首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective attention is the mechanism that allows focusing one’s attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.  相似文献   

2.
Perceptual organization of sound begins in the auditory periphery   总被引:2,自引:1,他引:1  
Segmenting the complex acoustic mixture that makes a typical auditory scene into relevant perceptual objects is one of the main challenges of the auditory system [1], for both human and nonhuman species. Several recent studies indicate that perceptual auditory object formation, or "streaming," may be based on neural activity within the auditory cortex and beyond [2, 3]. Here, we find that scene analysis starts much earlier in the auditory pathways. Single units were recorded from a peripheral structure of the mammalian auditory brainstem, the cochlear nucleus. Peripheral responses were similar to cortical responses and displayed all of the functional properties required for streaming, including multisecond adaptation. Behavioral streaming was also measured in human listeners. Neurometric functions derived from the peripheral responses predicted accurately behavioral streaming. This reveals that subcortical structures may already contribute to the analysis of auditory scenes. This finding is consistent with the observation that species lacking a neocortex can still achieve and benefit from behavioral streaming [4]. For humans, we argue that auditory scene analysis of complex scenes is probably based on interactions between subcortical and cortical neural processes, with the relative contribution of each stage depending on the nature of the acoustic cues forming the streams.  相似文献   

3.
Some combinations of musical tones sound pleasing to Western listeners, and are termed consonant, while others sound discordant, and are termed dissonant. The perceptual phenomenon of consonance has been traced to the acoustic property of harmonicity. It has been repeatedly shown that neural correlates of consonance can be found as early as the auditory brainstem as reflected in the harmonicity of the scalp-recorded frequency-following response (FFR). “Neural Pitch Salience” (NPS) measured from FFRs—essentially a time-domain equivalent of the classic pattern recognition models of pitch—has been found to correlate with behavioral judgments of consonance for synthetic stimuli. Following the idea that the auditory system has evolved to process behaviorally relevant natural sounds, and in order to test the generalizability of this finding made with synthetic tones, we recorded FFRs for consonant and dissonant intervals composed of synthetic and natural stimuli. We found that NPS correlated with behavioral judgments of consonance and dissonance for synthetic but not for naturalistic sounds. These results suggest that while some form of harmonicity can be computed from the auditory brainstem response, the general percept of consonance and dissonance is not captured by this measure. It might either be represented in the brainstem in a different code (such as place code) or arise at higher levels of the auditory pathway. Our findings further illustrate the importance of using natural sounds, as a complementary tool to fully-controlled synthetic sounds, when probing auditory perception.  相似文献   

4.
Physical tradeoffs may in some cases constrain the evolution of sensory systems. The peripheral auditory system, for example, performs a spectral decomposition of sound that should result in a tradeoff between frequency resolution and temporal resolution. We assessed temporal resolution in three songbird species using auditory brainstem responses to paired click stimuli. Temporal resolution was greater in house sparrows (Passer domesticus) than Carolina chickadees (Poecile carolinensis) and white-breasted nuthatches (Sitta carolinensis), as predicted based on previous observations of broader auditory filters (lower frequency resolution) in house sparrows. Furthermore, within chickadees, individuals with broader auditory filters had greater temporal resolution. In contrast to predictions however, temporal resolution was similar between chickadees and nuthatches despite broader auditory filters in chickadees. These results and the results of a model simulation exploring the effect of broadened auditory filter bandwidth on temporal resolution in the auditory periphery strongly suggest that frequency resolution constrains temporal resolution in songbirds. Furthermore, our results suggest that songbirds have greater temporal resolution than some mammals, in agreement with recent behavioral studies. Species differences in temporal resolution may reflect adaptations for efficient processing of species-specific vocalizations, while individual differences within species may reflect experience-based developmental plasticity or hormonal effects.  相似文献   

5.
Hormones associated with parturition prime rats to behave maternally, although hormonal changes are not necessary for these behaviors to occur. Experience with pups after birth enhances maternal responsiveness after a period of isolation, creating a maternal memory. The purpose of this study was to determine the role of corticosterone in the formation of maternal memory. Adrenalectomy or sham surgeries were performed in late gestation with corticosterone or vehicle pellets being given to adrenalectomized rats. Pups were removed immediately following parturition, and half of the rats received 4 h of pup experience, while the other half received only brief pup experience associated with parturition. Ten days following pup experience, foster pups were given to all rats. Latency to become maternal and maternal behaviors on the first 2 days of re-exposure and the first two maternal days were recorded. Among adrenalectomized rats given corticosterone, 4-h experience with pups decreased maternal latency when compared to brief experience with pups. This maternal experience effect was not found in comparisons between adrenalectomized rats not given corticosterone. In addition, corticosterone decreased latencies regardless of pup experience. Corticosterone also increased maternal behavior upon initial exposure to foster pups. In conclusion, corticosterone enhanced maternal memory and initial maternal behavior in postpartum rats.  相似文献   

6.
Cohen L  Rothschild G  Mizrahi A 《Neuron》2011,72(2):357-369
Motherhood is associated with different forms of physiological alterations including transient hormonal changes and brain plasticity. The underlying impact of these changes on the emergence of maternal behaviors and sensory processing within the mother's brain are largely unknown. By using in?vivo cell-attached recordings in the primary auditory cortex of female mice, we discovered that exposure to pups' body odor reshapes neuronal responses to pure tones and natural auditory stimuli. This olfactory-auditory interaction appeared naturally in lactating mothers shortly after parturition and was long lasting. Naive virgins that had experience with the pups also showed an appearance of olfactory-auditory integration in A1, suggesting that multisensory integration may be experience dependent. Neurons from lactating mothers were more sensitive to sounds as compared to those from experienced mice, independent of the odor effects. These uni- and multisensory cortical changes may facilitate the detection and discrimination of pup distress calls and strengthen the bond between mothers and their neonates. VIDEO ABSTRACT:  相似文献   

7.
Biodiversity assessment remains one of the most difficult challenges encountered by ecologists and conservation biologists. This task is becoming even more urgent with the current increase of habitat loss. Many methods–from rapid biodiversity assessments (RBA) to all-taxa biodiversity inventories (ATBI)–have been developed for decades to estimate local species richness. However, these methods are costly and invasive. Several animals–birds, mammals, amphibians, fishes and arthropods–produce sounds when moving, communicating or sensing their environment. Here we propose a new concept and method to describe biodiversity. We suggest to forego species or morphospecies identification used by ATBI and RBA respectively but rather to tackle the problem at another evolutionary unit, the community level. We also propose that a part of diversity can be estimated and compared through a rapid acoustic analysis of the sound produced by animal communities. We produced α and β diversity indexes that we first tested with 540 simulated acoustic communities. The α index, which measures acoustic entropy, shows a logarithmic correlation with the number of species within the acoustic community. The β index, which estimates both temporal and spectral dissimilarities, is linearly linked to the number of unshared species between acoustic communities. We then applied both indexes to two closely spaced Tanzanian dry lowland coastal forests. Indexes reveal for this small sample a lower acoustic diversity for the most disturbed forest and acoustic dissimilarities between the two forests suggest that degradation could have significantly decreased and modified community composition. Our results demonstrate for the first time that an indicator of biological diversity can be reliably obtained in a non-invasive way and with a limited sampling effort. This new approach may facilitate the appraisal of animal diversity at large spatial and temporal scales.  相似文献   

8.
Organizing sensory information into coherent perceptual objects is fundamental to everyday perception and communication. In the visual domain, indirect evidence from cortical responses suggests that children with autism spectrum disorder (ASD) have anomalous figure–ground segregation. While auditory processing abnormalities are common in ASD, especially in environments with multiple sound sources, to date, the question of scene segregation in ASD has not been directly investigated in audition. Using magnetoencephalography, we measured cortical responses to unattended (passively experienced) auditory stimuli while parametrically manipulating the degree of temporal coherence that facilitates auditory figure–ground segregation. Results from 21 children with ASD (aged 7–17 years) and 26 age- and IQ-matched typically developing children provide evidence that children with ASD show anomalous growth of cortical neural responses with increasing temporal coherence of the auditory figure. The documented neurophysiological abnormalities did not depend on age, and were reflected both in the response evoked by changes in temporal coherence of the auditory scene and in the associated induced gamma rhythms. Furthermore, the individual neural measures were predictive of diagnosis (83% accuracy) and also correlated with behavioral measures of ASD severity and auditory processing abnormalities. These findings offer new insight into the neural mechanisms underlying auditory perceptual deficits and sensory overload in ASD, and suggest that temporal-coherence-based auditory scene analysis and suprathreshold processing of coherent auditory objects may be atypical in ASD.

To navigate everyday environments, the auditory system must analyze the temporal coherence of sound elements scattered across different frequencies to organize them into discrete perceptual objects. This neuroimaging study reveals that this process is altered in autism, potentially explaining the often-experienced sensory overload.  相似文献   

9.
During development, the sense of hearing changes rapidly with age, especially around hearing onset. During this period, auditory structures are highly sensitive to alterations of the acoustic environment, such as hearing loss or background noise. This sensitivity includes auditory temporal processing, which is important for processing complex sounds, and for acquiring reading and language skills. Developmental changes can be observed at multiple levels of brain organization—from behavioral responses to cellular responses, and at every auditory nucleus. Neuronal properties and sound processing change dramatically in auditory cortex neurons after hearing onset. However, development of its primary source, the auditory thalamus, or medial geniculate body (MGB), has not been well studied over this critical time window. Furthermore, to understand how temporal processing develops, it is important to determine the relative maturation of temporal processing not only in the MGB, but also in its inputs. Cellular properties of rat MGB neurons were studied using in vitro whole‐cell patch‐clamp recordings, at ages postnatal day (P) 7–9; P15–17, and P22–32. Auditory evoked potentials were measured in P14–17 and P22–32 rats. MGB action potentials became about five times faster, and the ability to generate spike trains increased with age, particularly at frequencies of 50 Hz and higher. Evoked potential responses, including auditory brainstem responses (ABR), middle latency responses (MLR), and amplitude modulation following responses, showed increased amplitudes with age, and ABRs and MLRs additionally showed decreased latencies with age. Overall, temporal processing at subthalamic nuclei is concurrently maturing with MGB cellular properties. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 541–555, 2014  相似文献   

10.
Caregiving by nonparents (alloparenting) and fathers is a defining aspect of human social behavior, yet this phenomenon is rare among mammals. Male prairie voles (Microtus ochrogaster) spontaneously exhibit high levels of alloparental care, even in the absence of reproductive experience. In previous studies, exposure to a pup was selectively associated with increased activity in oxytocin and vasopressin neurons along with decreased plasma corticosterone. In the present study, physiological, pharmacological and neuroanatomical methods were used to explore the autonomic and behavioral consequences of exposing male prairie voles to a pup. Reproductively naïve, adult male prairie voles were implanted with radiotransmitters used for recording ECG, temperature and activity. Males responded with a sustained increase in heart-rate during pup exposure. This prolonged increase in heart rate was not explained by novelty, locomotion or thermoregulation. Although heart rate was elevated during pup exposure, respiratory sinus arrhythmia (RSA) did not differ between these males and males exposed to control stimuli indicating that vagal inhibition of the heart was maintained. Blockade of beta-adrenergic receptors with atenolol abolished the pup-induced heart rate increase, implicating sympathetic activity in the pup-induced increase in heart rate. Blockade of vagal input to the heart delayed the males’ approach to the pup. Increased activity in brainstem autonomic regulatory nuclei was also observed in males exposed to pups. Together, these findings suggest that exposure to a pup activates both vagal and sympathetic systems. This unique physiological state (i.e. increased sympathetic excitation of the heart, while maintaining some vagal cardiac tone) associated with male caregiving behavior may allow males to both nurture and protect infants.  相似文献   

11.
 Sensory experience alters the functional organization of cortical networks. Previous studies using behavioral training motivated by aversive or rewarding stimuli have demonstrated that cortical plasticity is specific to salient inputs in the sensory environment. Sensory experience associated with electrical activation of the basal forebrain (BasF) generates similar input specific plasticity. By directly engaging plasticity mechanisms and avoiding extensive behavioral training, BasF stimulation makes it possible to efficiently explore how specific sensory features contribute to cortical plasticity. This review summarizes our observations that cortical networks employ a variety of strategies to improve the representation of the sensory environment. Different combinations of receptive-field, temporal, and spectrotemporal plasticity were generated in primary auditory cortex neurons depending on the pitch, modulation rate, and order of sounds paired with BasF stimulation. Simple tones led to map expansion, while modulated tones altered the maximum cortical following rate. Exposure to complex acoustic sequences led to the development of combination-sensitive responses. This remodeling of cortical response characteristics may reflect changes in intrinsic cellular mechanisms, synaptic efficacy, and local neuronal connectivity. The intricate relationship between the pattern of sensory activation and cortical plasticity suggests that network-level rules alter the functional organization of the cortex to generate the most behaviorally useful representation of the sensory environment. Received: 14 January 2002 / Accepted: 15 March 2002 Correspondence to: M.P. Kilgard (e-mail: kilgard@utdallas.edu, Tel.: +1-972-8832345, Fax: +1-972-8832491)  相似文献   

12.
In anurans reproductive behavior is strongly seasonal. During the spring, frogs emerge from hibernation and males vocalize for mating or advertising territories. Female frogs have the ability to evaluate the quality of the males'' resources on the basis of these vocalizations. Although studies revealed that central single torus semicircularis neurons in frogs exhibit season plasticity, the plasticity of peripheral auditory sensitivity in frog is unknown. In this study the seasonally plasticity of peripheral auditory sensitivity was test in the Emei music frog Babina daunchina, by comparing thresholds and latencies of auditory brainstem responses (ABRs) evoked by tone pips and clicks in the reproductive and non-reproductive seasons. The results show that both ABR thresholds and latency differ significantly between the reproductive and non-reproductive seasons. The thresholds of tone pip evoked ABRs in the non-reproductive season increased significantly about 10 dB than those in the reproductive season for frequencies from 1 KHz to 6 KHz. ABR latencies to waveform valley values for tone pips for the same frequencies using appropriate threshold stimulus levels are longer than those in the reproductive season for frequencies from 1.5 to 6 KHz range, although from 0.2 to 1.5 KHz range it is shorter in the non-reproductive season. These results demonstrated that peripheral auditory frequency sensitivity exhibits seasonal plasticity changes which may be adaptive to seasonal reproductive behavior in frogs.  相似文献   

13.
Skoe E  Kraus N 《PloS one》2010,5(10):e13645

Background

Human brainstem activity is sensitive to local sound statistics, as reflected in an enhanced response in repetitive compared to pseudo-random stimulus conditions [1]. Here we probed the short-term time course of this enhancement using a paradigm that assessed how the local sound statistics (i.e., repetition within a five-note melody) interact with more global statistics (i.e., repetition of the melody).

Methodology/Principal Findings

To test the hypothesis that subcortical repetition enhancement builds over time, we recorded auditory brainstem responses in young adults to a five-note melody containing a repeated note, and monitored how the response changed over the course of 1.5 hrs. By comparing response amplitudes over time, we found a robust time-dependent enhancement to the locally repeating note that was superimposed on a weaker enhancement of the globally repeating pattern.

Conclusions/Significance

We provide the first demonstration of on-line subcortical plasticity in humans. This complements previous findings that experience-dependent subcortical plasticity can occur on a number of time scales, including life-long experiences with music and language, and short-term auditory training. Our results suggest that the incoming stimulus stream is constantly being monitored, even when the stimulus is physically invariant and attention is directed elsewhere, to augment the neural response to the most statistically salient features of the ongoing stimulus stream. These real-time transformations, which may subserve humans'' strong disposition for grouping auditory objects, likely reflect a mix of local processes and corticofugal modulation arising from statistical regularities and the influences of expectation. Our results contribute to our understanding of the biological basis of statistical learning and initiate a new investigational approach relating to the time-course of subcortical plasticity. Although the reported time-dependent enhancements are believed to reflect universal neurophysiological processes, future experiments utilizing a larger array of stimuli are needed to establish the generalizability of our findings.  相似文献   

14.
Auditory evoked potentials to speech (Speech auditory brainstem response [Speech ABR]) are a non-invasive way to investigate neurophysiological activity, at the level of the brainstem. The Speech ABR precise neurophyiological generators remain poorly defined. However, latencies and low-pass spectrum both suggest that these generators might lie in the upper brainstem (roughly between the cochlear nucleus and the inferior colliculus). Having considered the particular functional pattern of cells along the auditory pathway, specific stimuli have been synthesized to make out the acoustic sensitivity of Speech ABR components. Accordingly, hypotheses have been made on the probable neurophysiological generators, most likely to have elicited both Speech ABR components: onset response and frequency following response. Speech ABR have been recorded to pure tones, harmonic complex tones, /ba/ and /pa/ syllables, and their analogues (calculated as a sum of five weighted sine waves at the formant frequencies and amplitudes, and modulated by the syllables temporal envelopes). In addition, the Auditory Image Model (Patterson et al., 1995 [17]), simulating the neural activity at the auditory periphery, i.e. inferior colliculus input, suggests that both analogues and syllables elicit the same amount of energy, in contrast to the recorded FFR. This contradiction means that the neurophysiological signal processing leading to FFR is made beyond auditory periphery. Indeed, FFR synchronisation on F0 seems to be the result of an overall processing of the whole stimulus spectrum. This behaviour reminds the functional characteristics of disc-shape cells in the inferior colliculus, as described in a previous study of physiological periodicity coding (Periodicity analysis network, Voutsas et al., 2005 [42]).  相似文献   

15.
Neural recognition molecule NB-2/contactin 5 is expressed transiently during the first postnatal week in glutamatergic neurons of the central auditory system. Here, we investigated the effect of NB-2 deficiency on the auditory brainstem in mouse. While almost all principal neurons are wrapped with the calyces of Held in the medial nucleus of the trapezoid body (MNTB) in wild type, 8% of principal neurons in NB-2 knockout (KO) mice lack the calyces of Held at postnatal day (P) 6. At P10 and P15, apoptotic principal neurons were detected in NB-2 KO mice, but not in wild type. Apoptotic cells were also increased in the ventral cochlear nucleus (VCN) of NB-2 KO mice, which contains bushy neurons projecting to the MNTB and the lateral superior olive (LSO). At the age of 1 month, the number of principal neurons in the MNTB and of glutamatergic synapses in the LSO was reduced in NB-2 KO mice. Finally, interpeak latencies for auditory brainstem response waves II-III and III-IV were significantly increased in NB-2 KO mice. Together, these findings suggest that NB-2 deficiency causes a deficit in synapse formation and then induces apoptosis in MNTB and VCN neurons, affecting auditory brainstem function.  相似文献   

16.
In experiments on anesthetized cats, 80 neurons of the primary auditory cortex (A1) were studied. Within the examined neuronal population, 66 cells (or 82.5%) were monosensory units, i.e., they responded only to acoustic stimulations (sound clicks and tones); 8 (10.1%) neurons responded to acoustic stimulation and electrocutaneous stimulation (ECS); the rest of the units (7.4%) were either trisensory (responded also to visual stimulation) or responded only to non-acoustic stimulations. In the A1 area, neurons responding to ECS with rather short latencies (15.6–17.0 msec) were found. ECS usually suppressed the impulse neuronal responses evoked by sound clicks. It is concluded that somatosensory afferent signals cause predominantly an inhibitory effect on transmission of an acoustic afferent volley to the auditory cortex at a subcortical level; however, rare cases of excitatory convergence of acoustic and somatosensory inputs toA1 neurons were observed.  相似文献   

17.
The mechanism by which a complex auditory scene is parsed into coherent objects depends on poorly understood interactions between task-driven and stimulus-driven attentional processes. We illuminate these interactions in a simultaneous behavioral–neurophysiological study in which we manipulate participants' attention to different features of an auditory scene (with a regular target embedded in an irregular background). Our experimental results reveal that attention to the target, rather than to the background, correlates with a sustained (steady-state) increase in the measured neural target representation over the entire stimulus sequence, beyond auditory attention's well-known transient effects on onset responses. This enhancement, in both power and phase coherence, occurs exclusively at the frequency of the target rhythm, and is only revealed when contrasting two attentional states that direct participants' focus to different features of the acoustic stimulus. The enhancement originates in auditory cortex and covaries with both behavioral task and the bottom-up saliency of the target. Furthermore, the target's perceptual detectability improves over time, correlating strongly, within participants, with the target representation's neural buildup. These results have substantial implications for models of foreground/background organization, supporting a role of neuronal temporal synchrony in mediating auditory object formation.  相似文献   

18.
The auditory system consists of the ascending and descending (corticofugal) systems. The corticofugal system forms multiple feedback loops. Repetitive acoustic or auditory cortical electric stimulation activates the cortical neural net and the corticofugal system and evokes cortical plastic changes as well as subcortical plastic changes. These changes are short-term and are specific to the properties of the acoustic stimulus or electrically stimulated cortical neurons. These plastic changes are modulated by the neuromodulatory system. When the acoustic stimulus becomes behaviorally relevant to the animal through auditory fear conditioning or when the cortical electric stimulation is paired with an electric stimulation of the cholinergic basal forebrain, the cortical plastic changes become larger and long-term, whereas the subcortical changes stay short-term, although they also become larger. Acetylcholine plays an essential role in augmenting the plastic changes and in producing long-term cortical changes. The corticofugal system has multiple functions. One of the most important functions is the improvement and adjustment (reorganization) of subcortical auditory signal processing for cortical signal processing.  相似文献   

19.
Our ability to detect target sounds in complex acoustic backgrounds is often limited not by the ear's resolution, but by the brain's information-processing capacity. The neural mechanisms and loci of this “informational masking” are unknown. We combined magnetoencephalography with simultaneous behavioral measures in humans to investigate neural correlates of informational masking and auditory perceptual awareness in the auditory cortex. Cortical responses were sorted according to whether or not target sounds were detected by the listener in a complex, randomly varying multi-tone background known to produce informational masking. Detected target sounds elicited a prominent, long-latency response (50–250 ms), whereas undetected targets did not. In contrast, both detected and undetected targets produced equally robust auditory middle-latency, steady-state responses, presumably from the primary auditory cortex. These findings indicate that neural correlates of auditory awareness in informational masking emerge between early and late stages of processing within the auditory cortex.  相似文献   

20.
Terleph TA  Lu K  Vicario DS 《PloS one》2008,3(8):e2854
The caudomedial nidopallium (NCM) is a telencephalic auditory area that is selectively activated by conspecific vocalizations in zebra finches and canaries. We recently demonstrated that temporal and spectral dynamics of auditory tuning in NCM differ between these species [1]. In order to determine whether these differences reflect recent experience, we exposed separate groups of each species and sex to different housing conditions. Adult birds were housed either in an aviary with conspecifics (NORM), with heterospecifics (canary subjects in a zebra finch aviary, and vice versa: (CROSS)), or in isolation (ISO) for 9 days prior to testing. We then recorded extracellular multi-unit electrophysiological responses to simple pure tone stimuli (250-5000 Hz) in awake birds from each group and analyzed auditory tuning width using methods from our earlier studies. Relative to NORM birds, tuning was narrower in CROSS birds, and wider in ISO birds. The trend was greater in canaries, especially females. The date of recording was also included as a covariate in ANCOVAs that analyzed a larger set of the canary data, including data from birds tested outside of the breeding season, and treated housing condition and sex as independent variables. These tests show that tuning width was narrower early in the year and broader later. This effect was most pronounced in CROSS males. The degree of the short-term neural plasticity described here differs across sexes and species, and may reflect differences in NCM's anatomical and functional organization related to species differences in song characteristics, adult plasticity and/or social factors. More generally, NCM tuning is labile and may be modulated by recent experience to reflect the auditory processing required for behavioral adaptation to the current acoustic, social or seasonal context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号