations in the Escherichia coli mutT(-) strain, indicating that AtNUDT1 is a functional homologue of E. coli MutT in A. thaliana and is involved in the prevention of spontaneous mutation. The results obtained here suggest that the plant Nudix family has evolved in a specific manner that differs from that of yeast and humans.  相似文献   

12.
We have characterized four putative ADP-ribose pyrophosphatases Sll1054, Slr0920, Slr1134, and Slr1690 in the cyanobacterium Synechocystis sp. strain PCC 6803. Each of the recombinant proteins was overexpressed in Escherichia coli and purified. Sll1054 and Slr0920 hydrolyzed ADP-ribose specifically, while Slr1134 hydrolyzed not only ADP-ribose but also NADH and flavin adenine dinucleotide. By contrast, Slr1690 showed very low activity for ADP-ribose and had four substitutions of amino acids in the Nudix motif, indicating that Slr1690 is not an active ADP-ribose pyrophosphatase. However, the quadruple mutation of Slr1690, T73G/I88E/K92E/A94G, which replaced the mutated amino acids with those conserved in the Nudix motif, resulted in a significant (6.1 x 10(2)-fold) increase in the k(cat) value. These results suggest that Slr1690 might have evolved from an active ADP-ribose pyrophosphatase. Functional and clustering analyses suggested that Sll1054 is a bacterial type, while the other three and Slr0787, which was characterized previously (Raffaelli et al., FEBS Lett. 444:222-226, 1999), are phylogenetically diverse types that originated from an archaeal Nudix protein via molecular evolutionary mechanisms, such as domain fusion and amino acid substitution.  相似文献   

13.
A new subfamily of the Nudix hydrolases, identified by conserved amino acids upstream and downstream of the Nudix box, has been characterized. The cloned, expressed, and purified orthologous enzymes have major activities on the non-canonical nucleoside triphosphate 5-methyl-UTP (ribo-TTP) and the canonical nucleotide UTP. In addition to their homologous signature sequences and their similar substrate specificities, the members of the subfamily are inhabitants of or are related to the bacterial rhizosphere. We propose the acronym and mnemonic, utp, for the gene designating this unique UTPase.  相似文献   

14.
Removal of pyrophosphate from dihydroneopterin triphosphate (DHNTP) is the second step in the pterin branch of the folate synthesis pathway. There has been controversy over whether this reaction requires a specific pyrophosphohydrolase or is a metal ion-dependent chemical process. The genome of Lactococcus lactis has a multicistronic folate synthesis operon that includes an open reading frame (ylgG) specifying a putative Nudix hydrolase. Because many Nudix enzymes are pyrophosphohydrolases, YlgG was expressed in Escherichia coli and characterized. The recombinant protein showed high DHNTP pyrophosphohydrolase activity with a K(m) value of 2 microM, had no detectable activity against deoxynucleoside triphosphates or other typical Nudix hydrolase substrates, required a physiological level (approximately 1 mM) of Mg(2+), and was active as a monomer. Essentially no reaction occurred without enzyme at 1 mM Mg(2+). Inactivation of ylgG in L. lactis resulted in DHNTP accumulation and folate depletion, confirming that YlgG functions in folate biosynthesis. We therefore propose that ylgG be redesignated as folQ. The closest Arabidopsis homolog of YlgG (encoded by Nudix gene At1g68760) was expressed in E. coli and shown to have Mg(2+)-dependent DHNTP pyrophosphohydrolase activity. This protein (AtNUDT1) was reported previously to have NADH pyrophosphatase activity in the presence of 5 mM Mn(2+) (Dobrzanska, M., Szurmak, B., Wyslouch-Cieszynska, A., and Kraszewska, E. (2002) J. Biol. Chem. 277, 50482-50486). However, we found that this activity is negligible at physiological levels of Mn(2+) and that, with 1 mM Mg(2+), AtNUDT1 prefers DHNTP and (deoxy) nucleoside triphosphates.  相似文献   

15.
Given the broad range of substrates hydrolyzed by Nudix (nucleoside diphosphate linked to X) enzymes, identification of sequence and structural elements that correctly predict a Nudix substrate or characterize a family is key to correctly annotate the myriad of Nudix enzymes. Here, we present the structure determination and characterization of Bd3179 –- a Nudix hydrolase from Bdellovibrio bacteriovorus–that we show localized in the periplasmic space of this obligate Gram-negative predator. We demonstrate that the enzyme is a nucleoside diphosphate sugar hydrolase (NDPSase) and has a high degree of sequence and structural similarity to a canonical ADP-ribose hydrolase and to a nucleoside diphosphate sugar hydrolase (1.4 and 1.3 Å Cα RMSD respectively). Examination of the structural elements conserved in both types of enzymes confirms that an aspartate-X-lysine motif on the C-terminal helix of the α-β-α NDPSase fold differentiates NDPSases from ADPRases.  相似文献   

16.
Synechocystis sp. slr0787 open reading frame encodes a 339 residue polypeptide with a predicted molecular mass of 38.5 kDa. Its deduced amino acid sequence shows extensive homology with known separate sequences of proteins from the thermophilic archaeon Methanococcus jannaschii. The N-terminal domain is highly homologous to the archaeal NMN adenylyltransferase, which catalyzes NAD synthesis from NMN and ATP. The C-terminal domain shares homology with the archaeal ADP-ribose pyrophosphatase, a member of the 'Nudix' hydrolase family. The slr0787 gene has been cloned into a T7-based vector for expression in Escherichia coli cells. The recombinant protein has been purified to homogeneity and demonstrated to possess both NMN adenylyltransferase and ADP-ribose pyrophosphatase activities. Both activities have been characterized and compared to their archaeal counterparts.  相似文献   

17.
18.
Gene ytkD of Bacillus subtilis, a member of the Nudix hydrolase superfamily, has been cloned and expressed in Escherichia coli. The purified protein has been characterized as a nucleoside triphosphatase active on all of the canonical ribo- and deoxyribonucleoside triphosphates. Whereas all other nucleoside triphosphatase members of the superfamily release inorganic pyrophosphate and the cognate nucleoside monophosphate, YtkD hydrolyses nucleoside triphosphates in a stepwise fashion through the diphosphate to the monophosphate, releasing two molecules of inorganic orthophosphate. Contrary to a previous report, our enzymological and genetic studies indicate that ytkD is not an orthologue of E. coli mutT.  相似文献   

19.
GDP-mannose mannosyl hydrolase (GDPMH) from Escherichia coli is a 36. 8 kDa homodimer which, in the presence of Mg(2+), catalyzes the hydrolysis of GDP-alpha-D-mannose or GDP-alpha-D-glucose to yield sugar and GDP. On the basis of its amino acid sequence, GDPMH is a member of the Nudix family of enzymes which catalyze the hydrolysis of nucleoside diphosphate derivatives by nucleophilic substitution at phosphorus. However, GDPMH has a sequence rearrangement (RE to ER) in the conserved Nudix motif and is missing a Glu residue characteristic of the Nudix signature sequence. By (1)H NMR, the initial hydrolysis product of GDP-alpha-D-glucose is beta-D-glucose, indicating nucleophilic substitution with inversion at C1' of glucose. Substitution at carbon was confirmed by two-dimensional (1)H-(13)C HSQC spectra of the products of hydrolysis in 48.4% (18)O-labeled water which showed an additional C1' resonance of beta-D-glucose with a typical upfield (18)O isotope shift of 18 ppb and an intensity of 47.6% of the total signal. No (18)O isotope-shifted resonances (<4%) were found in the (31)P NMR spectrum of the GDP product. Thus, unlike all other Nudix enzymes studied so far, GDPMH catalyzes nucleophilic substitution at carbon rather than at phosphorus. A small solvent kinetic deuterium isotope effect on k(cat) of 1.76 +/- 0.25, independent of pH over the range of 6.0-9.3, suggests that the deprotonation of water may be part of the rate-limiting step.  相似文献   

20.
We have determined the crystal structure, at 1.4A, of the Nudix hydrolase DR1025 from the extremely radiation resistant bacterium Deinococcus radiodurans. The protein forms an intertwined homodimer by exchanging N-terminal segments between chains. We have identified additional conserved elements of the Nudix fold, including the metal-binding motif, a kinked beta-strand characterized by a proline two positions upstream of the Nudix consensus sequence, and participation of the N-terminal extension in the formation of the substrate-binding pocket. Crystal structures were also solved of DR1025 crystallized in the presence of magnesium and either a GTP analog or Ap(4)A (both at 1.6A resolution). In the Ap(4)A co-crystal, the electron density indicated that the product of asymmetric hydrolysis, ATP, was bound to the enzyme. The GTP analog bound structure showed that GTP was bound almost identically as ATP. Neither nucleoside triphosphate was further cleaved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号