首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical and pharmacological stimulation methods are commonly used to study neuronal brain circuits in vivo, but are problematic, because electrical stimulation has limited specificity, while pharmacological activation has low temporal resolution. A recently developed alternative to these methods is the use of optogenetic techniques, based on the expression of light sensitive channel proteins in neurons. While optogenetics have been applied in in vitro preparations and in in vivo studies in rodents, their use to study brain function in nonhuman primates has been limited to the cerebral cortex. Here, we characterize the effects of channelrhodopsin-2 (ChR2) transfection in subcortical areas, i.e., the putamen, the external globus pallidus (GPe) and the ventrolateral thalamus (VL) of rhesus monkeys. Lentiviral vectors containing the ChR2 sequence under control of the elongation factor 1α promoter (pLenti-EF1α -hChR2(H134R)-eYFP-WPRE, titer 109 particles/ml) were deposited in GPe, putamen and VL. Four weeks later, a probe combining a conventional electrode and an optic fiber was introduced in the previously injected brain areas. We found light-evoked responses in 31.5% and 32.7% of all recorded neurons in the striatum and thalamus, respectively, but only in 2.5% of recorded GPe neurons. As expected, most responses were time-locked increases in firing, but decreases or mixed responses were also seen, presumably via ChR2-mediated activation of local inhibitory connections. Light and electron microscopic analyses revealed robust expression of ChR2 on the plasma membrane of cell somas, dendrites, spines and terminals in the striatum and VL. This study demonstrates that optogenetic experiments targeting the striatum and basal ganglia-related thalamic nuclei can be successfully achieved in monkeys. Our results indicate important differences of the type and magnitude of responses in each structure. Experimental conditions such as the vector used, the number and rate of injections, or the light stimulation conditions have to be optimized for each structure studied.  相似文献   

2.
Over the past few years, the light-gated cation channel Channelrhodopsin-2 (ChR2) has seen a remarkable diversity of applications in neuroscience. However, commonly used wide-field illumination provides poor spatial selectivity for cell stimulation. We explored the potential of focal laser illumination to map photocurrents of individual neurons in sparsely transfected hippocampal slice cultures. Interestingly, the best spatial resolution of photocurrent induction was obtained at the lowest laser power. By adjusting the light intensity to a neuron's spike threshold, we were able to trigger action potentials with a spatial selectivity of less than 30 microm. Experiments with dissociated hippocampal cells suggested that the main factor limiting the spatial resolution was ChR2 current density rather than scattering of the excitation light. We conclude that subcellular resolution can be achieved only in cells with a high ChR2 expression level and that future improved variants of ChR2 are likely to extend the spatial resolution of photocurrent induction to the level of single dendrites.  相似文献   

3.
We describe methods for studying axo-dendritic projections, one of the forms of neural connection involved in the complex circuits of the central nervous system, including brainstem auditory pathways. This form of neural connection is often difficult to visualize by conventional tract tracing techniques. Retrogradely identified cells were filled intracellularly with a mixture of fluorescent Lucifer yellow and nonfluorescent HRP in live slice preparations to reveal the detailed morphological features of these cells with special attention to the distal dendrite that may receive projections from suspected or known input axons. Extracellular or intracellular labeling of cells with axons that project to the distal dendrite of the identified cells was accomplished in the same live slice preparation. Using a live slice rather than a fixed slice allows accurate, visually controlled placement of anterograde tracer, which requires living axons for transport, into the source of input to the identified cells within the slice. Live slices also permit one to characterize the identified cells electrophysiologically. Intracellular labeling of cells in a potential source of local input to the identified cells also provides conclusive information concerning with connections of the cells involved.  相似文献   

4.
We describe methods for studying axo-dendritic projections, one of the forms of neural connection involved in the complex circuits of the central nervous system, including brainstem auditory pathways. This form of neural connection is often difficult to visualize by conventional tract tracing techniques. Retrogradely identified cells were filled intracellularly with a mixture of fluorescent Lucifer yellow and nonfluorescent HRP in live slice preparations to reveal the detailed morphological features of these cells with special attention to the distal dendrite that may receive projections from suspected or known input axons. Extracellular or intracellular labeling of cells with axons that project to the distal dendrite of the identified cells was accomplished in the same live slice preparation. Using a live slice rather than a fixed slice allows accurate, visually controlled placement of anterograde tracer, which requires living axons for transport, into the source of input to the identified cells within the slice. Live slices also permit one to characterize the identified cells electrophysiologically. Intracellular labeling of cells in a potential source of local input to the identified cells also provides conclusive information concerning with connections of the cells involved.  相似文献   

5.
The ability of the brain to process sensory information relies on both ascending and descending sets of projections. Until recently, the only way to study these two systems and how they interact has been with the use of in vivo preparations. Major advances have been made with acute brain slices containing the thalamocortical and cortico-thalamic pathways in the somatosensory, visual, and auditory systems. With key refinements to our recent modification of the auditory thalamocortical slice1, we are able to more reliably capture the projections between most of the major auditory midbrain and forebrain structures: the inferior colliculus (IC), medial geniculate body (MGB), thalamic reticular nucleus (TRN), and the auditory cortex (AC). With portions of all these connections retained, we are able to answer detailed questions that complement the questions that can be answered with in vivo preparations. The use of flavoprotein autofluorescence imaging enables us to rapidly assess connectivity in any given slice and guide the ensuing experiment. Using this slice in conjunction with recording and imaging techniques, we are now better equipped to understand how information processing occurs at each point in the auditory forebrain as information ascends to the cortex, and the impact of descending cortical modulation. 3-D printing to build slice chamber components permits double-sided perfusion and broad access to networks within the slice and maintains the widespread connections key to fully utilizing this preparation.  相似文献   

6.
The challenge to understand the complex neuronal circuit functions in the mammalian brain has brought about a revolution in light-based neurotechnologies and optogenetic tools. However, while recent seminal works have shown excellent insights on the processing of basic functions such as sensory perception, memory, and navigation, understanding more complex brain functions is still unattainable with current technologies. We are just scratching the surface, both literally and figuratively. Yet, the path towards fully understanding the brain is not totally uncertain. Recent rapid technological advancements have allowed us to analyze the processing of signals within dendritic arborizations of single neurons and within neuronal circuits. Understanding the circuit dynamics in the brain requires a good appreciation of the spatial and temporal properties of neuronal activity. Here, we assess the spatio-temporal parameters of neuronal responses and match them with suitable light-based neurotechnologies as well as photochemical and optogenetic tools. We focus on the spatial range that includes dendrites and certain brain regions (e.g., cortex and hippocampus) that constitute neuronal circuits. We also review some temporal characteristics of some proteins and ion channels responsible for certain neuronal functions. With the aid of the photochemical and optogenetic markers, we can use light to visualize the circuit dynamics of a functioning brain. The challenge to understand how the brain works continue to excite scientists as research questions begin to link macroscopic and microscopic units of brain circuits.  相似文献   

7.
The patch-clamp technique allows investigation of the electrical excitability of neurons and the functional properties and densities of ion channels. Most patch-clamp recordings from neurons have been made from the soma, the largest structure of individual neurons, while their dendrites, which form the majority of the surface area and receive most of the synaptic input, have been relatively neglected. This protocol describes techniques for recording from the dendrites of neurons in brain slices under direct visual control. Although the basic technique is similar to that used for somatic patching, we describe refinements and optimizations of slice quality, microscope optics, setup stability and electrode approach that are required for maximizing the success rate for dendritic recordings. Using this approach, all configurations of the patch-clamp technique (cell-attached, inside-out, whole-cell, outside-out and perforated patch) can be achieved, even for relatively distal dendrites, and simultaneous multiple-electrode dendritic recordings are also possible. The protocol--from the beginning of slice preparation to the end of the first successful recording--can be completed in 3 h.  相似文献   

8.
The C. elegans nervous system is particularly well suited for optogenetic analyses of circuit function: Essentially all connections have been mapped, and light can be directed at the neuron of interest in the freely moving, transparent animals, while behavior is observed. Thus, different nodes of a neuronal network can be probed for their role in controlling a particular behavior, using different optogenetic tools for photo-activation or –inhibition, which respond to different colors of light. As neurons may act in concert or in opposing ways to affect a behavior, one would further like to excite these neurons concomitantly, yet independent of each other. In addition to the blue-light activated Channelrhodopsin-2 (ChR2), spectrally red-shifted ChR variants have been explored recently. Here, we establish the green-light activated ChR chimera C1V1 (from Chlamydomonas and Volvox ChR1′s) for use in C. elegans. We surveyed a number of red-shifted ChRs, and found that C1V1-ET/ET (E122T; E162T) works most reliable in C. elegans, with 540–580 nm excitation, which leaves ChR2 silent. However, as C1V1-ET/ET is very light sensitive, it still becomes activated when ChR2 is stimulated, even at 400 nm. Thus, we generated a highly efficient blue ChR2, the H134R; T159C double mutant (ChR2-HR/TC). Both proteins can be used in the same animal, in different neurons, to independently control each cell type with light, enabling a further level of complexity in circuit analyses.  相似文献   

9.
In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain.  相似文献   

10.
The study of complex computational systems is facilitated by network maps, such as circuit diagrams. Such mapping is particularly informative when studying the brain, as the functional role that a brain area fulfills may be largely defined by its connections to other brain areas. In this report, we describe a novel, non-invasive approach for relating brain structure and function using magnetic resonance imaging (MRI). This approach, a combination of structural imaging of long-range fiber connections and functional imaging data, is illustrated in two distinct cognitive domains, visual attention and face perception. Structural imaging is performed with diffusion-weighted imaging (DWI) and fiber tractography, which track the diffusion of water molecules along white-matter fiber tracts in the brain (Figure 1). By visualizing these fiber tracts, we are able to investigate the long-range connective architecture of the brain. The results compare favorably with one of the most widely-used techniques in DWI, diffusion tensor imaging (DTI). DTI is unable to resolve complex configurations of fiber tracts, limiting its utility for constructing detailed, anatomically-informed models of brain function. In contrast, our analyses reproduce known neuroanatomy with precision and accuracy. This advantage is partly due to data acquisition procedures: while many DTI protocols measure diffusion in a small number of directions (e.g., 6 or 12), we employ a diffusion spectrum imaging (DSI)1, 2 protocol which assesses diffusion in 257 directions and at a range of magnetic gradient strengths. Moreover, DSI data allow us to use more sophisticated methods for reconstructing acquired data. In two experiments (visual attention and face perception), tractography reveals that co-active areas of the human brain are anatomically connected, supporting extant hypotheses that they form functional networks. DWI allows us to create a "circuit diagram" and reproduce it on an individual-subject basis, for the purpose of monitoring task-relevant brain activity in networks of interest.  相似文献   

11.
Optogenetics is a powerful neuromodulatory tool with many unique advantages to explore functions of neuronal circuits in physiology and diseases. Yet, interpretation of cellular and behavioral responses following in vivo optogenetic manipulation of brain activities in experimental animals often necessitates identification of photoactivated neurons with high spatial resolution. Although tracing expression of immediate early genes (IEGs) provides a convenient approach, neuronal activation is not always followed by specific induction of widely used neuronal activity markers like c-fos, Egr1 and Arc. In this study we performed unilateral optogenetic stimulation of the striatum in freely moving transgenic mice that expressed a channelrhodopsin-2 (ChR2) variant ChR2(C128S) in striatal medium spiny neurons (MSNs). We found that in vivo blue light stimulation significantly altered electrophysiological activity of striatal neurons and animal behaviors. To identify photoactivated neurons we then analyzed IEG expression patterns using in situ hybridization. Upon light illumination an induction of c-fos was not apparent whereas another neuronal IEG Npas4 was robustly induced in MSNs ipsilaterally. Our results demonstrate that tracing Npas4 mRNA expression following in vivo optogenetic modulation can be an effective tool for reliable and sensitive identification of activated MSNs in the mouse striatum.  相似文献   

12.
It is difficult to investigate the mechanisms that mediate long-term changes in synapse function because synapses are small and deeply embedded inside brain tissue. Although recent fluorescence nanoscopy techniques afford improved resolution, they have so far been restricted to dissociated cells or tissue surfaces. However, to study synapses under realistic conditions, one must image several cell layers deep inside more-intact, three-dimensional preparations that exhibit strong light scattering, such as brain slices or brains in vivo. Using aberration-reducing optics, we demonstrate that it is possible to achieve stimulated emission depletion superresolution imaging deep inside scattering biological tissue. To illustrate the power of this novel (to our knowledge) approach, we resolved distinct distributions of actin inside dendrites and spines with a resolution of 60–80 nm in living organotypic brain slices at depths up to 120 μm. In addition, time-lapse stimulated emission depletion imaging revealed changes in actin-based structures inside spines and spine necks, and showed that these dynamics can be modulated by neuronal activity. Our approach greatly facilitates investigations of actin dynamics at the nanoscale within functionally intact brain tissue.  相似文献   

13.
Greenberg KP  Pham A  Werblin FS 《Neuron》2011,69(4):713-720
Retinal degenerative diseases cause photoreceptor loss and often result in remodeling and deafferentation of the inner retina. Fortunately, ganglion cell morphology appears to remain intact long after photoreceptors and distal retinal circuitry have degenerated. We have introduced the optical neuromodulators channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR) differentially into the soma and dendrites of ganglion cells to recreate antagonistic center-surround receptive field interactions. We then reestablished the physiological receptive field dimensions of primate parafoveal ganglion cells by convolving Gaussian-blurred versions of the visual scene at the appropriate wavelength for each neuromodulator with the Gaussians inherent in the soma and dendrites. These Gaussian-modified ganglion cells responded with physiologically relevant antagonistic receptive field components and encoded edges with parafoveal resolution. This approach bypasses the degenerated areas of the distal retina and could provide a first step in restoring sight to individuals suffering from retinal disease.  相似文献   

14.
Acetylcholine (ACh) influences a vast array of phenomena in cortical systems. It alters many ionic conductances and neuronal firing behavior, often by regulating membrane potential oscillations in populations of cells. Synaptic inhibition has crucial roles in many forms of oscillation, and cholinergic mechanisms regulate both oscillations and synaptic inhibition. In vitro investigations using bath-application of cholinergic receptor agonists, or bulk tissue electrical stimulation to release endogenous ACh, have led to insights into cholinergic function, but questions remain because of the relative lack of selectivity of these forms of stimulation. To investigate the effects of selective release of ACh on interneurons and oscillations, we used an optogenetic approach in which the light-sensitive non-selective cation channel, Channelrhodopsin2 (ChR2), was virally delivered to cholinergic projection neurons in the medial septum/diagonal band of Broca (MS/DBB) of adult mice expressing Cre-recombinase under the control of the choline-acetyltransferase (ChAT) promoter. Acute hippocampal slices obtained from these animals weeks later revealed ChR2 expression in cholinergic axons. Brief trains of blue light pulses delivered to untreated slices initiated bursts of ACh-evoked, inhibitory post-synaptic currents (L-IPSCs) in CA1 pyramidal cells that lasted for 10's of seconds after the light stimulation ceased. L-IPSC occurred more reliably in slices treated with eserine and a very low concentration of 4-AP, which were therefore used in most experiments. The rhythmic, L-IPSCs were driven primarily by muscarinic ACh receptors (mAChRs), and could be suppressed by endocannabinoid release from pyramidal cells. Finally, low-frequency oscillations (LFOs) of local field potentials (LFPs) were significantly cross-correlated with the L-IPSCs, and reversal of the LFPs near s. pyramidale confirmed that the LFPs were driven by perisomatic inhibition. This optogenetic approach may be a useful complementary technique in future investigations of endogenous ACh effects.  相似文献   

15.
We used two-photon excitation with a near-infrared (NIR) laser microbeam to investigate activation of channelrhodopsin 2 (ChR2) in excitable cells for the first time to our knowledge. By measuring the fluorescence intensity of the calcium (Ca) indicator dye, Ca orange, at different wavelengths as a function of power of the two-photon excitation microbeam, we determined the activation potential of the NIR microbeam as a function of wavelength. The two-photon activation spectrum is found to match measurements carried out with single-photon activation. However, two-photon activation is found to increase in a nonlinear manner with the power density of the two-photon laser microbeam. This approach allowed us to activate different regions of ChR2-sensitized excitable cells with high spatial resolution. Further, in-depth activation of ChR2 in a spheroid cellular model as well as in mouse brain slices was demonstrated by the use of the two-photon NIR microbeam, which was not possible using single-photon activation. This all-optical method of identification, activation, and detection of ChR2-induced cellular activation in genetically targeted cells with high spatial and temporal resolution will provide a new method of performing minimally invasive in-depth activation of specific target areas of tissues or organisms that have been rendered photosensitive by genetic targeting of ChR2 or similar photo-excitable molecules.  相似文献   

16.
Many cellular structures and organelles are too small to be properly resolved by conventional light microscopy. This is particularly true for dendritic spines and glial processes, which are very small, dynamic, and embedded in dense tissue, making it difficult to image them under realistic experimental conditions. Two-photon microscopy is currently the method of choice for imaging in thick living tissue preparations, both in acute brain slices and in vivo. However, the spatial resolution of a two-photon microscope, which is limited to ∼350 nm by the diffraction of light, is not sufficient for resolving many important details of neural morphology, such as the width of spine necks or thin glial processes. Recently developed superresolution approaches, such as stimulated emission depletion microscopy, have set new standards of optical resolution in imaging living tissue. However, the important goal of superresolution imaging with significant subdiffraction resolution has not yet been accomplished in acute brain slices. To overcome this limitation, we have developed a new microscope based on two-photon excitation and pulsed stimulated emission depletion microscopy, which provides unprecedented spatial resolution and excellent experimental access in acute brain slices using a long-working distance objective. The new microscope improves on the spatial resolution of a regular two-photon microscope by a factor of four to six, and it is compatible with time-lapse and simultaneous two-color superresolution imaging in living cells. We demonstrate the potential of this nanoscopy approach for brain slice physiology by imaging the morphology of dendritic spines and microglial cells well below the surface of acute brain slices.  相似文献   

17.
This article discusses several of the currently used methodologies for recording from brain slices. Aspects of slice preparation as well as appropriate uses for the various slice models (i.e., thin or thick slices) are considered. The merits of extracellular and intracellular electrophysiological recording and their uses are discussed. In addition, mechanisms of neuronal circuit activation and stimulation are presented.  相似文献   

18.
Wang K  Liu Y  Li Y  Guo Y  Song P  Zhang X  Zeng S  Wang Z 《PloS one》2011,6(12):e28468
Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision.  相似文献   

19.
Fluorescence imaging using FM 1-43 and related styryl dyes has provided invaluable insights into presynaptic function of synapses in culture preparations, but has been limited in use for studying central synapses in vivo or in brain slices, because of excessive fluorescence background due to nonspecific membrane binding of dye. We demonstrate here that focal excitation of FM dyes using two-photon laser-scanning microscopy (TPLSM) provides high resolution of FM 1-43-labeled nerve terminals in brain slices by suppressing out-of-focus background and that a readily releasable pool of vesicles can be selectively and stably labeled by hypertonic shock despite slice diffusion barriers. We find direct TPLSM of FM 1-43-labeled nerve terminals to be superior to treatment of slices with either the fluorescent quencher sulforhodamine 101 or dye scavenger ADVASEP-7 in resolving nerve terminal against background fluorescence, enabling continuous monitoring of vesicular uptake, and release of styryl dyes from individual nerve terminals in brain slices.  相似文献   

20.
Verkuyl JM  Matus A 《Nature protocols》2006,1(5):2399-2405
Dendritic spines are small protrusions present postsynaptically at approximately 90% of excitatory synapses in the brain. Spines undergo rapid spontaneous changes in shape that are thought to be important for alterations in synaptic connectivity underlying learning and memory. Visualization of these dynamic changes in spine morphology are especially challenging because of the small size of spines (approximately 1 microm). Here we describe a microscope system, based on a spinning-disk confocal microscope, suitable for imaging mature dendritic spines in brain slice preparations, with a time resolution of seconds. We discuss two commonly used in vitro brain slice preparations and methods for transfecting them. Preparation and transfection require approximately 1 d, after which slices must be cultured for at least 21 d to obtain spines of mature morphology. We also describe imaging and computer analysis routines for studying spine motility. These procedures require in the order of 2 to 4 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号