首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The opportunistic intracellular pathogen Legionella pneumophila is the causative agent of Legionnaires’ disease. L. pneumophila delivers nearly 300 effector proteins into host cells for the establishment of a replication-permissive compartment known as the Legionella-containing vacuole (LCV). SidC and its paralog SdcA are two effectors that have been shown to anchor on the LCV via binding to phosphatidylinositol-4-phosphate [PI(4)P] to facilitate the recruitment of ER proteins to the LCV. We recently reported that the N-terminal SNL (SidC N-terminal E3 Ligase) domain of SidC is a ubiquitin E3 ligase, and its activity is required for the recruitment of ER proteins to the LCV. Here we report the crystal structure of SidC (1-871). The structure reveals that SidC contains four domains that are packed into an arch-like shape. The P4C domain (PI(4)P binding of SidC) comprises a four α-helix bundle and covers the ubiquitin ligase catalytic site of the SNL domain. Strikingly, a pocket with characteristic positive electrostatic potentials is formed at one end of this bundle. Liposome binding assays of the P4C domain further identified the determinants of phosphoinositide recognition and membrane interaction. Interestingly, we also found that binding with PI(4)P stimulates the E3 ligase activity, presumably due to a conformational switch induced by PI(4)P from a closed form to an open active form. Mutations of key residues involved in PI(4)P binding significantly reduced the association of SidC with the LCV and abolished its activity in the recruitment of ER proteins and ubiquitin signals, highlighting that PI(4)P-mediated targeting of SidC is critical to its function in the remodeling of the bacterial phagosome membrane. Finally, a GFP-fusion with the P4C domain was demonstrated to be specifically localized to PI(4)P-enriched compartments in mammalian cells. This domain shows the potential to be developed into a sensitive and accurate PI(4)P probe in living cells.  相似文献   

2.
The phagosome harboring the bacterial pathogen Legionella pneumophila is known to be enriched with phosphatidylinositol 4‐phosphate (PtdIns4P), which is important for anchoring a subset of its virulence factors and potentially for signaling events implicated in the biogenesis of the Legionella‐containing vacuole (LCV) that supports intracellular bacterial growth. Here we demonstrate that the effector MavQ is a phosphoinositide 3‐kinase that specifically catalyzes the conversion of phosphatidylinositol (PtdIns) into PtdIns3P. The product of MavQ is subsequently phosphorylated by the effector LepB to yield PtdIns(3,4)P2, whose 3‐phosphate is then removed by another effector SidF to generate PtdIns4P. We also show that MavQ is associated with the LCV and the ∆mavQ mutant displays phenotypes in the anchoring of a PtdIns4P‐binding effector similar to those of ∆lepB or ∆sidF mutants. Our results establish a mechanism of de novo PtdIns4P biosynthesis by L. pneumophila via a catalysis axis comprised of MavQ, LepB, and SidF on the surface of its phagosome.  相似文献   

3.
Legionella pneumophila (L. pneumophila) is a gram-negative bacterium that replicates in a compartment that resembles the host endoplasmic reticulum (ER). To create its replicative niche, L. pneumophila manipulates host membrane traffic and fusion machineries. Bacterial proteins called Legionella effectors are translocated into the host cytosol and play a crucial role in these processes. In an early stage of infection, Legionella subverts ER-derived vesicles (ERDVs) by manipulating GTPase Rab1 to facilitate remodeling of the Legionella-containing vacuole (LCV). Subsequently, the LCV associates with the ER in a mechanism that remains elusive. In this study, we show that L. pneumophila recruits GTPases Rab33B and Rab6A, which regulate vesicle trafficking from the Golgi to the ER, to the LCV to promote the association of LCV with the ER. We found that recruitment of Rab6A to the LCV depends on Rab33B. Legionella effector SidE family proteins, which phosphoribosyl-ubiquitinate Rab33B, were found to be necessary for the recruitment of Rab33B to the LCV. Immunoprecipitation experiments revealed that L. pneumophila facilitates the interaction of Rab6 with ER-resident SNAREs comprising syntaxin 18, p31, and BNIP1, but not tethering factors including NAG, RINT-1, and ZW10, which are normally required for syntaxin 18-mediated fusion of Golgi-derived vesicles with the ER. Our results identified a Rab33B-Rab6A cascade on the LCV and the interaction of Rab6 with ER-resident SNARE proteins for the association of LCV with the ER and disclosed the unidentified physiological role of SidE family proteins.  相似文献   

4.
Upon infection, Legionella pneumophila uses the Dot/Icm type IV secretion system to translocate effector proteins from the Legionella‐containing vacuole (LCV) into the host cell cytoplasm. The effectors target a wide array of host cellular processes that aid LCV biogenesis, including the manipulation of membrane trafficking. In this study, we used a hidden Markov model screen to identify two novel, non‐eukaryotic s oluble N SF a ttachment protein re ceptor (SNARE) homologs: the bacterial Legionella SNARE effector A (LseA) and viral SNARE homolog A proteins. We characterized LseA as a Dot/Icm effector of L. pneumophila, which has close homology to the Qc‐SNARE subfamily. The lseA gene was present in multiple sequenced L. pneumophila strains including Corby and was well distributed among L. pneumophila clinical and environmental isolates. Employing a variety of biochemical, cell biological and microbiological techniques, we found that farnesylated LseA localized to membranes associated with the Golgi complex in mammalian cells and LseA interacted with a subset of Qa‐, Qb‐ and R‐SNAREs in host cells. Our results suggested that LseA acts as a SNARE protein and has the potential to regulate or mediate membrane fusion events in Golgi‐associated pathways.  相似文献   

5.
The intracellular bacterial pathogen, Legionella pneumophila, establishes the replicative niche as a result of the actions of a large array of effector proteins delivered via the Legionella Type 4 secretion system. Many effector proteins are expected to be involved in biogenesis and regulation of the Legionella‐containing vacuole (LCV) that is highly decorated with ubiquitin. Here, we identified a Legionella deubiquitinase, designated LotA, by carrying out a genome analysis to find proteins resembling the eukaryotic ovarian tumour superfamily of cysteine proteases. LotA exhibits a dual ability to cleave ubiquitin chains that is dependent on 2 distinctive catalytic cysteine residues in the eukaryotic ovarian tumour domains. One cysteine dominantly contributes to the removal of ubiquitin from the LCVs by its polyubiquitin cleavage activity. The other specifically cleaves conjugated Lys6‐linked ubiquitin. After delivered by the Type 4 secretion system, LotA localises on the LCVs via its PI(3)P‐binding domain. The lipid‐binding ability of LotA is crucial for ubiquitin removal from the vacuoles. We further analysed the functional interaction of the protein with the recently reported noncanonical ubiquitin ligases of L. pneumophila, revealing that the effector proteins are involved in coordinated regulation that contributes to bacterial growth in the host cells.  相似文献   

6.
RNA viruses can rapidly mutate and acquire resistance to drugs that directly target viral enzymes, which poses serious problems in a clinical context. Therefore, there is a growing interest in the development of antiviral drugs that target host factors critical for viral replication, since they are unlikely to mutate in response to therapy. We recently demonstrated that phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) and its product phosphatidylinositol-4-phosphate (PI4P) are essential for replication of enteroviruses, a group of medically important RNA viruses including poliovirus (PV), coxsackievirus, rhinovirus, and enterovirus 71. Here, we show that enviroxime and GW5074 decreased PI4P levels at the Golgi complex by directly inhibiting PI4KIIIβ. Coxsackievirus mutants resistant to these inhibitors harbor single point mutations in the non-structural protein 3A. These 3A mutations did not confer compound-resistance by restoring the activity of PI4KIIIβ in the presence of the compounds. Instead, replication of the mutant viruses no longer depended on PI4KIIIβ, since their replication was insensitive to siRNA-mediated depletion of PI4KIIIβ. The mutant viruses also did not rely on other isoforms of PI4K. Consistently, no high level of PI4P could be detected at the replication sites induced by the mutant viruses in the presence of the compounds. Collectively, these findings indicate that through specific single point mutations in 3A, CVB3 can bypass an essential host factor and lipid for its propagation, which is a new example of RNA viruses acquiring resistance against antiviral compounds, even when they directly target host factors.  相似文献   

7.
The pathogenic bacterium Legionella pneumophila replicates in host cells within a distinct ER‐associated compartment termed the Legionella‐containing vacuole (LCV). How the dynamic ER network contributes to pathogen proliferation within the nascent LCV remains elusive. A proteomic analysis of purified LCVs identified the ER tubule‐resident large GTPase atlastin3 (Atl3, yeast Sey1p) and the reticulon protein Rtn4 as conserved LCV host components. Here, we report that Sey1/Atl3 and Rtn4 localize to early LCVs and are critical for pathogen vacuole formation. Sey1 overproduction promotes intracellular growth of L. pneumophila, whereas a catalytically inactive, dominant‐negative GTPase mutant protein, or Atl3 depletion, restricts pathogen replication and impairs LCV maturation. Sey1 is not required for initial recruitment of ER to PtdIns(4)P‐positive LCVs but for subsequent pathogen vacuole expansion. GTP (but not GDP) catalyzes the Sey1‐dependent aggregation of purified, ER‐positive LCVs in vitro. Thus, Sey1/Atl3‐dependent ER remodeling contributes to LCV maturation and intracellular replication of L. pneumophila.  相似文献   

8.
Ge J  Shao F 《Cellular microbiology》2011,13(12):1870-1880
Legionella pneumophila, the causative agent of Legionnaires' disease, infects and replicates in macrophages and amoebas. Following internalization, L. pneumophila resides in a vacuole structure called Legionella-containing vacuole (LCV). The LCV escapes from the endocytic maturation process and avoids fusion with the lysosome, a hallmark of Legionella pathogenesis. Interference with the secretory vesicle transport and avoiding lysosomal targeting render the LCV permissive for L. pneumophila intracellular replication. Central to L. pneumophila pathogenesis is a defect in the organelle trafficking/intracellular multiplication (Dot/Icm) type IV secretion system that translocates a large number of effector proteins into host cells. Many of the Dot/Icm effectors employ diverse and sophisticated biochemical strategies to manipulate the host vesicular transport system, playing an important role in LCV biogenesis and trafficking. Similar to other bacterial pathogens, L. pneumophila also delivers effector proteins to modulate or counteract host innate immune defence pathways such as the NF-κB and apoptotic signalling. This review summarizes the known functions and mechanisms of Dot/Icm effectors that target host membrane trafficking and innate immune defence pathways.  相似文献   

9.
Legionella pneumophila is a facultative intracellular pathogen that uses the Dot/Icm Type IV secretion system (T4SS) to translocate many effectors into its host and establish a safe, replicative lifestyle. The bacteria, once phagocytosed, reside in a vacuolar structure known as the Legionella-containing vacuole (LCV) within the host cells and rapidly subvert organelle trafficking events, block inflammatory responses, hijack the host ubiquitination system, and abolish apoptotic signaling. This arsenal of translocated effectors can manipulate the host factors in a multitude of different ways. These proteins also contribute to bacterial virulence by positively or negatively regulating the activity of one another. Such effector–effector interactions, direct and indirect, provide the delicate balance required to maintain cellular homeostasis while establishing itself within the host. This review summarizes the recent progress in our knowledge of the structure–function relationship and biochemical mechanisms of select effector pairs from Legionella that work in opposition to one another, while highlighting the diversity of biochemical means adopted by this intracellular pathogen to establish a replicative niche within host cells.  相似文献   

10.
Legionella pneumophila is an opportunistic pathogen that can cause a severe pneumonia called Legionnaires'' disease. In the environment, L. pneumophila is found in fresh water reservoirs in a large spectrum of environmental conditions, where the bacteria are able to replicate within a variety of protozoan hosts. To survive within eukaryotic cells, L. pneumophila require a type IV secretion system, designated Dot/Icm, that delivers bacterial effector proteins into the host cell cytoplasm. In recent years, a number of Dot/Icm substrate proteins have been identified; however, the function of most of these proteins remains unknown, and it is unclear why the bacterium maintains such a large repertoire of effectors to promote its survival. Here we investigate a region of the L. pneumophila chromosome that displays a high degree of plasticity among four sequenced L. pneumophila strains. Analysis of GC content suggests that several genes encoded in this region were acquired through horizontal gene transfer. Protein translocation studies establish that this region of genomic plasticity encodes for multiple Dot/Icm effectors. Ectopic expression studies in mammalian cells indicate that one of these substrates, a protein called PieA, has unique effector activities. PieA is an effector that can alter lysosome morphology and associates specifically with vacuoles that support L. pneumophila replication. It was determined that the association of PieA with vacuoles containing L. pneumophila requires modifications to the vacuole mediated by other Dot/Icm effectors. Thus, the localization properties of PieA reveal that the Dot/Icm system has the ability to spatially and temporally control the association of an effector with vacuoles containing L. pneumophila through activities mediated by other effector proteins.  相似文献   

11.
The causative agent of Legionnaires disease, Legionella pneumophila, forms a replicative vacuole in phagocytes by means of the intracellular multiplication/defective organelle trafficking (Icm/Dot) type IV secretion system and translocated effector proteins, some of which subvert host GTP and phosphoinositide (PI) metabolism. The Icm/Dot substrate SidC anchors to the membrane of Legionella-containing vacuoles (LCVs) by specifically binding to phosphatidylinositol 4-phosphate (PtdIns(4)P). Using a nonbiased screen for novel L. pneumophila PI-binding proteins, we identified the Rab1 guanine nucleotide exchange factor (GEF) SidM/DrrA as the predominant PtdIns(4)P-binding protein. Purified SidM specifically and directly bound to PtdIns(4)P, whereas the SidM-interacting Icm/Dot substrate LidA preferentially bound PtdIns(3)P but also PtdIns(4)P, and the L. pneumophila Arf1 GEF RalF did not bind to any PIs. The PtdIns(4)P-binding domain of SidM was mapped to the 12-kDa C-terminal sequence, termed “P4M” (PtdIns4P binding of SidM/DrrA). The isolated P4M domain is largely helical and displayed higher PtdIns(4)P binding activity in the context of the α-helical, monomeric full-length protein. SidM constructs containing P4M were translocated by Icm/Dot-proficient L. pneumophila and localized to the LCV membrane, indicating that SidM anchors to PtdIns(4)P on LCVs via its P4M domain. An L. pneumophila ΔsidM mutant strain displayed significantly higher amounts of SidC on LCVs, suggesting that SidM and SidC compete for limiting amounts of PtdIns(4)P on the vacuole. Finally, RNA interference revealed that PtdIns(4)P on LCVs is specifically formed by host PtdIns 4-kinase IIIβ. Thus, L. pneumophila exploits PtdIns(4)P produced by PtdIns 4-kinase IIIβ to anchor the effectors SidC and SidM to LCVs.The Gram-negative pathogen Legionella pneumophila is the causative agent of Legionnaires disease, but it evolved as a parasite of various species of environmental predatory protozoa, including the social amoeba Dictyostelium discoideum (1, 2). The human disease is linked to the inhalation of contaminated aerosols, followed by replication in alveolar macrophages. To accommodate the transfer between host cells, L. pneumophila alternates between replicative and transmissive phases, the regulation of which includes an apparent quorum-sensing system (35).In macrophages and amoebae, L. pneumophila forms a replicative compartment, the Legionella-containing vacuole (LCV).3 LCVs avoid fusion with lysosomes (6), intercept vesicular traffic at endoplasmic reticulum (ER) exit sites (7), and fuse with the ER (810). The uptake of L. pneumophila and formation of LCVs in macrophages and amoebae depends on the Icm/Dot type IV secretion system (T4SS) (1114). Although more than 100 Icm/Dot substrates (“effector” proteins) have been identified to date, only few are functionally characterized, including effectors that interfere with host cell signal transduction, vesicle trafficking, or apoptotic pathways (1518).Two Icm/Dot-translocated substrates, SidM/DrrA (19, 20) and RalF (21), have been characterized as guanine nucleotide exchange factors (GEFs) for the Rho subfamily of small GTPases. These bacterial GEFs are recruited to and activate their targets on LCVs. Small GTPases of the Rho subfamily are involved in many eukaryotic signal transduction pathways and in actin cytoskeleton regulation (22). Inactive Rho GTPases bind GDP and a guanine nucleotide dissociation inhibitor (GDI). The GTPases are activated by removal of the GDI and the exchange of GDP with GTP by GEFs, which promotes the interaction with downstream effector proteins, such as protein or lipid kinases and various adaptor proteins. The cycle is closed by hydrolysis of the bound GTP, which is mediated by GTPase-activating proteins.SidM is a GEF for Rab1, which is essential for ER to Golgi vesicle transport, and additionally, SidM acts as a GDI displacement factor (GDF) to activate Rab1 (23, 24). The function of SidM is assisted by the Icm/Dot substrate LidA, which also localizes to LCVs. LidA preferentially binds to activated Rab1, thus supporting the recruitment of early secretory vesicles by SidM (19, 20, 23, 25, 26). Another Icm/Dot substrate, LepB (27), contributes to Rab1-mediated membrane cycling by inactivating Rab1 through its GTPase-activating protein function, thus acting as an antagonist of SidM (24).The Icm/Dot substrate RalF recruits and activates the small GTPase ADP-ribosylation factor 1 (Arf1), which is involved in retrograde vesicle transport from Golgi to ER (21). Dominant negative Arf1 (7, 28) or knockdown of Arf1 by RNA interference (29) impairs the formation of LCVs, as well as the recruitment of the Icm/Dot substrate SidC to the LCV (30).SidC and its paralogue SdcA localize to the LCV membrane (31), where the proteins specifically bind to the host cell lipid phosphatidylinositol 4-phosphate (PtdIns(4)P) (32, 33). Phosphoinositides (PIs) regulate eukaryotic receptor-mediated signal transduction, actin remodeling, and membrane dynamics (34, 35). PtdIns(4)P is present on the cytoplasmic membrane, but localizes preferentially to the trans-Golgi network (TGN), where this PI is produced by an Arf-dependent recruitment of PtdIns(4)P kinase IIIβ (PI4K IIIβ) (36) to promote trafficking along the secretory pathway. Recently, PtdIns(4)P was found to also mediate the export of early secretory vesicles from ER exit sites (37). At present, the L. pneumophila effector proteins that mediate exploitation of host PI signaling remain ill defined.In a nonbiased screen for L. pneumophila PI-binding proteins using different PIs coupled to agarose beads, we identified SidM as a major PtdIns(4)P-binding effector. We mapped its PtdIns(4)P binding activity to a novel P4M domain within a 12-kDa C-terminal sequence. SidM constructs, including the P4M domain, were found to be translocated and bind the LCV membrane, where the levels of PtdIns(4)P are controlled by PI4K IIIβ.  相似文献   

12.
The opportunistic pathogen Legionella pneumophila is an amoeba-resistant bacterium, which also replicates in alveolar macrophages thus causing the severe pneumonia "Legionnaires'' disease"1. In protozoan and mammalian phagocytes, L. pneumophila employs a conserved mechanism to form a specific, replication-permissive compartment, the "Legionella-containing vacuole" (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system (T4SS), which translocates as many as 275 "effector" proteins into host cells. The effectors manipulate host proteins as well as lipids and communicate with secretory, endosomal and mitochondrial organelles2-4.The formation of LCVs represents a complex, robust and redundant process, which is difficult to grasp in a reductionist manner. An integrative approach is required to comprehensively understand LCV formation, including a global analysis of pathogen-host factor interactions and their temporal and spatial dynamics. As a first step towards this goal, intact LCVs are purified and analyzed by proteomics and lipidomics.The composition and formation of pathogen-containing vacuoles has been investigated by proteomic analysis using liquid chromatography or 2-D gel electrophoresis coupled to mass-spectrometry. Vacuoles isolated from either the social soil amoeba Dictyostelium discoideum or mammalian phagocytes harboured Leishmania5, Listeria6, Mycobacterium7, Rhodococcus8, Salmonella9 or Legionella spp.10. However, the purification protocols employed in these studies are time-consuming and tedious, as they require e.g. electron microscopy to analyse LCV morphology, integrity and purity. Additionally, these protocols do not exploit specific features of the pathogen vacuole for enrichment.The method presented here overcomes these limitations by employing D. discoideum producing a fluorescent LCV marker and by targeting the bacterial effector protein SidC, which selectively anchors to the LCV membrane by binding to phosphatidylinositol 4-phosphate (PtdIns(4)P)3,11 . LCVs are enriched in a first step by immuno-magnetic separation using an affinity-purified primary antibody against SidC and a secondary antibody coupled to magnetic beads, followed in a second step by a classical Histodenz density gradient centrifugation12,13 (Fig. 1).A proteome study of isolated LCVs from D. discoideum revealed more than 560 host cell proteins, including proteins associated with phagocytic vesicles, mitochondria, ER and Golgi, as well as several GTPases, which have not been implicated in LCV formation before13. LCVs enriched and purified with the protocol outlined here can be further analyzed by microscopy (immunofluorescence, electron microscopy), biochemical methods (Western blot) and proteomic or lipidomic approaches.  相似文献   

13.
Bacterial pathogen Legionella pneumophila is the causative agent of Legionnaires'' disease, which is associated with intracellular replication of the bacteria in macrophages of human innate immune system. Recent studies indicate that pathogenic bacteria can subvert host cell phosphoinositide (PI) metabolism by translocated virulence effectors. However, in which manner Legionella actively exploits PI lipids to benefit its infection is not well characterized. Here we report that L. pneumophila encodes an effector protein, named SidP, that functions as a PI-3-phosphatase specifically hydrolyzing PI(3)P and PI(3,5)P2 in vitro. This activity of SidP rescues the growth phenotype of a yeast strain defective in PI(3)P phosphatase activity. Crystal structure of SidP orthologue from Legionella longbeachae reveals that this unique PI-3-phosphatase is composed of three distinct domains: a large catalytic domain, an appendage domain that is inserted into the N-terminal portion of the catalytic domain, and a C-terminal α-helical domain. SidP has a small catalytic pocket that presumably provides substrate specificity by limiting the accessibility of bulky PIs with multiple phosphate groups. Together, our identification of a unique family of Legionella PI phosphatases highlights a common scheme of exploiting host PI lipids in many intracellular bacterial pathogen infections.  相似文献   

14.
The causative agent of Legionnaires'' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS) to form in phagocytes a distinct “Legionella-containing vacuole” (LCV), which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF) domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP) in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED) fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila.  相似文献   

15.
The facultative intracellular pathogen Legionella pneumophila, the causative agent of Legionnaires disease, infects and replicates within human alveolar macrophages. L. pneumophila delivers almost 300 effector proteins into the besieged host cell that alter signaling cascades and create conditions that favor intracellular bacterial survival. In order for the effectors to accomplish their intracellular mission, their activity needs to be specifically directed toward the correct host cell protein or target organelle. Here, we show that the L. pneumophila effector GobX possesses E3 ubiquitin ligase activity that is mediated by a central region homologous to mammalian U-box domains. Furthermore, we demonstrate that GobX exploits host cell S-palmitoylation to specifically localize to Golgi membranes. The hydrophobic palmitate moiety is covalently attached to a cysteine residue at position 175, which is part of an amphipathic α-helix within the C-terminal region of GobX. Site-directed mutagenesis of cysteine 175 or residues on the hydrophobic face of the amphipathic helix strongly attenuated palmitoylation and Golgi localization of GobX. Together, our study provides evidence that the L. pneumophila effector GobX exploits two post-translational modification pathways of host cells, ubiquitination and S-palmitoylation.  相似文献   

16.
Phosphatidylinositol-4-kinase IIIα (PI4KIIIα) is an essential host cell factor for hepatitis C virus (HCV) replication. An N-terminally truncated 130-kDa form was used to reconstitute an in vitro biochemical lipid kinase assay that was optimized for small-molecule compound screening and identified potent and specific inhibitors. Cell culture studies with PI4KIIIα inhibitors demonstrated that the kinase activity was essential for HCV RNA replication. Two PI4KIIIα inhibitors were used to select cell lines harboring HCV replicon mutants with a 20-fold loss in sensitivity to the compounds. Reverse genetic mapping isolated an NS4B-NS5A segment that rescued HCV RNA replication in PIK4IIIα-deficient cells. HCV RNA replication occurs on specialized membranous webs, and this study with PIK4IIIα inhibitor-resistant mutants provides a genetic link between NS4B/NS5A functions and PI4-phosphate lipid metabolism. A comprehensive assessment of PI4KIIIα as a drug target included its evaluation for pharmacologic intervention in vivo through conditional transgenic murine lines that mimic target-specific inhibition in adult mice. Homozygotes that induce a knockout of the kinase domain or knock in a single amino acid substitution, kinase-defective PI4KIIIα, displayed a lethal phenotype with a fairly widespread mucosal epithelial degeneration of the gastrointestinal tract. This essential host physiologic role raises doubt about the pursuit of PI4KIIIα inhibitors for treatment of chronic HCV infection.  相似文献   

17.
《Journal of molecular biology》2019,431(21):4321-4344
Legionella pneumophila is the causative agent of the severe pneumonia Legionnaires' disease. L. pneumophila is ubiquitously found in freshwater environments, where it replicates within free-living protozoa. Aerosolization of contaminated water supplies allows the bacteria to be inhaled into the human lung, where L. pneumophila can be phagocytosed by alveolar macrophages and replicate intracellularly. The Dot/Icm type IV secretion system (T4SS) is one of the key virulence factors required for intracellular bacterial replication and subsequent disease. The Dot/Icm apparatus translocates more than 300 effector proteins into the host cell cytosol. These effectors interfere with a variety of cellular processes, thus enabling the bacterium to evade phagosome–lysosome fusion and establish an endoplasmic reticulum-derived Legionella-containing vacuole, which facilitates bacterial replication. In turn, the immune system has evolved numerous strategies to recognize intracellular bacteria such as L. pneumophila, leading to potent inflammatory responses that aid in eliminating infection. This review aims to provide an overview of L. pneumophila pathogenesis in the context of the host immune response.  相似文献   

18.
Modulation of host cell function is vital for intracellular pathogens to survive and replicate within host cells. Most commonly, these pathogens utilize specialized secretion systems to inject substrates (also called effector proteins) that function as toxins within host cells. Since it would be detrimental for an intracellular pathogen to immediately kill its host cell, it is essential that secreted toxins be inactivated or degraded after they have served their purpose. The pathogen Legionella pneumophila represents an ideal system to study interactions between toxins as it survives within host cells for approximately a day and its Dot/Icm type IVB secretion system (T4SS) injects a vast number of toxins. Previously we reported that the Dot/Icm substrates SidE, SdeA, SdeB, and SdeC (known as the SidE family of effectors) are secreted into host cells, where they localize to the cytoplasmic face of the Legionella containing vacuole (LCV) in the early stages of infection. SidJ, another effector that is unrelated to the SidE family, is also encoded in the sdeC-sdeA locus. Interestingly, while over-expression of SidE family proteins in a wild type Legionella strain has no effect, we found that their over-expression in a ∆sidJ mutant completely inhibits intracellular growth of the strain. In addition, we found expression of SidE proteins is toxic in both yeast and mammalian HEK293 cells, but this toxicity can be suppressed by co-expression of SidJ, suggesting that SidJ may modulate the function of SidE family proteins. Finally, we were able to demonstrate both in vivo and in vitro that SidJ acts on SidE proteins to mediate their disappearance from the LCV, thereby preventing lethal intoxication of host cells. Based on these findings, we propose that SidJ acts as a metaeffector to control the activity of other Legionella effectors.  相似文献   

19.
Phosphatidylinositol 4-kinases (PI4Ks) catalyze the first step in the synthesis of phosphoinositide pools hydrolysed by phosphoinositide-dependent phospholipase C (PI-PLC) and thus constitute a potential key regulation point of this pathway. Twelve putative PI4K isoforms, divided as type-II (AtPI4KIIγ1-8) and type-III PI4Ks (AtPI4KIIIα1-2 and AtPI4KIIIβ1-2), have been identified in Arabidopsis genome. By a combination of pharmalogical and genetic approaches we recently evidenced that AtPI4KIIIβ1 and AtPI4KIIIβ2 contribute to supply PI-PLC with substrate and that AtPI4KIIIα1 is probably also involved in this process. Given the current knowledge on PI-PLC and type-III PI4Ks localization in plant cells it raises the question whether type-III PI4Ks produce phosphatidylinositol 4-phosphate at the site of its consumption by the PI-PLC pathway. We therefore discuss the spatial organization of substrate supply to PI-PLC in plant cells with reference to recent data evidenced in mammalian cells.  相似文献   

20.
Coxsackieviruses require phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) for replication but can bypass this need by an H57Y mutation in protein 3A (3A-H57Y). We show that mutant coxsackievirus is not outcompeted by wild-type virus during 10 passages in vitro. In mice, the mutant virus proved as virulent as wild-type virus, even when mice were treated with a PI4KIIIβ inhibitor. Our data suggest that upon emergence, the 3A-H57Y mutant has the fitness to establish a resistant population with a virulence similar to that of wild-type virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号